JP3456761B2 - Manufacturing method of steel parts for plating - Google Patents

Manufacturing method of steel parts for plating

Info

Publication number
JP3456761B2
JP3456761B2 JP16572994A JP16572994A JP3456761B2 JP 3456761 B2 JP3456761 B2 JP 3456761B2 JP 16572994 A JP16572994 A JP 16572994A JP 16572994 A JP16572994 A JP 16572994A JP 3456761 B2 JP3456761 B2 JP 3456761B2
Authority
JP
Japan
Prior art keywords
treatment
steel
manufacturing
plating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16572994A
Other languages
Japanese (ja)
Other versions
JPH07166322A (en
Inventor
ヤング−ヒー キム
Original Assignee
ヤング−ヒー キム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤング−ヒー キム filed Critical ヤング−ヒー キム
Publication of JPH07166322A publication Critical patent/JPH07166322A/en
Application granted granted Critical
Publication of JP3456761B2 publication Critical patent/JP3456761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鍍金処理代替用鋼部品
の製造方法に関するものであって、詳しくは公害性鍍金
あるいは表面処理を代替して無公害、低エネルギーとし
て耐食性、耐摩耗性及び疲労強度が優秀な鋼部品を製造
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel part for plating treatment substitution, and more specifically, it is a pollution-free plating or surface treatment alternative to pollution-free, low energy corrosion resistance, wear resistance and The present invention relates to a method of manufacturing a steel part having excellent fatigue strength.

【0002】[0002]

【従来の技術】このような鍍金処理代替用鋼部品の製造
方法は現在まで塩浴法とガス法が開発されてきた。まず
塩浴法は二つの連続的な溶融塩浴槽処理によって鋼部品
を熱処理することで耐食性を持つ鋼部品を製造する技術
と知られている。この場合、一番目の溶融塩浴槽は窒化
処理浴槽として、公害性青酸カリ化物、青酸カリ塩媒体
を溶かした浴槽を580℃と加熱した状態で鋼部品を入
れて2時間窒化処理の後、苛性ソーダ、苛性カリ及び硝
酸ソーダを溶かした400℃の浴槽で約10分間酸化処
理した後、部品を水中で冷却し、洗浄工程を経て処理さ
れた部品の要望表面粗度を得るためにラッピング(la
pping)または研磨したものを再び、400℃
熱した酸化処理浴槽(二番目の塩浴槽)で20分間再酸
化させた後、水冷して完成された耐食鋼部品を製造する
方法である。しかし、この塩浴法は毒性化学物質の使用
による環境公害の問題と共に1次塩浴が2次塩浴に混合
されることで生ずる酸化処理の不合理性及び酸化処理の
後、水洗等による廃水処理の問題が惹起され、かつ2次
酸化処理のための加熱によって、特に炭素鋼で部品の疲
労強度が減少することがもっとも、大きい欠点である。
2. Description of the Related Art A salt bath method and a gas method have been developed up to now as a method for manufacturing such steel parts for plating treatment. First, the salt bath method is known as a technique for manufacturing a steel part having corrosion resistance by heat treating the steel part by two continuous molten salt bath treatments. In this case, the first molten salt bath is a nitriding bath, and the steel parts are put in a bath in which the harmful cyanide cyanide and the potassium cyanide salt medium are melted at 580 ° C. for 2 hours, followed by nitriding treatment, and then caustic soda and caustic potash. After oxidation treatment for about 10 minutes in a bath of 400 ° C. in which sodium hydroxide and sodium nitrate are melted, the component is cooled in water and subjected to a washing process to obtain a desired surface roughness of the treated component.
Pping) or polished ones again, after being re-oxidized for 20 minutes with pressurized <br/> hot oxidation treatment bath to 400 ° C. (second salt bath), to produce a corrosion resistant steel component was achieved on a water-cooled Is the way. However, this salt bath method is accompanied by the problem of environmental pollution due to the use of toxic chemical substances, and the irrationality of the oxidation treatment caused by mixing the primary salt bath with the secondary salt bath, and the waste water by washing with water after the oxidation treatment. processing problems raised, and the heating for the secondary oxidation process, in particular the most to decrease the fatigue strength of the part of carbon steel, a great disadvantage.

【0003】ガス法は550℃〜720℃のアンモニア
−吸熱形ガスまたはアンモニア−発熱形ガス雰囲気中
で、4時間以上部品を窒炭化処理の後、2〜120秒
間酸化性雰囲気中に露出させる表面酸化熱処理(1次酸
化処理)を実施した後、水−油エマルジョン冷媒に冷却
してから脱脂した後、耐食性向上のためにワックスコー
ティング処理する方法と、かつ、1次酸化処理の後、冷
却された部品を表面粗度0.2μmRA以下に研磨した
後、再加熱酸化処理(2次酸化処理)の後、冷却する方
法である。このようなガス法はガス窒化処理完了の後、
人為的な1次酸化処理のために炉内に残留する元来のガ
スを窒素ガス置換した後、再び、炉内に酸化性ガスを
別途に投入して部品の厚さによる1次酸化処理時間を厳
格に制御しなければ1μm以下の酸化被膜を得られない
という処理工程上の複雑性と難しさにより、特に、炉内
に装込された部品の量と表面積によって部品全体におい
て均一な酸化層を得にく、研磨の後、2次酸化処理を
350〜550℃で実施するための再加熱によるエネル
ギーの消費、作業工程の複雑性と炭素鋼で窒化処理中に
表面側に形成された窒素固溶層で2次酸化処理時の再加
熱による窒化物即ち、Fe4Nの析出によって部品の疲
労強度が著しく減少することが大きい問題点として残っ
ており、特にこの方法で製造された部品は5%塩水噴霧
試験で100〜200時間ぐらいで発錆が容易に起こる
ことから、耐食性に優れないという欠点も持っている。
[0003] Gas Law 550 ° C. to 720 ° C. Ammonia - endothermic type gas or ammonia - in heating type gas atmosphere, after窒炭process immersed for 4 hours or more parts, is exposed during 2 to 120 seconds oxidizing atmosphere A method of performing a surface oxidation heat treatment (primary oxidation treatment), cooling to a water-oil emulsion refrigerant and then degreasing, and then performing a wax coating treatment to improve corrosion resistance, and cooling after the primary oxidation treatment. This is a method of polishing the formed component to have a surface roughness of 0.2 μm RA or less, and then performing a reheating oxidation treatment (secondary oxidation treatment) and then cooling. After the gas nitriding process is completed,
After the original gas remaining in the furnace for artificial primary oxidation was replaced with nitrogen gas again, the primary oxidation treatment with a thickness of the part by introducing an oxidizing gas into the furnace separately An oxide film of 1 μm or less cannot be obtained unless the time is strictly controlled.
The complexity and difficulty of the process steps of, in particular, by Sokomi been part of the amount and surface area in the furnace rather difficulty to obtain a uniform oxide layer in the entire part after polishing, 350 secondary oxidation process 550 energy consumption by reheating for implementing at ° C., nitride by the secondary oxidation process during reheating in nitrogen solid solution layer formed on the surface side during nitriding in complexity and carbon steel working steps that is, remaining as a possible large problem that the fatigue strength of the component by precipitation of Fe 4 N is significantly reduced
In particular, the parts manufactured by this method also have a drawback that they are not excellent in corrosion resistance, because rust easily occurs in 100 to 200 hours in a 5% salt spray test.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は上述し
た従来の塩浴法とガス法が持っている問題点を最少化乃
至完全に除去するために、同一炉内ガス雰囲気中でガス
酸化−浸窒炭化処理を同時に実施することで低公害、低
エネルギーとして耐食性、耐摩耗性及び疲労強度が優秀
な鋼部品を提供しようとすることである。
For purposes of the present invention 0008] is to eliminate the problems the conventional salt bath techniques described above and Gas Act have to minimize or completely, the gas in the same furnace in a gas atmosphere
An object of the present invention is to provide a steel part having low pollution, low corrosion, corrosion resistance, wear resistance, and fatigue strength by simultaneously performing oxidation-nitriding and carbonizing treatment .

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために本発明によると、窒化性ガスに酸化性ガスを添
加した酸化−窒化ガス雰囲気で鋼部品を熱処理して、表
面に酸化物層、酸素が含有されたε−炭窒化物層を形成
するようにした鍍金処理代替用高耐食性鋼部品の製造方
法が提供される。
According to the present invention to achieve the above object, a steel part is heat-treated in an oxidizing-nitriding gas atmosphere in which an oxidizing gas is added to a nitriding gas to form an oxide on the surface. Provided is a method for producing a high corrosion resistant steel part as an alternative to a plating process, which comprises forming a layer , an ε- carbonitride layer containing oxygen.

【0006】酸化−窒化処理雰囲気中で酸化と窒化が同
時に起る理由は、窒化性ガスに酸化性ガスを添加するこ
とで、炉内ガス反応によって生成された水蒸気と未反応
酸素あるいは炭化水素ガスと空気の炉内直接反応によ
って形成された二酸化炭素及び一酸化炭素などの酸化性
ガスによって、表面酸化物層と酸素が含有されたε−炭
窒化物層が形成されるからである。この際ε−炭窒化物
酸素の浸透深さは5〜10μm程である。
The reason why the oxidation and the nitriding occur simultaneously in the oxidizing-nitriding treatment atmosphere is that when the oxidizing gas is added to the nitriding gas, the steam generated by the gas reaction in the furnace does not react with the steam.
Ε-carbon containing a surface oxide layer and oxygen by the oxidizing gas such as carbon dioxide and carbon monoxide formed by the direct reaction of oxygen or hydrocarbon gas with air in the furnace
This is because the nitride layer is formed. At this time, the penetration depth of oxygen in ε-carbonitride is about 5 to 10 μm.

【0007】最表面酸化物層と酸素が含有されたε−炭
窒化物層を同時に形成するためのガス雰囲気熱処理は4
20〜720℃までの温度区間で最大50時間までアン
モニアと5〜50%の(C 3 8 +air)及び窒素で構
成されたガス雰囲気で実施す。この際使用された熱処
理炉としては上下部に撹拌ファンが付着された下部ガス
注入形ピット形炉、シールドクエンチ炉、流動床炉ある
いは三つ以上のチァンバーで構成されて、各チァンバー
の上下に撹拌ファンが付着されたメッシュベルトタイプ
連続炉などであって、ここで酸化−窒化処理を起すガス
は鋼部品の表面にアンモニアが原子窒素を供給して、二
酸化炭素及び一酸化炭素が炭素を供給するし、炉内で空
気中の酸素及び空気のプロパンガスの燃焼反応によって
形成された水蒸気、二酸化炭素及び一酸化炭素が酸素を
供給する。部品の最表面の酸化物層と酸素が含有された
ε−窒化物層の厚さは各々0.5〜5μm及び15〜
30μmまで形成さ、これは部品の物理的な要求特性
によって処理時間、温度及びガス雰囲気の組成を除去す
ることで変化させられる。
Ε-carbon containing an outermost oxide layer and oxygen
The gas atmosphere heat treatment for simultaneously forming the nitride layer is 4
Anne up to a maximum of 50 hours at a temperature interval of up to 20~720 ℃
Pneumoniae and 5-50% of (C 3 H 8 + air), and you performed in a gas atmosphere composed of nitrogen. The heat treatment furnace used at this time consisted of a lower gas injection type pit furnace with stirring fans attached to the upper and lower parts, a shield quench furnace, a fluidized bed furnace or three or more chambers, with stirring above and below each chamber. A mesh belt type continuous furnace to which a fan is attached, where the gas that causes oxidation-nitriding treatment is that ammonia supplies atomic nitrogen to the surface of the steel part, and carbon dioxide and carbon monoxide supply carbon. Then, steam, carbon dioxide and carbon monoxide formed by the combustion reaction of oxygen in the air and propane gas of the air supply oxygen in the furnace. The thickness of the oxide layer and the oxygen of the outermost surface of the component is contained ε- carbonitride layer each 0.5~5μm and 15
It is formed up to 30 μm, which can be varied by removing the processing time, temperature and composition of the gas atmosphere depending on the physical requirements of the part.

【0008】特に酸化−窒化複合同時処理の後、表面研
磨をした状態で0.2μmRA以下の表面粗度を要求す
る部品に対して表面酸化物層の厚さは0.5〜5μmま
で形成さ、かつ酸素が含有されたε−窒化物層の
さは15〜30μmまで形成して、この際、酸素が含有
されたε−窒化物層の厚さの1/3〜1/2は気孔層
で構成さ、この気孔に酸化物が形成されて表面耐食性
が向上される。代表的にこのような酸素が含有されたε
窒化物層の厚さは大凡20μm程が適当であって、
この厚さは570℃で2時間あるいは600℃で1時間
20分間熱処理することで形成さる。しかし、これよ
更に薄いか厚い、酸素が含有されたε−窒化物層は
処理時間及び温度と使用されたガス雰囲気の組成によっ
て変化さる。表面酸化物層の厚さは酸化−窒化熱処理
ガスの組成によって変化さ、かつ熱処理温度と時間も
やはり変数になる。たとえば、50%NH3−20%
(C38+4air)−30%N2ガス雰囲気中で57
0℃で2時間酸化−窒化熱処理時、表面酸化物層は大凡
4μm厚さを持。この際、酸素が含有されたε−
化物層は22μmとなり、酸素が含有されたε−炭窒化
物層の気孔層の厚さは大凡10μm程と形成される。
Particularly, after the simultaneous oxidation-nitridation combined treatment, the surface oxide layer is formed to a thickness of 0.5 to 5 μm for a part requiring a surface roughness of 0.2 μm RA or less in the state where the surface is polished. thick is, and oxygen is contained ε- carbonitride layer
Is is formed to 15 to 30 [mu] m, this time, 1 / 3-1 / 2 of the thickness of the oxygen is contained ε- carbonitride layer is composed of pores layers, oxide the pore formation As a result, the surface corrosion resistance is improved. Typically, such oxygen-containing ε
- The thickness of the carbonitride layer is a more approximate 20μm is appropriate,
This thickness is Ru is formed by heat treatment for 1 hour 20 minutes at 2 hours or 600 ° C. at 570 ° C.. However, thinner or thicker than this, oxygen ε- carbonitride layer containing the Ru is varied by the composition of the gas atmosphere used and the treatment time and temperature. Thickness oxidation of the surface oxide layer - is varied with composition in the nitriding heat treatment gas, and the heat treatment temperature and time also becomes too variable. For example, 50% NH 3 -20%
(C 3 H 8 + 4air) -30% in N 2 gas atmosphere 57
2 hours oxide at 0 ° C. - nitriding heat treatment, the surface oxide layer is one lifting the approximate 4μm thickness. In this case, oxygen is contained ε- carbonitride nitride <br/> oxide layer becomes 22 .mu.m, the thickness of the pore layer of oxygen is contained ε- carbonitride layer is as a form roughly 10 [mu] m.

【0009】1μm以下の酸化物層の厚さはブレーキマ
スターバッグ、ねじと同じ低炭素鋼及び低炭素合金鋼の
耐食性を向上するのに非常によく適合し、特に薄い鋼板
(3mm以下)で成形製造された部品の場合、表面酸化
物層が2μm以上の場合剥離が起るから、これを防止す
るために、表面酸化物層の厚さが1.5μm以下になる
ようにガス雰囲気を調節しなければならない。
The oxide layer thickness of less than 1 μm is very well suited to improve the corrosion resistance of low carbon steels and low carbon alloy steels similar to brake master bags, screws, especially formed by thin steel plates (3mm or less). In the case of manufactured parts, peeling occurs when the surface oxide layer is 2 μm or more. To prevent this, the gas atmosphere is adjusted so that the thickness of the surface oxide layer is 1.5 μm or less. There must be.

【0010】部品がある表面粗度を要求する場合におい
て、酸化−窒化処理の後、熱処理油あるいは水溶性冷却
剤で直接冷却する。たとえば、自動車用ショックアブソ
ーバ用ロド、各種油.空圧ピストンロド、ダンパーロド
等のように硬質クロム鍍金あるいは高周波熱処理の後、
硬質クロム鍍金を実施する部品の場合は、ガス酸化−窒
化雰囲気で熱処理の後、熱処理油あるいは水溶性冷却剤
直接冷却した後、部品に要求される表面粗度を得るた
めに表面研磨を実施する。この際、表面研磨は表面粗度
0.15μmRA以下に実施することが良、研磨の
時、酸化−窒化処理された部品の最表面の酸化物層が除
去される。このように研磨された上記部品は、高い疲労
強度を持、以後の付加的な酸化処理をしなくても、塩
水噴霧試験で300時間以上発錆なく耐える。
When a part requires a certain surface roughness, a heat treatment oil or water-soluble cooling is applied after the oxidation-nitriding treatment.
Cool directly with the agent . For example, rods for shock absorbers for automobiles, various oils. After hard chrome plating or high frequency heat treatment such as pneumatic piston rod, damper rod, etc.,
In the case of parts that are hard chrome plated, after heat treatment in a gas oxidation-nitriding atmosphere, heat treated oil or water-soluble coolant
After being directly cooled in, the surface is polished to obtain the surface roughness required for the part. At this time, the surface polishing rather goodness be carried below the surface roughness 0.15MyumR A, when polishing, oxide - oxide layer of the nitrided treated part of the outermost surface is removed. Polished the component in this way, high fatigue strength Chi the lifting, without subsequent additional oxidation withstand without rusting over 300 hours in the salt spray test.

【0011】この方法によって製造された自動車用ショ
ックアブソーバ用ロド、各種油空圧ピストンロド及び
ダンパーロド等はまるで、クロム鍍金処理をしたものの
ような表面鏡面光沢を出、高周波熱処理とクロム鍍金
を並行実施する部品の機械的な性質を凌駕すると評価さ
れる。特に硬質クロム鍍金処理の場合、鍍金層を30μ
mと処理した時、塩水噴霧試験で72〜96時間で発錆
をするとの事実と比較する時、3倍以上の耐食性が保障
、部品表面層の窒素固溶層を再加熱なく維持するか
ら、同一部品に対して従来の塩浴法とガス法によって製
造されたものと比較する時、付加的な再加熱操作とか熱
的酸化操作を必要しないで、処理工程が大幅に簡単
で、高い耐食性及び疲労強度を確保できる方法である。
[0011] Rod shock absorber for automobiles produced by this method, various oil-pneumatic Pisutonrodo and Danparodo etc. like, and exits the surface specular gloss such as those in which the chromium plating process, parallel induction heat treatment and chromium plating It is estimated to exceed the mechanical properties of the parts to be implemented. Especially in the case of hard chrome plating, the plating layer is 30μ
when treated with m, when compared with the fact that rusting in 72-96 hours salt spray test, more than three times the corrosion resistance is guaranteed <br/>, nitrogen solid solution layer of the part surface layer again Since it is maintained without heating, when compared to those manufactured by the conventional salt bath method and gas method for the same part, no additional reheating operation or thermal oxidation operation is required, and the treatment process is significantly increased. It is a simple method that can ensure high corrosion resistance and fatigue strength.

【0012】[0012]

【実施例】(実施例1) ショックアブソーバ用ロドは長さ34cm,直径18m
m,初期表面粗度0.2〜0.4μmRAと加工・研磨
を実施したS45Cと45Cに該当する非粗質鋼を58
0℃で2時間ぐらい50%NH3−30%(C38+4
air)−20%N2ガス雰囲気で酸化−窒化処理の
後、水溶性冷却剤に冷却した。この際、表面に形成され
た酸化物は双方の素材に対して同一大凡2.2μm、
ε−炭窒化物層の厚さは25μm、気孔層の厚さは約1
2μmであった。このロドらを0.11μmRAと研磨
した状態で塩水噴霧試験の結果、両者共に、300時間
以上発錆なく存、かつ、更に高い耐食性と表面潤滑性
及び美的効果を付与するために0.11μmRAと最終
研磨状態のロドを100℃と予熱した後、125℃
熱攪拌される海水1リットルに12モル苛性ソーダと1
00gの硝酸ソーダを溶かした溶液に5分間浸けてから
流れる水洗浄した後、乾燥してから塩水噴霧試験した
結果、両者の材質は、全部400時間以上発錆なく耐え
。このように処理されたロド(S45C)を油圧式及
びガス式ショックアブソーバで組立た後、往復圧縮試験
の結果、600万サイクルにおいて、何の問題点発見
されなかっ。これは現在製造されている同種の硬質ク
ロム鍍金処理の割に3倍以上の耐久性があった。
Example 1 A shock absorber rod has a length of 34 cm and a diameter of 18 m.
m, an initial surface roughness of 0.2 to 0.4 μm RA, and processed and polished S45C and non-rough steel corresponding to 45C
50% NH 3 -30% (C 3 H 8 +4
air) After oxidation-nitridation treatment in a 20% N 2 gas atmosphere, it was cooled to a water-soluble coolant. At this time, the oxide formed on the surface is the same for both materials and is approximately 2.2 μm,
The thickness of the ε-carbonitride layer is 25 μm, and the thickness of the pore layer is about 1
It was 2 μm. 0 The Rod et results of salt spray test while polishing the 0.11MyumR A, Both, or 300 hours rusting without to exist, and, in order to impart higher corrosion resistance and surface lubricity and aesthetic effect. After pre-heating the rod having a final polishing state of 11 μm RA to 100 ° C., 12 mol of caustic soda was added to 1 liter of seawater heated and stirred at 125 ° C.
After washing with water flowing from the dipped 5 minutes to a solution of sodium nitrate in 200 g, dried result of the salt spray test from both materials withstand without total 400 hours or more rust
It was After was assembled thus treated Rodos the (S45C) by the hydraulic and gas shock absorber, as a result of the reciprocating compression test, Oite 600 million cycles, was not found any problem. This was more than three times as durable as the current hard chrome plating treatment of the same type.

【0013】(実施例) クエンチング.テンペリング(quenching−t
empering)した窒化鋼(SACM 1種)で機
械加工した紡織用及び機械用スピンドル部品を0.4μ
mRA程と研磨した後、下部ガス注入形ピット炉で58
0℃で30時間ぐらい50%NH3−30%(C38
4air)−20%N2ガス雰囲気で窒炭化処理の
後、水溶性冷却剤に冷却した後、0.2μmRAの粗度
を持つように研磨した状態で塩水噴霧試験した結果、2
00時間以上発錆せず、実際の疲労強度も3倍以上向上
された。
(Example 2 ) Quenching. Tempering (quenching-t
0.4μ for spinning and mechanical spindle parts machined from embossed nitrided steel (SACM type 1)
After polishing the as mR A, 58 at the bottom gas injection type pit furnace
50% NH 3 -30% (C 3 H 8 +
4Air) After窒炭process immersed in -20% N 2 gas atmosphere and cooled in a water-soluble coolant, as a result of the salt spray test while polished to have a roughness of 0.2μmR A, 2
00 hours or more without rusting, was actually of fatigue strength more than three times improvement.

【0014】[0014]

【発明の効果】本発明はガスを使用するから塩浴法と関
係された公害問題を一掃して、かつ現存するガス法の割
に窒化処理の後に付加的に実施する人為的な酸化熱処理
を必要にしないで、再加熱によるエネルギー節減、作業
工程の単純化及び高い疲労強度を持つ部品の製造におい
て利点を持つ。
The present invention eliminates the pollution problem associated with the salt bath method because a gas is used, and an artificial oxidation heat treatment is additionally performed after the nitriding treatment in comparison with the existing gas method. It is not necessary but has advantages in energy saving by reheating, simplification of working process and production of parts with high fatigue strength.

【0015】本発明で酸化−窒化熱処理は厳格に言えば
同一炉内で酸化と窒化が同時に起こることを意味する
し、この際、窒化は窒炭化処理と広義の意味で同一で
ある。従って、浸窒炭化は鋼中に窒素と炭素を同時に拡
散浸透させる熱化学的処理法として本発明で窒化は
炭化を含む広義の意味で使用している。従って、本発明
では、酸化−浸窒炭化処理は唯、使用ガスの組成中空気
とプロパンの混合気体及び窒素ガスを添加する場合
炭化処理がされる。
[0015] The present invention in oxide - to oxidation and nitriding in the same furnace speaking nitriding heat treatment is strictly means that simultaneous, this time, nitride are identical at窒炭process and broad sense immersion. Therefore, immersion窒炭reduction is used in the broadest sense to include the present invention in the immersion窒炭of nitride as thermochemical treatment method for simultaneously cementation nitrogen and carbon in the steel. Accordingly, in the present invention, oxide - immersion窒炭treatment is only are the窒炭process immersion when adding mixed gas and nitrogen gas composition in the air and propane gas used.

【0016】本発明によって鋼部品の耐食性の向上は酸
化窒化同時処理によって鋼部品の表面に付着された表面
酸化物層と酸素が含有されたε−窒化物層中の気孔内
の酸化物形成及び表面ε−窒化物自体が高い耐食性を
持つ。これら酸化物層は主にFe34、Fe23で構成
されるし、表面ε−窒化物層は主にFe3(CN)で
構成される。
The improvement in the corrosion resistance of the steel part by the present invention is formed oxide in the pores of ε- carbonitride layer adhesion surface oxide layer and the oxygen on the surface of the steel component is contained by oxynitride concurrency and surface ε- carbonitride itself has high corrosion resistance. These oxide layers is comprised of mainly Fe 3 O 4, Fe 2 O 3, the surface ε- carbonitride layer is mainly constituted by Fe 3 (CN).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−52054(JP,A) 特開 昭58−52474(JP,A) 特開 昭55−128577(JP,A) 特開 昭51−70136(JP,A) 特開 昭61−30660(JP,A) 特開 昭57−79168(JP,A) 特公 昭49−30339(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C23C 8/28 C21D 1/76 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A 64-52054 (JP, A) JP-A 58-52474 (JP, A) JP-A 55-128577 (JP, A) JP-A 51- 70136 (JP, A) JP-A 61-30660 (JP, A) JP-A 57-79168 (JP, A) JP-B 49-30339 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 8/28 C21D 1/76

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化性ガスであるアンモニアガスと空気
及びプロパンガスを直接炉内に投入して、鋼部品を酸化
−浸窒炭化処理を同時に行い、表面に酸化物層、酸素が
含有されたε−炭窒化物層を形成するようにして、それ
を表面仕上げ処理することを特徴とする鍍金処理代替用
鋼部品の製造方法
1. Ammonia gas which is a nitriding gas and air
And propane gas directly into the furnace to oxidize steel parts
-Substitution of plating treatment characterized by performing nitriding and carburizing treatment simultaneously to form an oxide layer and an ε-carbonitride layer containing oxygen on the surface, and finishing the surface .
Manufacturing method of steel parts .
【請求項2】 前記酸化物層の主成分は、Fe34及び
少量のFe23であることを特徴とする請求項1に記載
の鍍金処理代替用鋼部品の製造方法
The main component of claim 2 wherein said oxide layer, according to claim 1, characterized in that the Fe 3 O 4 and a small amount of Fe 2 O 3
For manufacturing alternative steel parts for plating treatment .
【請求項3】 前記酸化物層の厚さを0.5〜5μmに
形成することを特徴とする請求項1または2に記載の鍍
金処理代替用鋼部品の製造方法
3. The plating according to claim 1, wherein the oxide layer is formed to have a thickness of 0.5 to 5 μm.
Method for manufacturing steel parts for gold processing alternatives .
【請求項4】 前記酸素が含有されたε−炭窒化物層
厚さを15〜30μmに形成することを特徴とする請求
項1に記載の鍍金処理代替用鋼部品の製造方法。
4. The thickness of the ε-carbonitride layer containing oxygen is formed to be 15 to 30 μm.
Item 1. A method for manufacturing a steel component for plating treatment substitution according to Item 1.
【請求項5】 前記酸素が含有されたε−炭窒化物層
3〜15μmの気孔層を含むことを特徴とする請求項1
に記載の鍍金処理代替用鋼部品の製造方法
Wherein said oxygen ε- carbonitride is contained layer is characterized in that it comprises a pore layer of 3~15μm claim 1
A method for manufacturing a steel part for plating treatment as described in .
【請求項6】 前記酸化−浸窒炭化処理の後、鋼部品を
直接熱処理油あるいは水溶性冷却オイルで冷却すること
を特徴とする請求項1に記載の鍍金処理代替用鋼部品の
製造方法。
Wherein said oxidation - after immersion窒炭treatment, cooling the steel parts directly heat treatment oil or a water-soluble cooling oil
The steel component for plating treatment substitution according to claim 1, characterized in that
Production method.
【請求項7】 前記表面仕上げ処理が、0.2μmRA
以下の表面粗度を得るために研磨する工程であることを
特徴とする請求項1に記載の鍍金処理代替用鋼部品の製
造方法
7. The surface finishing treatment is 0.2 μm R A
That the step of polishing in order to obtain the following surface roughness
A steel part for plating treatment substitution according to claim 1, characterized in that
Build method .
【請求項8】 前記表面仕上げ処理後、付加的な酸化処
理あるいは有機物被覆処理を実施せず、白色光沢を持つ
耐食鋼を製造することを特徴とする請求項7に記載の鍍
金処理代替用鋼部品の製造方法。
8. The plating according to claim 7, wherein after the surface finishing treatment, no additional oxidation treatment or organic substance coating treatment is carried out to produce a corrosion resistant steel having a white luster.
Method for manufacturing steel parts for gold processing alternatives.
【請求項9】 前記表面仕上げ処理で表面粗度を0.2
μmRA以下研磨した後、350〜600℃に維持さ
れた酸化性ガス雰囲気で酸化被膜処理することを特徴と
する請求項7に記載の鍍金処理代替用鋼部品の製造方
法。
9. A surface roughness of 0.2 by said surface finishing treatment.
After polishing below μmR A, and characterized in that the oxide film treated with oxidation gas atmosphere maintained at 350 to 600 ° C.
A method for manufacturing a steel part for plating treatment alternative according to claim 7.
Law.
【請求項10】 前記窒炭化−酸化処理を、上下に撹
拌ファンが付着された下部ガス注入式ピット形炉、流動
床炉あるいはシールドクエンチ(sealed que
nch)炉で実施することを特徴とする請求項1に記載
の鍍金処理代替用鋼部品の製造方法。
Wherein said immersion窒炭of - oxidation treatment, adhesion stirred fan vertically has been lower gas-injected pit Katachiro, fluidized bed furnace or a shield quenched (sealed que
according to claim 1, which comprises carrying out in nch) furnace
For manufacturing alternative steel parts for plating treatment.
JP16572994A 1993-06-15 1994-06-14 Manufacturing method of steel parts for plating Expired - Fee Related JP3456761B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019930010873A KR950010239B1 (en) 1993-06-15 1993-06-15 Method for producing steel articles to substitute a plating treatment
KR1993/10873 1993-06-15

Publications (2)

Publication Number Publication Date
JPH07166322A JPH07166322A (en) 1995-06-27
JP3456761B2 true JP3456761B2 (en) 2003-10-14

Family

ID=19357419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16572994A Expired - Fee Related JP3456761B2 (en) 1993-06-15 1994-06-14 Manufacturing method of steel parts for plating

Country Status (2)

Country Link
JP (1) JP3456761B2 (en)
KR (1) KR950010239B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503497B1 (en) * 2002-11-25 2005-07-26 한국기계연구원 Heat treating method for improving the wear-resistance and corrosion-resistance of chromium platings
KR100761903B1 (en) * 2006-05-01 2007-09-28 김영희 Method for manufacturing high corrosion-resistant color steel materials
KR100899578B1 (en) * 2007-10-01 2009-05-27 한국생산기술연구원 Method for surface hardening by high temperature nitriding in vacuum
DE102008023158A1 (en) 2008-05-09 2009-11-12 Schaeffler Kg Roller bearing component e.g. roller bearing ring, for double-row ball joint bearing, has corrosion-reducing edge layer containing selectively inserted zirconium atoms, and ferritic, pearlitic or martensitic steel utilized as base material
JP2011201475A (en) * 2010-03-26 2011-10-13 Dong-A Univ Research Foundation For Industry-Academy Cooperation Method of manufacturing high-strength and lightweight headrest stay
KR102372202B1 (en) 2015-07-31 2022-03-10 주식회사 지에스엠 The manufacturing method of the plating treatment for substitution steel product

Also Published As

Publication number Publication date
KR950000917A (en) 1995-01-03
KR950010239B1 (en) 1995-09-12
JPH07166322A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
EP0122762B1 (en) Corrosion resistant steel components and method of manufacture thereof
CN100497746C (en) High-carbon steel pin roll vanadizing composite treatment process
JP7082944B2 (en) Chrome-based coatings, how to produce chrome-based coatings and coated objects
Funatani Low-temperature salt bath nitriding of steels
JP2017508879A (en) Method for producing chromium coating and coated object
JP3456761B2 (en) Manufacturing method of steel parts for plating
CN1891847A (en) Corrugated roller surface reinforcement modifying method and manufacturing process
US5228929A (en) Thermochemical treatment of machinery components for improved corrosion resistance
JPS5923869A (en) Heat treatment on structural member surface
KR20000059685A (en) Method for oxy-nitro caburixing the steel product for better improving the corrosion - and abrasion - resistanc
US1092925A (en) Hardening or treatment of steel, iron, &amp;c.
CN1330167A (en) Powder zincification process of metal and its product
JPH0146586B2 (en)
KR100240042B1 (en) High temperature nitro-carbonizing treatment of metal
JP2911325B2 (en) Surface treatment method for steel
GB2328953A (en) A process for hardening high alloy steels
Kunst Improving corrosion and wear resistance by salt bath nitrocarburizing plus oxidizing in automated facilities
US1937629A (en) Black finishing metal articles
JP7178832B2 (en) Method for manufacturing surface hardening material
KR101119498B1 (en) Method for Manufacturing High Corrosion Resistant Steel Materials and Components
WO2002053793A1 (en) Duplex process of diffusion forming of hard carbide layers on metallic materials
CN118241149A (en) 42CrMo alloy surface nitriding method
Berns et al. Materials for surface layer treatments
FUNATANI The Heat Treating Global Challenge Heat Treatment Technology Today and for Future
KR20030053153A (en) Method for manufacturing hot rolled steel sheet with good fatigue resistance and corrosion resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030623

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees