JP3459040B2 - Polymer thermo-optical waveguide device - Google Patents

Polymer thermo-optical waveguide device

Info

Publication number
JP3459040B2
JP3459040B2 JP03947699A JP3947699A JP3459040B2 JP 3459040 B2 JP3459040 B2 JP 3459040B2 JP 03947699 A JP03947699 A JP 03947699A JP 3947699 A JP3947699 A JP 3947699A JP 3459040 B2 JP3459040 B2 JP 3459040B2
Authority
JP
Japan
Prior art keywords
optical waveguide
polymer
thin film
heater
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03947699A
Other languages
Japanese (ja)
Other versions
JP2000241781A (en
Inventor
直樹 大庭
真 疋田
誠治 豊田
栗原  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03947699A priority Critical patent/JP3459040B2/en
Publication of JP2000241781A publication Critical patent/JP2000241781A/en
Application granted granted Critical
Publication of JP3459040B2 publication Critical patent/JP3459040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に高分子光
導波路を配設した高分子光導波路素子に関し、より詳細
には、熱光学効果を活用した光路切替機能およびあるい
は可変波長選択機能を備えた高分子光導波路素子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer optical waveguide device in which a polymer optical waveguide is provided on a substrate, and more specifically, it has an optical path switching function and / or a variable wavelength selecting function utilizing a thermo-optical effect. The present invention relates to a provided polymer optical waveguide device.

【0002】[0002]

【従来の技術とその問題点】コンパクトな光集積部品を
実現する光導波路回路は、処理の目的や使用環境に応じ
て、半導体、結晶性誘電体、非晶質媒体(ガラス、高分
子)などの材料で作製されている。中でも、ガラスや高
分子などの非晶質媒体は光透過性に優れ、口径や屈折率
などの点で光ファイバとの整合性にも優れ、多くの開発
品や研究例がある。たとえば、河内ら「特集:プレーナ
光波回路技術」(NTTR&D,vol.43,no.
3,pp.1273−1318,1994)、あるい
は、大庭ら「フォトニック・デバイス・アプリケーショ
ンズ・オブ・ロー・ロス・アクリリック・ポリマ・ウェ
イブガイズ」(Proc.ACS PMSE,vol.
75,pp.362−363,1996)を挙げること
ができる。
2. Description of the Related Art Optical waveguide circuits for realizing compact optical integrated parts are semiconductors, crystalline dielectrics, amorphous media (glass, polymers), etc., depending on the purpose of processing and the environment of use. Made of material. Among them, amorphous media such as glass and polymers are excellent in light transmissivity and are excellent in compatibility with optical fibers in terms of aperture and refractive index, and there are many developed products and research examples. For example, “Special Issue: Planar Lightwave Circuit Technology” by Kawauchi et al. (NTTR & D, vol.43, no.
3, pp. 1273-1318, 1994) or Ohba et al., "Photonic Device Applications of Low Loss Acrylic Polymer Waves Guys" (Proc. ACS PMSE, vol.
75, pp. 362-363, 1996).

【0003】高分子の熱光学(TO)定数(屈折率の温
度依存性)は、石英ガラスのそれに比べて1桁も大きい
ので、これを利用した低駆動電力のTO制御型高分子光
導波路素子の開発や提案がなされている。代表的な高分
子TO光導波路素子としては、マッハツェンダ干渉計
(MZI)型光スイッチ(肥田ら、IEE Photo
n.Technol.Lett.,vol5,pp78
2−784,1993)、デジタル光スイッチ(大庭
ら,NTTR&D,vol.47,pp.515−52
0,1998)、可変波長フィルタ(豊田ら,Pro
c. ECOC’98,vol.3,pp.103−1
05,1998)がある。また、複数の光導波路上に長
さの違うヒータを配置したアレイ光導波路TO位相シフ
タを使ったアレイ光導波路格子可変波長合分波器(井上
ら,特開平5−323246号)も提案されている。
Since the thermo-optic (TO) constant (temperature dependence of refractive index) of a polymer is an order of magnitude larger than that of silica glass, a TO-controlled polymer optical waveguide device utilizing this and having a low driving power. Has been developed and proposed. A typical polymer TO optical waveguide device is a Mach-Zehnder interferometer (MZI) type optical switch (Hita et al., IEEE Photo.
n. Technol. Lett. , Vol5, pp78
2-784, 1993), digital optical switch (Oba et al., NTTR & D, vol.47, pp.515-52).
0, 1998), tunable wavelength filter (Toyoda et al., Pro
c. ECOC'98, vol. 3, pp. 103-1
05, 1998). Also proposed is an arrayed optical waveguide grating variable wavelength multiplexer / demultiplexer using an arrayed optical waveguide TO phase shifter in which heaters having different lengths are arranged on a plurality of optical waveguides (Inoue et al., JP-A-5-323246). There is.

【0004】前述のMZI型光スイッチ、デジタル光ス
イッチ、アレイ光導波路TO位相シフタには、熱光学効
果を利用するための薄膜ヒータが必須の要素部品であ
る。従来薄膜ヒータとして用いられてきたクロム膜や金
膜には、それぞれ大きな問題点があった。
In the above-mentioned MZI type optical switch, digital optical switch, and array optical waveguide TO phase shifter, a thin film heater for utilizing the thermo-optical effect is an essential component. The chromium film and the gold film that have been conventionally used as thin film heaters each have major problems.

【0005】クロムやタンタル、チタンなどの遷移金属
は、一般的に丈夫であり、酸化膜も極表面だけに形成さ
れ安定であるという利点がある一方で、これらは、融点
が高く、堅い。従って、高分子光導波路上に蒸着法やス
パッタ法で薄膜形成を行うと、エネルギーの高い状態で
高分子膜上に蒸着粒子やスパッタ粒子が飛来するため、
高分子膜に熱ダメージやストレスを与え、クラック等が
生じる。このため、クラックの生じない極薄膜でしかヒ
ータとして使用できない。このことは、僅かな膜厚分布
で抵抗に大きなばらつきができる原因になり、再現性に
も劣る。
While transition metals such as chromium, tantalum, and titanium are generally strong and have the advantage that an oxide film is formed only on the extreme surface and are stable, they have a high melting point and are hard. Therefore, when a thin film is formed on the polymer optical waveguide by a vapor deposition method or a sputtering method, vapor deposition particles or sputtered particles fly over the polymer film in a high energy state,
Thermal damage and stress are applied to the polymer film, causing cracks and the like. Therefore, it can be used as a heater only with an extremely thin film that does not cause cracks. This causes a large variation in resistance with a slight film thickness distribution, and the reproducibility is poor.

【0006】このように、高分子上に形成するヒータ金
属として、遷移金属が不適当であることから、高分子光
導波路素子用のヒータ用の金属としては、柔らかなうえ
酸化されない金が用いられることが多い。しかし、金
は、抵抗値が著しく低いため、ヒータ金属として使用す
る場合、以下のような問題点が生じる。ヒータとして使
用するためには、ある程度の抵抗が必要になり、抵抗値
の低い金の場合、ヒータ膜を薄くかつ細くする必要があ
る。そのため膜厚は、50nm以下程度となる。シリコ
ンウエハのようなある程度の面積内に、一度に複数個の
素子を形成する場合、ウエハ面内でのヒータの抵抗値が
均一で再現性が良いことが望ましいが、厚さ50nm程
度の金薄膜では、高い精度で、膜厚の均一性やその再現
性を得ることは困難である。また、たとえ、このような
リスクを克服して金のヒータ膜が作製できたとしても、
その薄さ故の力学的な弱さは、大きな欠点として残され
る。
As described above, since the transition metal is not suitable for the heater metal formed on the polymer, soft and non-oxidizable gold is used as the metal for the heater for the polymer optical waveguide device. Often. However, since gold has a remarkably low resistance value, the following problems occur when it is used as a heater metal. To use it as a heater, some resistance is required, and in the case of gold having a low resistance value, it is necessary to make the heater film thin and thin. Therefore, the film thickness is about 50 nm or less. When a plurality of elements are formed at one time within a certain area such as a silicon wafer, it is desirable that the heater has a uniform resistance value in the wafer surface and good reproducibility, but a gold thin film having a thickness of about 50 nm. Then, it is difficult to obtain film thickness uniformity and its reproducibility with high accuracy. In addition, even if such a risk can be overcome to produce a gold heater film,
The mechanical weakness due to its thinness remains a major drawback.

【0007】一方、石英ガラス製のTO光導波路素子で
は、抵抗の制御と再現性の観点から、窒化タンタルがヒ
ータ金属として使われている。窒化タンタル膜は、純粋
なタンタル膜に比べ、結晶粒が小さく酸化に強く抵抗値
の経時変化が小さいことが特徴である。石英ガラス製の
TO光導波路装置用に開発された窒化タンタルヒータの
優れた特性については、森脇和幸ら、特開平6−349
25号に詳しい。しかしながら、光導波路が高分子や樹
脂で作製されている場合、窒化タンタル膜は、成膜温度
が高く、膜自身も硬くストレス(引っ張り応力)も強い
ため、高分子光導波路素子にクラックが入る問題が生
じ、適用が困難である。
On the other hand, in a TO optical waveguide device made of quartz glass, tantalum nitride is used as a heater metal from the viewpoint of resistance control and reproducibility. The tantalum nitride film is characterized in that it has smaller crystal grains, is more resistant to oxidation, and has a smaller change in resistance value over time than a pure tantalum film. Kazuyuki Moriwaki et al., Japanese Patent Laid-Open No. 6-349 discloses the excellent characteristics of a tantalum nitride heater developed for a TO optical waveguide device made of quartz glass.
Details on No. 25. However, when the optical waveguide is made of polymer or resin, the tantalum nitride film has a high film forming temperature, the film itself is hard and the stress (tensile stress) is strong, so that the polymer optical waveguide element is cracked. Occurs and is difficult to apply.

【0008】薄膜ヒータ作製後に表面に傷を付けるとヒ
ータの耐性が下がる。この問題の解決にはヒータ表面に
保護膜を形成することが有用である。森脇和幸らは、無
機薄膜による保護膜を提案している(特開平6−349
25号)が、ヒータ配線のための接続点(コンタクトパ
ッド)を露出するためにフォトリソグラフィーやエッチ
ングによるパターニングの工程が必要となる。
If the surface is scratched after the thin film heater is manufactured, the resistance of the heater is reduced. To solve this problem, it is useful to form a protective film on the heater surface. Kazuyuki Moriwaki and others have proposed a protective film made of an inorganic thin film (Japanese Patent Laid-Open No. 6-349).
No. 25) requires a patterning step by photolithography or etching in order to expose a connection point (contact pad) for the heater wiring.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、高分
子光導波路素子に関する上述のような問題点を解決し、
高分子光導波路との相性がよく、酸化されず、厚膜でも
クラックが入らず、抵抗値の温度依存性がなく、制御性
のよい膜厚領域で抵抗値をコントロールでき作製歩留り
が高い薄膜ヒータを備えた高分子光導波路素子を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems associated with polymer optical waveguide devices,
A thin film heater that has good compatibility with polymer optical waveguides, does not oxidize, does not crack even in thick film, does not have temperature dependence of resistance value, and can control resistance value in the film thickness region with good controllability and high production yield. Another object of the present invention is to provide a polymer optical waveguide device having:

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の高分子光導波路素子は、基板と、該基板上
に設けられたコア部及び該コア部を取り囲むクラッド部
を有する高分子光導波路と、該高分子光導波路の上部に
設置される薄膜ヒータで構成され、該薄膜ヒータを加熱
することでコア部近傍の一部分の屈折率を変化させてコ
アを導波する光を制御する高分子光導波路素子におい
て、屈折率制御用薄膜ヒータとして、パラジウム−金合
金(Pd−Au)膜、およびレジスト材料による保護膜
を用いることを特徴とする。
In order to achieve the above object, a polymer optical waveguide device according to the present invention has a substrate, a core portion provided on the substrate, and a cladding portion surrounding the core portion. It consists of a molecular optical waveguide and a thin film heater installed on top of the polymer optical waveguide. By heating the thin film heater, the refractive index of a part near the core is changed to control the light guided through the core. In the polymer optical waveguide device described above, a palladium-gold alloy (Pd-Au) film and a protective film made of a resist material are used as the refractive index control thin film heater.

【0011】[0011]

【発明の実施の形態】Pd−Auは、均質で粒塊がほと
んどない非晶質膜が形成できることから、基磯研究分野
で極細配線を形成するための合金として用いられてき
た。Pd−Au極細配線は、たとえば、ジョルダーノら
(N.Giordano et.al., Phys.
Rev. Lett.,vol.43,no.10,
p.725,1979)または、モルゼン(W.W.M
olzen,J.Vac.Sci.Tecnol.,v
ol.16,p.269,1979)の報告のように極
めて特殊な用途に限定されたものであり、一般の電子部
品や光部品において配線用やヒータ用として使用された
例はない。Pd−Au薄膜の最大の特徴は、非晶質であ
ることであり、そのため抵抗値の温度依存性がほとんど
なく、ヒータ金属としては最適である。膜厚も0.1〜
数μm程度で所望の抵抗値が得られ、実用的にも抵抗値
制御の容易なヒータ金属であることを実証した。
BEST MODE FOR CARRYING OUT THE INVENTION Pd-Au has been used as an alloy for forming ultrafine wiring in the field of basic isothermal research because it can form an amorphous film that is homogeneous and has almost no agglomerates. Pd-Au ultrafine wiring is disclosed in Giordano et al. (N. Giordano et. Al., Phys.
Rev. Lett. , Vol. 43, no. 10,
p. 725, 1979) or Morzen (WWM
olzen, J .; Vac. Sci. Tecnol. , V
ol. 16, p. 269, 1979) and is limited to extremely special applications, and there is no example used for wiring or heater in general electronic parts and optical parts. The greatest feature of the Pd-Au thin film is that it is amorphous, and therefore it has almost no temperature dependence of the resistance value and is optimal as a heater metal. The film thickness is 0.1
It was proved that the desired resistance value was obtained at about several μm and that the heater metal was practically easy to control the resistance value.

【0012】ヒータ表面保護膜材料として感光性のある
レジストを用いると、露光と現像の工程のみで必要なパ
ターニングが可能となり作成プロセスの簡便化に有効で
ある。
When a photosensitive resist is used as the heater surface protective film material, necessary patterning can be performed only in the steps of exposure and development, which is effective in simplifying the production process.

【0013】[0013]

【実施例1】Pd−AuヒータをもつY分岐型デジタル
光スイッチを作製評価した。
Example 1 A Y-branch digital optical switch having a Pd-Au heater was manufactured and evaluated.

【0014】4インチシリコン基板上に、クラッド用と
して、熱架橋型シリコーンを15μmの厚さにスピンコ
ートし、250℃のオーブン中で1時間熱架橋した。次
に、このクラッド用シリコーンより波長1.55μmに
おける屈折率が0.3%高い熱架橋型シリコーンを6μ
mの厚さにスピンコートし、250℃で1時間熱架橋し
た。次に、図1に示すY分岐を含む光導波路コアパタン
のエッチングマスクを形成するため、レジストを塗布
し、UV露光器でレジストを露光、現像した。次に、こ
の基板を反応性イオンエッチング装置に入れ、CF4
酸素の混合ガスでレジストをマスクに、コア用シリコー
ンを約6μmエッチングし、Y分岐型光導波路コア11
を形成した。次に、クラッド用シリコーンを、最初に形
成した下層クラッドの上面より16μmの厚さに、スピ
ンコートし250℃で1時間の熱架橋によりクラッド層
を形成した。
On a 4-inch silicon substrate, a thermally crosslinkable silicone was spin-coated to a thickness of 15 μm for cladding, and thermally crosslinked in an oven at 250 ° C. for 1 hour. Next, 6 μm of thermally crosslinkable silicone having a refractive index higher by 0.3% at a wavelength of 1.55 μm than this silicone for clad
m was spin-coated and thermally crosslinked at 250 ° C. for 1 hour. Next, in order to form an etching mask for the optical waveguide core pattern including the Y branch shown in FIG. 1, a resist was applied, and the resist was exposed and developed with a UV exposure device. Next, this substrate is put into a reactive ion etching apparatus, and the core silicone is etched by about 6 μm with a resist gas as a mask using a mixed gas of CF 4 and oxygen, and the Y-branch optical waveguide core 11
Was formed. Next, the clad layer was formed by spin-coating the clad silicone to a thickness of 16 μm from the upper surface of the lower clad which was initially formed, and thermally crosslinking at 250 ° C. for 1 hour.

【0015】この基板をPd−Auターゲットを有する
スパッタ装置に入れ、10-4Pa以下の真空状態にした
後、アルゴンガスを導入し、5Paの圧力下で、この基
板上にPd−Au薄膜を0.2μmの厚さに形成した。
次にこの基板を真空装置より取り出し、レジストを塗布
し、露光装置により図1に示すヒータパタンを形成し
た。次に、この基板をイオンミリング装置に入れ、アル
ゴンガスを用いたイオンミリングにより、Pd−Au薄
膜のエッチングを行った。次に、残ったレジストを溶媒
で除去し、薄膜ヒータ12及び13を作製した。。次
に、この基板上にネガ型フォトレジストを1μm厚にス
ピンコートし、コンタクトパッド部15をマスクするフ
ォトマスクを用いて露光後、現像工程を経てレジスト膜
自身による上部保護膜を形成した。
This substrate was placed in a sputtering apparatus having a Pd-Au target, and after a vacuum state of 10 -4 Pa or less was introduced, argon gas was introduced and a Pd-Au thin film was formed on this substrate under a pressure of 5 Pa. It was formed to a thickness of 0.2 μm.
Next, this substrate was taken out from the vacuum device, resist was applied, and the heater pattern shown in FIG. 1 was formed by the exposure device. Next, this substrate was put into an ion milling apparatus, and the Pd-Au thin film was etched by ion milling using argon gas. Next, the remaining resist was removed with a solvent to produce thin film heaters 12 and 13. . Next, a negative photoresist was spin-coated on this substrate to a thickness of 1 μm, exposed using a photomask for masking the contact pad portion 15, and then subjected to a developing step to form an upper protective film by the resist film itself.

【0016】コンタクトパッド部15へ触針により直流
電源を接続し、ヒータ抵抗を測定した。素子の温度を、
20℃から60℃まで変化させたが、ヒータ抵抗は(2
20±2)Ωであり温度変化に対して安定であった。次
に、波長1.55μmのLD光源及び2つの光パワーメ
ータをそれぞれ幹側、分岐側コアに接続してスイッチ特
性を測定した。Y分岐デジタル光スイッチを120mW
の印加電力で動作させた時の消光比は32dBであっ
た。ヒータの耐久性を検証するために、2つのヒータに
交互に120mWの電力を与える動作を、104回繰り
返したが、その前後で、抵抗値の変化は、観測されなか
った。
A DC power source was connected to the contact pad portion 15 with a stylus, and the heater resistance was measured. Element temperature,
Although the temperature was changed from 20 ℃ to 60 ℃, the heater resistance was (2
It was 20 ± 2) Ω and was stable against temperature changes. Next, an LD light source having a wavelength of 1.55 μm and two optical power meters were respectively connected to the trunk side and branch side cores, and the switch characteristics were measured. 120mW Y-branch digital optical switch
The extinction ratio when operated with the applied power of 32 dB was 32 dB. In order to verify the durability of the heater, an operation of alternately supplying electric power of 120 mW to the two heaters was repeated 10 4 times, but no change in the resistance value was observed before and after the operation.

【0017】[0017]

【実施例2】図2及び図3に示す構造のアレイ光導波路
格子可変波長フイルタを作製した。薄膜ヒータ12、1
3用のPd−Auの膜厚を3μmとした以外は、入出力
光導波路16、スラブ光導波路17、アレイ光導波路1
8、薄膜ヒータ及び上部保護膜の構造と作製法は実施例
1と同じである。アレイ光導波路本数は100本、隣接
アレイ光導波路長差63.0μm、回折次数60、隣接
アレイ光導波路に重なるヒ−タ長の差100μmとし
た。なお、19は薄膜ヒータ12の加熱領域、20は薄
膜ヒータ13の加熱領域を示す。
Example 2 An array optical waveguide grating variable wavelength filter having the structure shown in FIGS. 2 and 3 was produced. Thin film heaters 12, 1
Input / output optical waveguide 16, slab optical waveguide 17, array optical waveguide 1 except that the film thickness of Pd-Au for 3 is 3 μm.
8. The structure and manufacturing method of the thin film heater and the upper protective film are the same as in the first embodiment. The number of arrayed optical waveguides was 100, the adjacent arrayed optical waveguide length difference was 63.0 μm, the diffraction order was 60, and the heater length difference overlapping the adjacent arrayed optical waveguide was 100 μm. Reference numeral 19 denotes a heating area of the thin film heater 12, and 20 denotes a heating area of the thin film heater 13.

【0018】波長1.55μm帯のASE広帯域光源及
び光スペクトルアナライザをそれぞれ入出力光導波路1
6に接続してフィルタ特性を測定した。薄膜ヒータに電
力を与えない場合の波長フィルタ特性は、透過中心波長
1550nm、挿入損失5.5dB、クロストーク−3
2dB(1550±0.8nm)であった。薄膜ヒータ
12に加熱電力を与えた時、透過中心波長は与えた電力
に対して−8nm/Wの割合で変化した。同様に薄膜ヒ
ータ13では8nm/Wであった。加熱電力を0−1.
8Wに設定することで、透過中心波長を1536−15
64nmの範囲で制御できることを確認した。1.8W
動作のまま、1ヵ月間放置したが、ヒータ抵抗の変化は
認められなかった。
The ASE wide band light source and the optical spectrum analyzer having a wavelength of 1.55 μm are respectively connected to the input / output optical waveguide 1.
6 and the filter characteristics were measured. The wavelength filter characteristics when power is not applied to the thin film heater are: transmission center wavelength 1550 nm, insertion loss 5.5 dB, crosstalk-3.
It was 2 dB (1550 ± 0.8 nm). When heating power was applied to the thin film heater 12, the transmission center wavelength changed at a rate of -8 nm / W with respect to the applied power. Similarly, in the thin film heater 13, it was 8 nm / W. Heating power is 0-1.
By setting to 8 W, the transmission center wavelength is 1536-15
It was confirmed that control was possible within the range of 64 nm. 1.8W
The heater resistance was left for one month without change, but no change in heater resistance was observed.

【0019】[0019]

【発明の効果】本発明により、厚膜でもクラックが入ら
ず、抵抗の温度依存性がなく、制御性のよい膜厚領域で
抵抗率を制御できる薄膜ヒータが作製できる。本発明の
薄膜ヒータの採用により、熱光学効果を利用する高分子
光導波路素子の信頼性及び作製歩留まりを向上できる。
According to the present invention, it is possible to manufacture a thin film heater which does not crack even if it is a thick film, has no resistance temperature dependency, and has a controllable resistivity in a film thickness region. By adopting the thin film heater of the present invention, it is possible to improve the reliability and the production yield of the polymer optical waveguide device utilizing the thermo-optic effect.

【0020】さらに、本発明の薄膜ヒータは高分子製の
光導波路素子ばかりでなく、無機ガラス、誘電体結晶、
半導体を光導波路素材とする光導波路素子にも広く適用
することができる。
Further, the thin film heater of the present invention is not limited to a polymer optical waveguide element, but also an inorganic glass, a dielectric crystal,
It can be widely applied to an optical waveguide device using a semiconductor as an optical waveguide material.

【図面の簡単な説明】[Brief description of drawings]

【図1】Y分岐型デジタル光スイッチの構造を示す図。FIG. 1 is a diagram showing the structure of a Y-branch digital optical switch.

【図2】アレイ光導波路格子可変波長フィルタの構造を
示す図。
FIG. 2 is a diagram showing a structure of an array optical waveguide grating variable wavelength filter.

【図3】図2中のアレイ光導波路熱光学位相シフタの詳
細図。
FIG. 3 is a detailed view of an array optical waveguide thermo-optic phase shifter in FIG.

【符号の説明】[Explanation of symbols]

11 Y分岐型光導波路コア 12 薄膜ヒータ 13 薄膜ヒータ 14 配線 15 コンタクトパッド部 16 入出力光導波路 17 スラブ光導波路 18 アレイ光導波路 19 ヒータの加熱領域 20 ヒータの加熱領域 11 Y-branch type optical waveguide core 12 Thin film heater 13 Thin film heater 14 wiring 15 Contact pad section 16 Input / output optical waveguide 17 Slab optical waveguide 18 Array optical waveguide 19 Heater heating area 20 Heater heating area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗原 隆 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (56)参考文献 特開 平10−319445(JP,A) 特開 平8−262504(JP,A) 特開 平7−84225(JP,A) 国際公開96/33441(WO,A1) 国際公開96/38756(WO,A1) (58)調査した分野(Int.Cl.7,DB名) G02F 1/01 G02F 1/313 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Kurihara 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nihon Telegraph and Telephone Corporation (56) Reference JP-A-10-319445 (JP, A) Kaihei 8-262504 (JP, A) JP-A-7-84225 (JP, A) International Publication 96/33441 (WO, A1) International Publication 96/38756 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/01 G02F 1/313

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板と、該基板上に設けられたコア部及
び該コア部を取り囲むクラッド部を有する高分子光導波
路と、該高分子光導波路の上部に設置される薄膜ヒータ
で構成され、該薄膜ヒータを加熱することでコア部近傍
の一部分の屈折率を変化させてコアを導波する光を制御
する高分子光導波路素子において、前記薄膜ヒータがパ
ラジウム−金合金膜であることを特徴とする高分子熱光
学光導波路素子。
1. A substrate, a polymer optical waveguide having a core portion provided on the substrate and a clad portion surrounding the core portion, and a thin film heater installed on the polymer optical waveguide, In a polymer optical waveguide device for controlling light propagating through a core by changing a refractive index of a part near the core by heating the thin film heater, the thin film heater is a palladium-gold alloy film. Polymer thermo-optic optical waveguide device.
【請求項2】 薄膜ヒータ表面上を含むクラッド表面上
に感光性レジスト材料からなる保護膜が形成されている
ことを特徴とする請求項1記載の高分子熱光学光導波路
素子。
2. The polymer thermo-optical waveguide element according to claim 1, wherein a protective film made of a photosensitive resist material is formed on the clad surface including the surface of the thin film heater.
【請求項3】 高分子光導波路が下の3つのいずれかの
光回路をなすことを特徴とする請求項1または請求項2
記載の高分子熱光学光導波路素子。 1 Y分岐またはX分岐型デジタル光スイッチ 2 マッハツェンダ干渉計型光スイッチ 3 アレイ光導波路格子可変波長フイルタ
3. The polymer optical waveguide constitutes any one of the following three optical circuits, wherein:
The polymer thermo-optical waveguide element described. 1 Y-branch or X-branch type digital optical switch 2 Mach-Zehnder interferometer type optical switch 3 Array optical waveguide grating variable wavelength filter
JP03947699A 1999-02-18 1999-02-18 Polymer thermo-optical waveguide device Expired - Fee Related JP3459040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03947699A JP3459040B2 (en) 1999-02-18 1999-02-18 Polymer thermo-optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03947699A JP3459040B2 (en) 1999-02-18 1999-02-18 Polymer thermo-optical waveguide device

Publications (2)

Publication Number Publication Date
JP2000241781A JP2000241781A (en) 2000-09-08
JP3459040B2 true JP3459040B2 (en) 2003-10-20

Family

ID=12554129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03947699A Expired - Fee Related JP3459040B2 (en) 1999-02-18 1999-02-18 Polymer thermo-optical waveguide device

Country Status (1)

Country Link
JP (1) JP3459040B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3643058B2 (en) * 2001-07-30 2005-04-27 Tdk株式会社 Waveguide grating
KR20050035004A (en) 2003-10-11 2005-04-15 현대자동차주식회사 A multiplex device for communicating data between loads for vehicle and a communication method using it

Also Published As

Publication number Publication date
JP2000241781A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US6377716B1 (en) Optical intensity modulator and switch comprising the same
US5134681A (en) Integrated optic waveguide and fabrication method
US20020001446A1 (en) Optical waveguide device and manufacturing method therefor
EP0905546A2 (en) Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
JP2006208518A (en) Thermo-optical effect type optical waveguide element and its manufacturing method
JP2002323633A (en) Optical waveguide device and method for manufacturing the same
JP2005522735A (en) Method and apparatus for homogeneous heating in optical waveguide structures
JPH07333450A (en) Forming method for optical coupling waveguide and optical waveguide element having optical coupling waveguide
US5155620A (en) Nonlinear optical devices and methods
CN114296177A (en) Runway-type micro-ring optical switch based on silicon dioxide/polymer mixed waveguide and preparation method thereof
JP3459040B2 (en) Polymer thermo-optical waveguide device
JP2006072369A (en) Normally dark y-branch digital optical switch and variable optical attenuator
JP3742030B2 (en) Planar optical waveguide circuit device manufacturing method
JPH10227930A (en) Temperature-independent optical waveguide and its manufacture
JP2007524863A (en) Y-branch thermo-optic digital optical switch and variable optical attenuator using non-uniform heating
US6709882B2 (en) Planar lightwave circuit active device metallization process
CN115755272B (en) Polymer/silicon nitride hybrid integrated variable optical attenuator and preparation method thereof
JPH10227931A (en) Waveguide type optical device
JP2009222742A (en) Thermooptic phase shifter and method of manufacturing the same
Jiang et al. Property-tailorable PFCB-containing polymers for wavelength division devices
JP3843762B2 (en) Waveguide type optical component with thin film heater and manufacturing method thereof
JP2008158411A (en) Waveguide type optical switch and array waveguide type optical switch
JP3125638B2 (en) Optical circuit and its manufacturing method
JP2008158410A (en) Variable optical attenuator and array type variable optical attenuator
JP2004138886A (en) Waveguide optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees