JP3458408B2 - Lighting device - Google Patents

Lighting device

Info

Publication number
JP3458408B2
JP3458408B2 JP12002093A JP12002093A JP3458408B2 JP 3458408 B2 JP3458408 B2 JP 3458408B2 JP 12002093 A JP12002093 A JP 12002093A JP 12002093 A JP12002093 A JP 12002093A JP 3458408 B2 JP3458408 B2 JP 3458408B2
Authority
JP
Japan
Prior art keywords
lighting
fluorescent lamp
emitting element
light emitting
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12002093A
Other languages
Japanese (ja)
Other versions
JPH06333678A (en
Inventor
秀雄 宮城
匡 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12002093A priority Critical patent/JP3458408B2/en
Publication of JPH06333678A publication Critical patent/JPH06333678A/en
Application granted granted Critical
Publication of JP3458408B2 publication Critical patent/JP3458408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Selective Calling Equipment (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、遠隔制御が可能な点
灯装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device which can be remotely controlled.

【0002】[0002]

【従来の技術】TVやエアコン等の電気機器を遠隔操作
する手段として、赤外線を用いたリモートコントロール
システムが普及するのに伴い、点灯装置においても赤外
線リモートコントロールシステムを用いた点灯装置が増
えてきている。この種の点灯装置の従来例を図7ないし
図11に示す。すなわち、送信部80より赤外線を用い
たリモートコントロール信号Sを送信し、これを照明器
具本体82に設けられた受信部81で受信して、制御回
路83により点灯回路84の動作を制御し、蛍光ランプ
85の点灯・消灯・調光等を行うように構成されてい
る。
2. Description of the Related Art With the widespread use of infrared remote control systems as means for remotely controlling electric equipment such as TVs and air conditioners, the number of lighting devices using infrared remote control systems has increased. There is. A conventional example of this type of lighting device is shown in FIGS. That is, the remote control signal S using infrared rays is transmitted from the transmission unit 80, the reception unit 81 provided in the lighting fixture main body 82 receives this, and the control circuit 83 controls the operation of the lighting circuit 84 to perform fluorescence. The lamp 85 is configured to be turned on, turned off, and dimmed.

【0003】送信部80の光源は図9の曲線Aで示すよ
うな特性を持つガリウム・砒素(GaAs)系の赤外発
光ダイオードを用いており、945nm付近の波長の赤
外光をリモートコントロール信号として利用している。
一方受信部81はシリコン(Si)系の受光素子に光学
的フィルタを組み合わせる等の手段で図9の曲線Bのよ
うな分光特性の受光感度を持ち、特性Cの可視光の太陽
光や照明光とは光学的に区別できるようにしている。ま
た上記のような光学的特性のほか、リモートコントロー
ル信号の搬送波として約40KHz(33〜40KH
z)の高周波パルスを使用しており、受信部81におい
て信号光を受光した後も、これらの搬送波信号を主とし
て抽出するように電気的な周波数選択を行うことにより
外乱を除去している。
The light source of the transmitter 80 uses a gallium arsenide (GaAs) type infrared light emitting diode having the characteristics shown by the curve A in FIG. Is used as.
On the other hand, the receiving section 81 has a light receiving sensitivity of a spectral characteristic as shown by a curve B in FIG. 9 by means of combining an optical filter with a silicon (Si) type light receiving element, and the visible light of sunlight or illumination light of the characteristic C. It is made to be optically distinguishable from. In addition to the optical characteristics described above, the carrier of the remote control signal is about 40 KHz (33 to 40 KH).
The high frequency pulse of z) is used, and even after the signal light is received by the receiver 81, disturbance is removed by performing electrical frequency selection so as to mainly extract these carrier signals.

【0004】しかしながら、点灯回路84により蛍光ラ
ンプ85を高周波点灯させる場合、図9の曲線Cで示す
ような可視光以外に、図9の曲線Dで示すような波長1
013nm付近の水銀スペクトルが発生することが従来
より知られている。そして、点灯回路84の点灯周波数
が約50KHz付近であり、リモートコントロール信号
の搬送波の周波数と近似していることから、送信部80
が受信部81から離れて、受信部81に到達するリモー
トコントロール信号Sのパワーが小さくなると、相対的
に蛍光ランプ85からの水銀スペクトルの影響が大きく
なり、赤外線リモートコントロールシステムが動作しに
くくなることがある。
However, when the fluorescent lamp 85 is lit at a high frequency by the lighting circuit 84, in addition to the visible light as shown by the curve C in FIG. 9, the wavelength 1 as shown by the curve D in FIG.
It is conventionally known that a mercury spectrum near 013 nm is generated. The lighting frequency of the lighting circuit 84 is about 50 KHz, which is close to the frequency of the carrier wave of the remote control signal.
When the power of the remote control signal S reaching the receiving section 81 becomes smaller as the power of the remote control signal S reaches the receiving section 81, the influence of the mercury spectrum from the fluorescent lamp 85 becomes relatively large and the infrared remote control system becomes difficult to operate. There is.

【0005】また蛍光ランプ85の特性として、低温時
で点灯直後、蛍光ランプ85が安定点灯するまでの間図
9の曲線Eで示すような920nmおよび970nm付
近のアルゴンスペクトルが発生し、上述の水銀スペクト
ルと同様に赤外線リモートコントロールシステムの到達
距離に影響を与えている。このアルゴンスペクトルAr
は図11に示すような時間の変化を行い安定点灯時に発
生する水銀スペクトルHgとは異なる性質を持ってい
る。つまり点灯直後は水銀スペクトルHgよりもアルゴ
ンスペクトルArのエネルギーが強く、点灯後時間がた
つとともにそのエネルギー量が逆転して水銀スペクトル
Hgの影響が大きくなっている。
As a characteristic of the fluorescent lamp 85, an argon spectrum around 920 nm and 970 nm as shown by a curve E in FIG. 9 is generated immediately after lighting at low temperature and until the fluorescent lamp 85 is stably lit, and the above-mentioned mercury is generated. It affects the reach of infrared remote control systems as well as the spectrum. This argon spectrum Ar
Has a property different from the mercury spectrum Hg generated during stable lighting by changing the time as shown in FIG. That is, the energy of the argon spectrum Ar is stronger than that of the mercury spectrum Hg immediately after lighting, and the amount of energy is reversed with the lapse of time after lighting, and the influence of the mercury spectrum Hg becomes large.

【0006】[0006]

【発明が解決しようとする課題】前記した問題点を解決
するため、可視光(380〜780nm),および時間
が立ち蛍光ランプ85が安定すると増加する水銀スペク
トル(710nm,1013nm,1030nm付近)
に関しては図10の曲線Fで示す分光特性を有する光学
的フィルタを受信部81の前面に付加し、800nm以
下および1000nm以上の波長をカットして可視光お
よび水銀スペクトルを除去する手段が用いられている。
In order to solve the above-mentioned problems, the mercury spectrum (around 710 nm, 1013 nm, 1030 nm) increases when visible light (380 to 780 nm) and the fluorescent lamp 85 stabilizes with time.
With respect to, a means for adding visible light and a spectrum of mercury by adding an optical filter having a spectral characteristic indicated by the curve F in FIG. 10 to the front surface of the receiving unit 81 and cutting wavelengths of 800 nm or less and 1000 nm or more is used. There is.

【0007】一方、低温で点灯初期に大きく、時間が立
ち蛍光ランプ85が安定すると小さくなるアルゴンスペ
クトル(920nm,970nm付近)に関しては点灯
直後2〜3分間S/N比が低下して送信信号を受けにく
くなるので、送信部80の出力をあげる手段が考えられ
たが、電源のロスが大きいという問題点があった。な
お、アルゴンの発光スペクトルと発光素子の発光スペク
トルが近いため、使用するスペクトルだけを光学的フィ
ルタによって選択するのは困難であった。たとえば蒸着
膜フィルタを用いればシャープな特性の光学的フィルタ
が得られるが、光の入射角度により波長が変化するた
め、実際にはアルゴンスペクトルとリモートコントロー
ル信号の分離は難しい。
On the other hand, regarding the argon spectrum (near 920 nm and 970 nm) which is large at the beginning of lighting at low temperature and becomes small when the fluorescent lamp 85 stabilizes, the S / N ratio is lowered for 2 to 3 minutes immediately after lighting and the transmission signal is transmitted. Since it is hard to receive, a means for increasing the output of the transmission unit 80 was considered, but there was a problem that the loss of the power source was large. Since the emission spectrum of argon and the emission spectrum of the light emitting element are close to each other, it was difficult to select only the spectrum to be used by the optical filter. For example, if a vapor deposition film filter is used, an optical filter with sharp characteristics can be obtained, but since the wavelength changes depending on the incident angle of light, it is actually difficult to separate the argon spectrum and the remote control signal.

【0008】この結果、送信部の出力を高めることなく
低温での点灯直後の送信距離を伸ばすことができないと
いう欠点があった。したがって、この発明の目的は、送
信部の出力を高めることなく送信距離を伸ばすことがで
きる点灯装置を提供することである。
As a result, there is a drawback that the transmission distance immediately after lighting at a low temperature cannot be extended without increasing the output of the transmission section. Therefore, an object of the present invention is to provide a lighting device capable of extending the transmission distance without increasing the output of the transmitter.

【0009】[0009]

【課題を解決するための手段】請求項1の点灯装置は、
蛍光ランプと、複数の波長の異なる赤外線信号を発生す
る送信手段と、この送信手段の前記赤外線信号を受信す
る受信部を有して前記受信部の出力信号により前記蛍光
ランプを制御する点灯回路とを備え、前記送信手段は、
前記蛍光ランプの低温点灯の直後に発生するアルゴンス
ペクトルと異なる赤外線信号を発生する第1の発光素子
と、点灯安定時に発生する水銀スペクトルと異なる赤外
線信号を発生する第2の発光素子と、前記第1の発光素
子および前記第2の発光素子を切り換える切換手段と、
この切換手段を点灯直後から点灯安定時に切換え動作さ
せるタイマをもった制御回路とを有するものである。
A lighting device according to claim 1 is
A fluorescent lamp, a transmitting unit that generates infrared signals having a plurality of different wavelengths, and a lighting circuit that has a receiving unit that receives the infrared signal of the transmitting unit and that controls the fluorescent lamp according to an output signal of the receiving unit. And the transmitting means comprises:
Argons generated immediately after low temperature lighting of the fluorescent lamp
First light emitting element that generates an infrared signal different from that of a vector
And an infrared spectrum that differs from the mercury spectrum generated when lighting is stable
A second light emitting element for generating a line signal and the first light emitting element
Switching means for switching the child and the second light emitting element;
This switching means is switched from immediately after lighting to stable lighting.
And a control circuit having a timer for enabling .

【0010】請求項2の点灯装置は、蛍光ランプと、複
数の波長の異なる赤外線信号を発生する送信手段と、こ
の送信手段の前記赤外線信号を受信する受信部を有して
前記受信部の出力信号により前記蛍光ランプを制御する
点灯回路とを備え、前記送信手段は、前記蛍光ランプの
低温点灯の直後に発生するアルゴンスペクトルと異なる
赤外線信号を発生する第1の発光素子と、点灯安定時に
発生する水銀スペクトルと異なる赤外線信号を発生する
第2の発光素子と、前記第1の発光素子および前記第2
の発光素子を交互に動作させるように連続的に切り換え
る切換手段とを有するものである。
A lighting device according to a second aspect of the present invention includes a fluorescent lamp and a double lamp.
A transmission means for generating infrared signals of different wavelengths,
Having a receiving section for receiving the infrared signal of the transmitting means of
The fluorescent lamp is controlled by the output signal of the receiving unit.
And a first light emitting element that generates an infrared signal different from an argon spectrum generated immediately after low temperature lighting of the fluorescent lamp, and a infrared signal different from a mercury spectrum generated when lighting is stable. A second light emitting element that is generated , the first light emitting element, and the second light emitting element.
Continuous switching to operate the light emitting elements of
And a switching means for switching .

【0011】請求項3の点灯装置は、請求項1または請
求項2において、前記第1の発光素子は800nm以下
の波長並びにアルゴンスペクトルの920nmおよび9
70nmの波長と異なる赤外線信号を発生し、前記第2
の発光素子は水銀スペクトルの1013nmの波長と異
なる赤外線信号を発生するものである。
The lighting device according to claim 3 is the lighting device according to claim 1 or the contract.
In Claim 2, the first light emitting element has a thickness of 800 nm or less.
Wavelength and argon spectrum of 920 nm and 9
Generating an infrared signal different from the wavelength of 70 nm,
The light-emitting element of is different from the wavelength of 1013 nm in the mercury spectrum.
It generates an infrared signal .

【0012】請求項4の点灯装置は、蛍光ランプと、複
数の波長の異なる赤外線信号を発生する送信手段と、こ
の送信手段の前記赤外線信号を受信する受信部を有して
前記受信部の出力信号により前記蛍光ランプを制御する
点灯回路とを備え、前記受信部は前記蛍光ランプの低温
点灯の直後に発生するアルゴンスペクトルを透過しない
分光特性をもった第1の受光部と、点灯安定時に発生す
る水銀スペクトルを透過しない分光特性をもった第2の
受光部と、前記第1の受光部および前記第2の受光部を
切り換える切換手段と、この切換手段をアルゴンおよび
水銀の各スペクトルの発光タイミングに合わせて切り換
え動作させる制御回路を有することを特徴とするもので
ある。
A lighting device according to a fourth aspect of the present invention includes a fluorescent lamp and a double lamp.
A transmission means for generating infrared signals of different wavelengths,
Having a receiving section for receiving the infrared signal of the transmitting means of
The fluorescent lamp is controlled by the output signal of the receiving unit.
A lighting circuit is provided, and the receiving unit is configured to cool the fluorescent lamp at a low temperature.
Does not transmit the argon spectrum generated immediately after lighting
This occurs when the lighting is stable and the first light receiving part with spectral characteristics
Second, which has a spectral characteristic that does not transmit the mercury spectrum
A light receiving part, and the first light receiving part and the second light receiving part
Switching means for switching and this switching means for argon and
Switching according to the emission timing of each spectrum of mercury
It is characterized in that it has a control circuit for operating it .

【0013】[0013]

【作用】請求項1の点灯装置によれば、送信手段から赤
外線信号を送信し、その赤外線信号を受信部で受信し、
受信部の出力信号により点灯回路が動作して蛍光ランプ
の点灯,消灯等の制御を行う。この場合、蛍光ランプか
ら発生するスペクトル成分の点灯直後から点灯安定に至
る変化に対して、それぞれ異なった赤外線信号により信
号伝送することにより受信部の感度を向上できるので、
蛍光ランプの状態にかかわらず、かつ送信手段の出力を
高めることなく信号の到達距離を増大でき、とくに低温
でのランプ点灯直後の送信距離を伸ばすことができる。
According to the lighting device of the first aspect, the infrared signal is transmitted from the transmitting means, and the infrared signal is received by the receiving section.
The lighting circuit operates according to the output signal of the receiving unit to control lighting and extinguishing of the fluorescent lamp. In this case, the sensitivity of the receiving unit can be improved by transmitting signals by different infrared signals for the change from the lighting of the spectral components generated from the fluorescent lamp to the lighting stability.
Regardless of the state of the fluorescent lamp, and without increasing the output of the transmitting means, the signal reach can be increased, and in particular, the transmit distance immediately after lighting the lamp at low temperature can be extended.

【0014】請求項2の点灯装置によれば、請求項1と
同様な作用がある。
According to the lighting device according to claim 2, and claim 1
It has a similar effect.

【0015】請求項3の点灯装置によれば、請求項1ま
たは請求項2と同様な作用がある。
According to the lighting device of claim 3 , according to claim 1,
Alternatively, it has the same effect as that of claim 2.

【0016】請求項4の点灯装置によれば、アルゴンス
ペクトルおよび水銀スペクトルに対応した波長の異なる
赤外線信号を透過する分光特性をもった複数の受光部を
有するため、請求項1と同様、蛍光ランプの状態にかか
わらず、かつ送信手段の出力を高めることなく信号の到
達距離を増大でき、とくに低温でのランプ点灯直後の送
信距離を伸ばすことができる。
According to the lighting device of claim 4 , an argon gas is used.
Different wavelengths corresponding to spectrum and mercury spectrum
Multiple light receiving parts with spectral characteristics that transmit infrared signals
Since it has, it is in the state of the fluorescent lamp as in claim 1.
Signal is received without increasing the output of the transmission means.
The reach can be increased, especially at low temperatures, immediately after the lamp is turned on.
You can extend your trust.

【0017】[0017]

【実施例】この発明の第1の実施例を図1および図2に
より説明する。すなわち、この点灯装置は、蛍光ランプ
6と、送信手段9と、点灯装置10とを有する。蛍光ラ
ンプ6は図2に破線で示した特性C,D,Eを有し、こ
れは図9と同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. That is, this lighting device includes the fluorescent lamp 6, the transmitting unit 9, and the lighting device 10. The fluorescent lamp 6 has the characteristics C, D, and E shown by the broken line in FIG. 2, which is the same as in FIG.

【0018】送信手段9は、複数の波長の異なる赤外線
信号を発生する。実施例では送信部1と、制御回路7
と、切換手段8と、相互に異なる分光特性を有する第1
の発光素子L1 および第2の発光素子L2 とを有する。
制御回路7により切換手段8を切換動作させ、送信部1
の動作により第1の発光素子L1 または第2の発光素子
2 を発光させる。送信部1の構成は従来例と同様であ
る。
The transmitting means 9 generates infrared signals having a plurality of different wavelengths. In the embodiment, the transmitter 1 and the control circuit 7
And the switching means 8 and the first having different spectral characteristics from each other.
Light emitting element L 1 and second light emitting element L 2 .
The switching means 8 is switched by the control circuit 7, and the transmitter 1
The first light emitting element L 1 or the second light emitting element L 2 is caused to emit light by this operation. The configuration of the transmission unit 1 is similar to that of the conventional example.

【0019】第1の発光素子L1 は図2の曲線Gに示す
ような分光特性を有し、赤外線信号S1 を発生する。こ
の赤外線信号S1 は、蛍光ランプ6の低温での点灯直後
に発生する920nmおよび970nmのアルゴンスペ
クトル、点灯安定時に発生する1013nmの水銀スペ
クトルおよび可視光の800nm以下の波長と異なる波
である。赤外線発光素子L2 は図2の曲線Aに示すよ
うな分光特性を有し、赤外線信号S2 を発生するが、1
013nmの水銀スペクトルとは異なる波長である。
The first light emitting element L 1 has a spectral characteristic as shown by a curve G in FIG. 2 and generates an infrared signal S 1 . The infrared signals S 1 is 920nm and argon spectrum of 970 nm, a wavelength different from the 800nm or less of the wavelength of the mercury spectrum and visible light 1013nm occurring stable lighting time occurring after lighting at a low temperature of the fluorescent lamp 6. Infrared light emitting element L 2 has a spectral characteristic as shown in curve A of Figure 2, but to generate an infrared signal S 2, 1
It has a different wavelength from the mercury spectrum of 013 nm.

【0020】制御回路7は、赤外線信号の制御を行うも
ので、たとえばタイマを内蔵したマイクロコンピュータ
よりなる。切換手段8はたとえばリレー接点よりなり制
御回路7からの制御信号によって切換えられ、第1の発
光素子L1 および第2の発光素子L2 のいずれか一方を
選択する。そして切換手段8を切り換えるタイミングは
蛍光ランプ6の点灯直後および安定点灯するまでの時間
をタイマにより設定する。
The control circuit 7 controls the infrared signal and is composed of, for example, a microcomputer having a timer built therein. The switching means 8 comprises, for example, a relay contact and is switched by a control signal from the control circuit 7, and selects either the first light emitting element L 1 or the second light emitting element L 2 . The timing for switching the switching means 8 is set by the timer immediately after the fluorescent lamp 6 is turned on and until the stable lighting.

【0021】点灯装置10は、送信手段9の赤外線信号
1 ,S2 を受ける受信部2を有して受信部2の出力信
号により蛍光ランプ6を制御する点灯回路5を有する。
4は受信部2の出力信号により点灯回路5を制御する制
御回路である。実施例の受信部2は各赤外線信号S1
2 を個別に受信する複数の受光素子(図示せず)を有
する。
The lighting device 10 has a receiving part 2 for receiving the infrared signals S 1 and S 2 of the transmitting means 9 and a lighting circuit 5 for controlling the fluorescent lamp 6 by the output signal of the receiving part 2.
A control circuit 4 controls the lighting circuit 5 according to the output signal of the receiving unit 2. The receiving unit 2 of the embodiment uses each infrared signal S 1 ,
It has a plurality of light receiving elements (not shown) for individually receiving S 2 .

【0022】この実施例は、送信手段9から赤外線信号
を送信し、その赤外線信号を受信部2で受信し、受信部
2の出力信号により点灯回路5が動作して蛍光ランプ6
の点灯,消灯等の制御を行う。この場合、蛍光ランプ6
の低温での点灯直後においてアルゴンスペクトルが多量
に発生しているときには図2の曲線Eに示すようなアル
ゴンスペクトルの波長域をさけた領域、たとえば図2の
曲線Gの分光特性を有する第1の発光素子L1を制御回
路7により切換手段8を動作させて選択し、赤外線信号
1 を発生させる。
In this embodiment, an infrared signal is transmitted from the transmitting means 9, the infrared signal is received by the receiving section 2, and the lighting circuit 5 is operated by the output signal of the receiving section 2 to activate the fluorescent lamp 6.
Controls turning on and off. In this case, the fluorescent lamp 6
When a large amount of argon spectrum is generated immediately after lighting at a low temperature, the first region having the spectral characteristics shown in the curve E of FIG. The light emitting element L 1 is selected by operating the switching means 8 by the control circuit 7 to generate the infrared signal S 1 .

【0023】その後、蛍光ランプ6が安定点灯状態とな
ってアルゴンスペクトルが微小になりかつ水銀スペクト
ルが増加してきた時、図2の曲線Dに示すような水銀ス
ペクトルをさけた領域たとえば図2の曲線Aの分光特性
を有する第2の発光素子L2を制御回路7により選択し
赤外線信号S2 を発生させる。ただし、家電製品協会に
より赤外線の波長が900〜950nmと定められてい
るので蛍光ランプ6が安定点灯状態での赤外線信号S2
の波長は900〜950nm間とするのがよい。
Thereafter, when the fluorescent lamp 6 is in a stable lighting state and the argon spectrum becomes minute and the mercury spectrum increases, a region other than the mercury spectrum as shown by the curve D in FIG. 2, for example, the curve in FIG. The second light emitting element L 2 having the spectral characteristic of A is selected by the control circuit 7 to generate the infrared signal S 2 . However, since the wavelength of infrared rays is determined to be 900 to 950 nm by the Home Appliance Association, the infrared signal S 2 in the stable lighting state of the fluorescent lamp 6
The wavelength is preferably 900 to 950 nm.

【0024】これにより、赤外線信号S1 ,S2 に対す
るノイズ成分となるアルゴンおよび水銀の2つのスペク
トルの影響を共に小さくすることができる。したがっ
て、蛍光ランプ6から発生するスペクトル成分の点灯直
後から点灯安定に至る変化に対して、それぞれ異なった
赤外線信号により信号伝送することにより受信部2の感
度を向上できるので、蛍光ランプ6の状態にかかわら
ず、かつ送信手段9の出力を高めることなく信号の到達
距離を増大でき、とくに低温でのランプ点灯直後の送信
距離を伸ばすことができる。
As a result, the influence of the two spectra of argon and mercury, which are noise components, on the infrared signals S 1 and S 2 can be reduced. Therefore, the sensitivity of the receiving unit 2 can be improved by transmitting signals by different infrared signals with respect to the change from the lighting of the spectral components generated from the fluorescent lamp 6 to the stable lighting. Regardless, it is possible to increase the signal reaching distance without increasing the output of the transmitting means 9, and especially to extend the transmitting distance immediately after the lamp is lit at a low temperature.

【0025】この発明の第2の実施例を図3に示す。す
なわち、この点灯装置は、第1の実施例において、送信
手段9の制御回路7にクロック回路等を用いて切換手段
8を連続的に切換動作する。この結果、送信手段9の送
信スイッチを押している間、第1の発光素子L1 および
第2の発光素子L2 が交互に動作し、図3に示すよう
に、赤外線信号S1 ,S2 を交互に発信させたものであ
る。図3において、斜線の部分P1 は赤外線信号の発信
期間、斜線でない空白部分P2 は発信停止期間である。
その他は、第1の実施例と同様である。
A second embodiment of the present invention is shown in FIG. That is, in this lighting device, in the first embodiment, the switching means 8 is continuously switched by using a clock circuit or the like in the control circuit 7 of the transmission means 9. As a result, while the transmission switch of the transmission means 9 is being pressed, the first light emitting element L 1 and the second light emitting element L 2 operate alternately, and as shown in FIG. 3, the infrared signals S 1 and S 2 are transmitted. It is a message that is transmitted alternately. In FIG. 3, the shaded portion P 1 is the infrared signal transmission period, and the non-slanted blank portion P 2 is the transmission stop period.
Others are the same as those in the first embodiment.

【0026】[0026]

【0027】この発明の第の実施例を図4から図6に
示す。すなわち、この点灯装置は、受信部2が相互に波
長の異なる赤外線信号を透過する分光特性をもった複数
の光学的フィルタ13,14の付いた受光部11,12
を有するとともに、複数の受光部11,12を切り換え
る切換手段15を有するものである。受光部11の光学
的フィルタ13は図6の曲線Fに示すような分光特性を
有し、受光部12の光学的フィルタ14は曲線Hに示す
ような分光特性を有する。切換手段15は、たとえばリ
レー接点からなり、制御回路4からの制御信号によって
切換えられ、受光部11,12のそれぞれの出力信号の
一方を選択して制御回路4の信号入力端子に入力させ
る。制御回路4はたとえばA/Dコンバータを内蔵した
マイクロコンピュータよりなり受光部11,12の出力
信号のうちどちらか一方を入力して内部処理し、点灯回
路5の制御を行う。また切換手段15を切り換えるタイ
ミングはたとえば制御回路4にタイマを内蔵し、ランプ
6が点灯してからの経過時間によって受光部11,12
を選択する。
A third embodiment of the present invention is shown in FIGS . That is, in this lighting device, the light receiving portions 11 and 12 provided with the plurality of optical filters 13 and 14 having the spectral characteristic that the receiving portion 2 transmits infrared signals having mutually different wavelengths.
And a switching means 15 for switching the plurality of light receiving portions 11 and 12. The optical filter 13 of the light receiving section 11 has the spectral characteristic as shown by the curve F in FIG. 6, and the optical filter 14 of the light receiving section 12 has the spectral characteristic as shown by the curve H. The switching means 15 is composed of, for example, a relay contact, is switched by a control signal from the control circuit 4, selects one of the output signals of the light receiving sections 11 and 12, and inputs it to the signal input terminal of the control circuit 4. The control circuit 4 comprises, for example, a microcomputer having a built-in A / D converter, inputs one of the output signals of the light receiving units 11 and 12 and internally processes it, and controls the lighting circuit 5. The timing for switching the switching means 15 is, for example, a timer built in the control circuit 4, and the light receiving portions 11 and 12 are determined depending on the elapsed time after the lamp 6 is turned on.
Select.

【0028】送信手段9は、受信部2で受信する赤外線
のすべてを同時に送信するように構成している。例えば
図4に示すように、ランプの点灯直後および安定点灯時
に発生するアルゴンおよび水銀のスペクトルと関係な
く、異なった分光特性をもった複数個の発光素子L 1
n を用いて同時に相互に異なった波長の赤外線信号S
1 〜S n を発生させるようにしている。この実施例は、
点灯直後において図6の曲線Eに示すアルゴンスペクト
ルが多量に発生している時には曲線Hに示すような分光
特性を有する光学的フィルタ14を備えた受光部12
を、その後、蛍光ランプ6が安定点灯状態となってアル
ゴンスペクトルが微小になり、かつ曲線Dに示す水銀ス
ペクトルが増加してきた時には曲線Fに示すような分光
特性を有する光学的フィルタ13を備えた受光部11を
それぞれ選択する。
The transmitting means 9 is configured to simultaneously transmit all infrared rays received by the receiving section 2. For example
As shown in Fig. 4, immediately after lighting the lamp and during stable lighting
Related to the spectra of argon and mercury generated in
And a plurality of light emitting elements L 1 to have different spectral characteristics.
Using L n , infrared signals S of different wavelengths at the same time
And so as to generate 1 to S n. This example
Immediately after lighting, when a large amount of the argon spectrum shown in the curve E of FIG. 6 is generated, the light receiving unit 12 provided with the optical filter 14 having the spectral characteristic shown in the curve H.
After that, when the fluorescent lamp 6 is in a stable lighting state, the argon spectrum becomes minute, and the mercury spectrum shown in the curve D increases, the optical filter 13 having the spectral characteristic shown in the curve F is provided. Each of the light receiving units 11 is selected.

【0029】これにより、赤外線信号に対するノイズ成
分となるアルゴンおよび水銀の2つのスペクトルの影響
をともに小さくすることができる。したがって、送信手
段9の光出力を高め電源のロスを大きくさせることなく
点灯直後から安定点灯時までの赤外線リモートコントロ
ールシステムの送信距離を伸ばすことができる。なお、
受光部11,12の切換手段15の制御回路4において
タイマを用いたが、蛍光ランプ6の分光特性を検出して
その特性に応じて切り換えたり、蛍光ランプ6の光スペ
クトルが蛍光ランプ6の温度に関連することを利用して
蛍光ランプ6の管壁温度によって切り換えてもよい。
This makes it possible to reduce the influence of the two spectra of argon and mercury, which are noise components on the infrared signal. Therefore, it is possible to extend the transmission distance of the infrared remote control system from immediately after the lighting to the stable lighting without increasing the light output of the transmitting means 9 and increasing the power loss. In addition,
Although the timer is used in the control circuit 4 of the switching means 15 of the light receiving portions 11 and 12, the spectral characteristic of the fluorescent lamp 6 is detected and switched according to the characteristic, or the optical spectrum of the fluorescent lamp 6 is the temperature of the fluorescent lamp 6. It may be switched by the temperature of the tube wall of the fluorescent lamp 6 by utilizing the fact that

【0030】また送信手段9は、受光部11,12の分
光特性に応じて、異なった分光特性の光出力を発生する
ことができれば有効であり、具体的には第1の実施例な
どのように構成してもよい。
The transmitting means 9 is effective if it can generate optical outputs having different spectral characteristics in accordance with the spectral characteristics of the light receiving parts 11 and 12, specifically, as in the first embodiment. You may comprise.

【0031】[0031]

【発明の効果】請求項1の点灯装置によれば、蛍光ラン
プと、複数の波長の異なる赤外線信号を発生する送信手
段と、この送信手段の前記赤外線信号を受信する受信部
を有して前記受信部の出力信号により前記蛍光ランプを
制御する点灯回路とを備えたため、蛍光ランプから発生
するスペクトル成分の点灯直後から点灯安定に至る変化
に対して、それぞれ異なった赤外線信号により信号伝送
することにより受信部の感度を向上できるので、蛍光ラ
ンプの状態にかかわらず、かつ送信手段の出力を高める
ことなく信号の到達距離を増大でき、とくに低温でのラ
ンプ点灯直後の送信距離を伸ばすことができるという効
果がある。
According to the lighting device of the first aspect, the fluorescent lamp, the transmitting means for generating infrared signals having a plurality of different wavelengths, and the receiving section for receiving the infrared signal of the transmitting means are provided. Since the lighting circuit for controlling the fluorescent lamp by the output signal of the receiving unit is provided, for the change from the lighting of the spectral component generated from the fluorescent lamp to the lighting stability, by transmitting signals by different infrared signals, respectively. Since the sensitivity of the receiving unit can be improved, it is possible to increase the signal reaching distance regardless of the state of the fluorescent lamp and without increasing the output of the transmitting unit, and it is possible to extend the transmitting distance immediately after the lamp is lit at a low temperature. effective.

【0032】請求項2の点灯装置によれば、請求項1
同様な効果がある。
According to the lighting device according to claim 2, and claim 1
Has a similar effect.

【0033】請求項3の点灯装置によれば、請求項1ま
たは請求項2と同様な効果がある。
According to the lighting device of claim 3, according to claim 1,
The same effect as that of claim 2 is obtained.

【0034】請求項4の点灯装置によれば、アルゴンス
ペクトルおよび水銀スペクトルに対応した波長の異なる
赤外線信号を透過する分光特性をもった複数の受光部を
有するため、請求項1と同様、蛍光ランプの状態にかか
わらず、かつ送信手段の出力を高めることなく信号の到
達距離を増大でき、とくに低温でのランプ点灯直後の送
信距離を伸ばすことができる。
According to the lighting device of claim 4 , an argon gas is used.
Different wavelengths corresponding to spectrum and mercury spectrum
Multiple light receiving parts with spectral characteristics that transmit infrared signals
Since it has, it is in the state of the fluorescent lamp as in claim 1.
Signal is received without increasing the output of the transmission means.
The reach can be increased, especially at low temperatures, immediately after the lamp is turned on.
You can extend your trust.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例のブロック図である。FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】送信手段の分光特性図である。FIG. 2 is a spectral characteristic diagram of transmission means.

【図3】第2の実施例の送信手段の発信動作を説明する
説明図である。
FIG. 3 is an explanatory diagram illustrating a transmission operation of a transmission unit according to a second embodiment.

【図4】第3の実施例の送信手段の詳細を示すブロック
図である。
FIG. 4 is a block diagram showing details of a transmitting means of a third embodiment.

【図5】第の実施例の受信部の詳細を示すブロック図
である。
FIG. 5 is a block diagram showing details of a receiving unit according to a third embodiment.

【図6】その光学的フィルタの分光特性図である。FIG. 6 is a spectral characteristic diagram of the optical filter.

【図7】従来例の使用状態の斜視図である。FIG. 7 is a perspective view of a conventional example in use.

【図8】その点灯装置のブロック図である。FIG. 8 is a block diagram of the lighting device.

【図9】その送信部の分光特性図である。FIG. 9 is a spectral characteristic diagram of the transmitter.

【図10】光学的フィルタの分光特性図である。FIG. 10 is a spectral characteristic diagram of an optical filter.

【図11】蛍光ランプのスペクトルの時間変化図であ
る。
FIG. 11 is a time change diagram of the spectrum of the fluorescent lamp.

【符号の説明】[Explanation of symbols]

2 受信部 6 蛍光ランプ 9 送信手段 10 点灯回路 2 Receiver 6 fluorescent lamp 9 Transmission means 10 lighting circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−1487(JP,A) 特開 平2−235499(JP,A) 特開 平4−46494(JP,A) 特開 平5−83773(JP,A) 特開 平2−198298(JP,A) 実開 平2−36285(JP,U) (58)調査した分野(Int.Cl.7,DB名) H05B 37/02 H04B 10/00 H04Q 9/00 301 H04Q 9/00 311 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-1487 (JP, A) JP-A-2-235499 (JP, A) JP-A-4-46494 (JP, A) JP-A-5- 83773 (JP, A) Japanese Patent Laid-Open No. 2-198298 (JP, A) Actual Development No. 2-38685 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H05B 37/02 H04B 10 / 00 H04Q 9/00 301 H04Q 9/00 311

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蛍光ランプと、複数の波長の異なる赤外
線信号を発生する送信手段と、この送信手段の前記赤外
線信号を受信する受信部を有して前記受信部の出力信号
により前記蛍光ランプを制御する点灯回路とを備え、前
記送信手段は、前記蛍光ランプの低温点灯の直後に発生
するアルゴンスペクトルと異なる赤外線信号を発生する
第1の発光素子と、点灯安定時に発生する水銀スペクト
ルと異なる赤外線信号を発生する第2の発光素子と、前
記第1の発光素子および前記第2の発光素子を切り換え
る切換手段と、この切換手段を点灯直後から点灯安定時
に切換え動作させるタイマをもった制御回路とを有する
点灯装置。
1. A fluorescent lamp, a transmitting means for generating infrared signals having a plurality of different wavelengths, and a receiving portion for receiving the infrared signal of the transmitting means, and the fluorescent lamp is controlled by an output signal of the receiving portion. With a lighting circuit to control ,
The transmission means is generated immediately after the fluorescent lamp is lit at a low temperature.
Generates an infrared signal that differs from the argon spectrum
First light-emitting element and mercury spectrum generated when lighting is stable
A second light emitting element that generates an infrared signal different from that of
Switching between the first light emitting element and the second light emitting element
Switching means and when this switching means is stable after lighting
And a control circuit having a timer for switching operation to the lighting device.
【請求項2】 蛍光ランプと、複数の波長の異なる赤外
線信号を発生する送信手段と、この送信手段の前記赤外
線信号を受信する受信部を有して前記受信部の出力信号
により前記蛍光ランプを制御する点灯回路とを備え、
記送信手段は、前記蛍光ランプの低温点灯の直後に発生
するアルゴンスペクトルと異なる赤外線信号を発生する
第1の発光素子と、点灯安定時に発生する水銀スペクト
ルと異なる赤外線信号を発生する第2の発光素子と、前
記第1の発光素子および前記第2の発光素子を交互に動
作させるように連続的に切り換える切換手段とを有する
点灯装置。
2. A fluorescent lamp and infrared rays of different wavelengths.
A transmitting means for generating a line signal, and the infrared ray of the transmitting means.
An output signal of the receiving unit having a receiving unit for receiving a line signal
And a lighting circuit for controlling the fluorescent lamp according to claim 1, wherein the transmitting means generates a infrared signal different from an argon spectrum generated immediately after the fluorescent lamp is lit at a low temperature, and a first light emitting element, which is generated when the lighting is stable. A second light emitting element that generates an infrared signal different from the mercury spectrum ;
The first light emitting element and the second light emitting element are alternately operated.
And a switching means for continuously switching so that the lighting device.
【請求項3】 前記第1の発光素子は800nm以下の
波長並びにアルゴンスペクトルの920nmおよび97
0nmの波長と異なる赤外線信号を発生し、前記第2の
発光素子は水銀スペクトルの1013nmの波長と異な
る赤外線信号を発生する請求項1または請求項2記載の
点灯装置。
3. The first light emitting element has a wavelength of 800 nm or less and 920 nm and 97 of an argon spectrum.
The lighting device according to claim 1 or 2, wherein an infrared signal different from a wavelength of 0 nm is generated, and the second light emitting element generates an infrared signal different from a wavelength of 1013 nm of a mercury spectrum.
【請求項4】 蛍光ランプと、複数の波長の異なる赤外
線信号を発生する送信手段と、この送信手段の前記赤外
線信号を受信する受信部を有して前記受信部の出力信号
により前記蛍光ランプを制御する点灯回路とを備え、前
記受信部は前記蛍光ランプの低温点灯の直後に発生する
アルゴンスペクトルを透過しない分光特性をもった第1
の受光部と、点灯安定時に発生する水銀スペクトルを透
過しない分光特性をもった第2の受光部と、前記第1の
受光部および前記第2の受光部を切り換える切換手段
と、この切換手段をアルゴンおよび水銀の各スペクトル
の発光タイミングに合わせて切り換え動作させる制御回
路を有することを特徴とす 点灯装置。
4. A fluorescent lamp and a plurality of infrared rays having different wavelengths
A transmitting means for generating a line signal, and the infrared ray of the transmitting means.
An output signal of the receiving unit having a receiving unit for receiving a line signal
And a lighting circuit for controlling the fluorescent lamp by
The receiving unit occurs immediately after the low temperature lighting of the fluorescent lamp.
First with spectral characteristics that does not transmit the argon spectrum
The light-receiving part of the
A second light receiving portion having a spectral characteristic not to exceed
Switching means for switching between the light receiving part and the second light receiving part
And this switching means for each spectrum of argon and mercury.
Control time to switch operation according to the light emission timing of
Lighting device further comprising a road.
JP12002093A 1993-05-21 1993-05-21 Lighting device Expired - Lifetime JP3458408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12002093A JP3458408B2 (en) 1993-05-21 1993-05-21 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12002093A JP3458408B2 (en) 1993-05-21 1993-05-21 Lighting device

Publications (2)

Publication Number Publication Date
JPH06333678A JPH06333678A (en) 1994-12-02
JP3458408B2 true JP3458408B2 (en) 2003-10-20

Family

ID=14775927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12002093A Expired - Lifetime JP3458408B2 (en) 1993-05-21 1993-05-21 Lighting device

Country Status (1)

Country Link
JP (1) JP3458408B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270175A (en) * 1997-03-25 1998-10-09 Sanyo Electric Co Ltd Fluorescent lamp illuminator with remote control function and infrared remote controller used in it
JP4114624B2 (en) * 2004-03-19 2008-07-09 Kddi株式会社 Optical transmitter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236285U (en) * 1988-08-31 1990-03-08
JPH02198298A (en) * 1989-01-27 1990-08-06 Hitachi Ltd Remote controller
JPH02235499A (en) * 1989-03-09 1990-09-18 Canon Inc Electronic equipment
JPH065638B2 (en) * 1989-05-30 1994-01-19 松下電器産業株式会社 Infrared remote control fluorescent lamp fixture
JPH0446494A (en) * 1990-06-13 1992-02-17 Fujitsu General Ltd Remote control signal transmitter and receiver
JP3210695B2 (en) * 1991-09-25 2001-09-17 松下電工株式会社 Wireless receiver for remote control system

Also Published As

Publication number Publication date
JPH06333678A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
CN101213880A (en) Remote color control device and lighting system
DK1201010T3 (en) Street lighting system and the like, as well as elements and use thereof
JP2007096548A (en) Optical communication equipment, optical communication method, and optical communication system
EP1215832A3 (en) Variable-wavelength optical transmitter with output control and optical communication system thereof
EP0073776B1 (en) Electric signalling installation comprising at least one transmitter and one receiver
JP3458408B2 (en) Lighting device
US5029271A (en) Superregenerative detector
JP4715096B2 (en) LED lighting device
JPH06140158A (en) Lighting system
CA2376316A1 (en) Optical pulse source for long haul optical communication systems
JP2003163633A (en) Remote data communication system, remote data transmitter and remote data receiver
JP7258334B2 (en) Remote control receiver, transmitter and remote control transmission/reception system
JPH06223977A (en) Luminaire
JPH0613095U (en) Infrared remote control lighting equipment
JP3086580B2 (en) Optical communication device
JPH07147196A (en) Lighting system
JPH06176873A (en) Lighting fixture
JPH09247767A (en) Received frequency selection device of remote control device and method for the device
JPH05327616A (en) Optical signal receiver
WO1995022211A1 (en) Method and device for driving a radiation emitting device
JPH10145296A (en) Communication control circuit
JP2005244582A (en) Light reception module and device having the same
JPH0847055A (en) Remote control system for electrical machinery and apparatus
JPH07147191A (en) Lighting system
JPH06111981A (en) Lighting system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

EXPY Cancellation because of completion of term