JP3454957B2 - Alumina sintered body - Google Patents

Alumina sintered body

Info

Publication number
JP3454957B2
JP3454957B2 JP03979395A JP3979395A JP3454957B2 JP 3454957 B2 JP3454957 B2 JP 3454957B2 JP 03979395 A JP03979395 A JP 03979395A JP 3979395 A JP3979395 A JP 3979395A JP 3454957 B2 JP3454957 B2 JP 3454957B2
Authority
JP
Japan
Prior art keywords
alumina
sintered body
dielectric loss
less
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03979395A
Other languages
Japanese (ja)
Other versions
JPH08235933A (en
Inventor
修三 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12562841&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3454957(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03979395A priority Critical patent/JP3454957B2/en
Publication of JPH08235933A publication Critical patent/JPH08235933A/en
Application granted granted Critical
Publication of JP3454957B2 publication Critical patent/JP3454957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、アルミナ質焼結体に関
するものであり、特に、例えば、通信用MIC基板やM
ICパッケージ、マイクロ波コンデンサ、マイクロ波通
信装置用部品、高エネルギー粒子加速装置のマイクロ波
透過窓等に用いることができる高周波低損失性のアルミ
ナ質焼結体に関する。 【0002】 【従来技術】従来、例えば、通信用MIC基板やMIC
パッケージ、マイクロ波コンデンサ、マイクロ波通信用
装置用部品、高エネルギー粒子加速装置のマイクロ波透
過窓に用いられるアルミナ質焼結体では、誘電損失は1
0GHz程度のマイクロ波帯において1×10-4以下で
あることが求められる。 【0003】このようなアルミナ質焼結体としては、従
来、誘電損失を1×10-4以下にするために、不純物の
含有量を元素基準のppm単位で、Siを80ppm以
下、Mgを60ppm以下、Si/Mgを1〜5、かつ
他の金属やアルカリ成分等を総量70ppm以下とした
アルミナ質焼結体が知られている(特開平1−2139
10号公報)。 【0004】また、特開平4−356922号公報で
は、マイクロ波透過窓として、マイクロ波を透過させる
性質を持たせるため、含有しているアルカリ金属(Na
2 O、K2 O)の総量を150ppm以下に抑制し、マ
イクロ波帯の誘電損失を1×10-3以下としたアルミナ
質焼結体が開示されている。 【0005】 【発明が解決しようとする問題点】一般に、アルミナ質
焼結体の誘電損失の増加に粒界相のガラス質が大きく寄
与していると言われている。このため、低損失磁器を得
るためには、粒界相の生成を制御する必要がある。一般
に粒界相の生成を極力さける目的で、生成原因となる不
純物を避けるために、高純度の原料を用いて不純物の総
量を規制している。 【0006】その中でも、ガラス相を形成しやすいアル
カリ成分は極力避ける必要がある。 【0007】しかしながら、実際には高純度アルミナ原
料(純度99.999%程度)を用いても、必ずしも誘
電損失が1×10-4以下にならないという問題があっ
た。 【0008】また、特開平1−213910号公報に開
示されるアルミナ質焼結体では、アルカリ金属酸化物以
外の不純物含有量も減少させ、全体的に磁器を高純度化
させる必要があるため、生産性が低下するという問題が
あった。さらに焼成温度が高くなりがちであった。 【0009】さらに、特開平4−356922号公報に
開示されるアルミナ質焼結体では、低誘電損失化させる
ためアルカリ金属(Na2 O、K2 O)総量を抑制して
いるが、この場合でも必ずしも1×10-4以下の誘電損
失を達成できるとは限らないという問題があった。 【0010】本発明は、高純度アルミナ原料を用いるこ
となく、誘電損失を確実に1×10-4以下とすることが
できるとともに、生産性および焼結性を向上することが
できるアルミナ質焼結体を提供することを目的とする。 【0011】 【問題点を解決するための手段】本発明者は、上記問題
を解決すべく鋭意検討した結果、アルミナ質焼結体中に
生成する粒界相には様々な結晶相があり、そのすべてが
誘電損失を増加させているわけではなく、誘電損失増加
の原因としてはNa含有量だけでなく、粒界相中の析出
結晶相のうちCaO・6Al2 3 の存在も、アルミナ
質焼結体の誘電損失を増加させていることを見出した。
また、Caはアルミナに殆ど固溶せず、粒界にCaO・
6Al2 3 として析出するため、アルミナ質焼結体の
誘電損失を低下させるためには、Ca量を減少させ、粒
界相中におけるCaO・6Al2 3 の析出量を少なく
すれば良いことを見出した。さらに、MgOは、微量添
加(0.03〜10重量%)で粒界にMgAl2 4
生成し、アルミナの焼結性を促進する効果があることが
知られている。しかし、CaOを添加せず、粒界にCa
O・6Al2 3 が生成しないと、緻密化が阻害され、
焼成温度が高くなり生産上好ましくない。このため、ア
ルミナ焼結体の粒界相中にMgAl2 4 とCaO・6
Al2 3 を析出させるとともに、Na含有量を一定以
下に抑制することにより、アルミナ質焼結体の誘電損失
を確実に1×10-4以下とすることができるとともに、
生産性および焼結性を向上することができることを見出
し、本発明に至った。 【0012】即ち、本発明のアルミナ質焼結体は、主成
分としてのアルミナに、Na含有量がNa2O換算で7
0〜100ppm、CaがCaO換算で0.05〜0.
5重量%、MgがMgO換算で0.03〜10重量%の
割合で含有し、かつ、粒界相をX線回折測定した場合
に、CaO・6Al23とMgAl24のピークが存在
するとともに、測定周波数14GHzにおける誘電損失
tanδが1×10-4以下であることを特徴とすること
を特徴とするものである。 【0013】本発明のアルミナ質焼結体では、Na含有
量をNa2O換算で100ppm以下としたのは、Na
含有量がNa2O換算で100ppmよりも大きくなる
と、誘電損失が1×10-4よりも大きくなるからであ
る。Na含有量は少ない方が良く、Naを含む結晶相の
ピークは、X線回折測定ではピークが実質的に存在しな
いことが望ましいが、本発明によれば、Na量が70p
pm以上であっても誘電損失を低減することができる。 【0014】また、CaをCaO換算で0.5重量%以
下としたのは、0.5重量%よりも多い場合にはCaO
・6Al23の析出量が多く、誘電損失が1×10-4
りも大きくなるからである。CaはCaO換算で0.0
5〜0.5重量%とする。 【0015】さらに、MgをMgO換算で0.03重量
%以上としたのは、0.03重量%よりも少ない場合に
は焼成温度が高くなり、誘電損失が1×10-4以上とな
るからである。MgはMgO換算で0.03〜10重量
%であることが誘電損失の点から必要である。 【0016】そして、粒界相をX線回折測定した場合
に、CaO・6Al2 3 とMgAl2 4 のピークを
存在させた理由は、上記したように誘電損失を1×10
-4以下にし、さらにアルミナ質焼結体の焼結性を向上す
るためである。CaO・6Al2 3 が多いと誘電損失
が高くなるため、なるべく少なくする必要がある。X線
回折測は、例えば、波長λ=1.5418ÅのCuKα
線により行う。 【0017】本発明のアルミナ質焼結体は、例えば、高
純度アルミナ粉末にMg(OH)2粉末およびCaCO
3 粉末を所定量添加し、イソプロピルアルコール(IP
A)と混合し、アルミナボールで粉砕混合する。混合後
のスラリーを乾燥し、仮焼して得られた粉末を、例え
ば、金型プレスで成形し、焼結助剤によっても異なる
が、例えば、大気中において1500〜1600℃で
0.5〜4時間焼成することにより、本発明のアルミナ
質焼結体が得られる。 【0018】 【作用】本発明のアルミナ質焼結体では、Na含有量が
Na2O換算で70〜100ppmであっても、Caを
CaO換算で0.05〜0.5重量%、MgをMgO換
算で0.03〜10重量%とし、粒界相にCaO・6A
23とMgAl24を存在させることにより、焼結体
の誘電損失を1×10-4以下とすることが可能となる。 【0019】また、本発明のアルミナ質焼結体では、高
純度のアルミナ原料を用いなくてもよく、アルミナ純度
99.9%程度の汎用原料を用いても1×10-4以下の
誘電損失が得られるため、適切な焼結助剤を用いて焼成
温度を低下させることが可能となり、焼結性および生産
性を向上することができる。 【0020】 【実施例】Na2 O含有量の異なるアルミナ原料(純度
99.9%)と、CaCO3 及びMg(OH)2 を、表
1の組成となるように秤量し、この混合粉末を、純度9
9.9%のアルミナボール、イソプロピルアルコール
(IPA)と共に1リットルポリポットに投入し、42
時間回転ミル台にて混合した。混合後のスラリーにバイ
ンダーとしてパラフィンワックスを6重量%加え混合攪
拌した。このスラリーを80℃大気中にて乾燥し、評価
粉末得た。尚、表1では、CaCO3 はCaOに換算
し、また、Mg(OH)2 はMgOに換算して記載し
た。 【0021】この粉末を金型プレスにて1000kg/
cm2 で直径12mm、厚み8mmに成形した。成形体
は、大気中において400℃で2時間脱脂を行い、その
後、表1に示す焼成温度で2時間保持して焼成した。焼
結体は、直径10mm、厚み5mmに加工研磨した。こ
の試料の高周波誘電損失を測定周波数14GHzで測定
した。また、波長λ=1.5418ÅのCuKα線によ
るX線回折測により試料の結晶相を同定した。これらの
結果を表1に示す。 【0022】 【表1】【0023】この表1から、粒界相中にCaO・6Al
2 3 の他に、MgAl2 4 が析出した本発明の試料
については、1×10-4以下の低誘電損失を示すことが
判る(試料No.2〜5,8〜11)。また、本発明の試
料では、焼成温度が1600℃以下となっており、従来
よりも低温で焼成できることが判る。さらに、CaOの
添加量が増加するにしたがって誘電損失が増加し、Mg
O添加量が増加するに伴い焼成温度が低下することが判
る。 【0024】 【発明の効果】以上のように、本発明のアルミナ質焼結
体ではNa含有量をNa2 O換算で100ppm以下と
し、CaおよびMgを所定量含有させ、さらに、粒界相
にCaO・6Al2 3 とMgAl2 4 を存在させる
ことにより、焼結体の誘電損失を確実に1×10-4以下
とすることができるとともに、高純度のアルミナ原料を
用いなくても、純度99.9%程度の汎用原料を用いて
も1×10-4以下の誘電損失を得ることができるため、
焼結性および生産性を向上することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina sintered body, and more particularly to, for example, a communication MIC substrate and an MMIC.
The present invention relates to a high-frequency low-loss alumina sintered body that can be used for an IC package, a microwave capacitor, a component for a microwave communication device, a microwave transmission window of a high energy particle accelerator, and the like. 2. Description of the Related Art Conventionally, for example, a communication MIC board or MIC
The dielectric loss is 1 in the alumina sintered body used for the package, the microwave capacitor, the component for the microwave communication device, and the microwave transmission window of the high energy particle accelerator.
It is required to be 1 × 10 −4 or less in a microwave band of about 0 GHz. Conventionally, such an alumina-based sintered body has been designed so that the content of impurities is 80 ppm or less of Si and 60 ppm of Mg in terms of elemental ppm in order to reduce the dielectric loss to 1 × 10 −4 or less. Hereinafter, an alumina sintered body in which the content of Si / Mg is 1 to 5 and the total amount of other metals and alkali components is 70 ppm or less is known (Japanese Patent Laid-Open No. 1-2139).
No. 10). In Japanese Patent Application Laid-Open No. 4-356922, an alkali metal (Na) is contained as a microwave transmitting window in order to have a property of transmitting microwaves.
An alumina sintered body is disclosed in which the total amount of 2 O, K 2 O) is suppressed to 150 ppm or less and the dielectric loss in the microwave band is 1 × 10 −3 or less. [0005] Generally, it is said that the glassiness of the grain boundary phase greatly contributes to the increase in the dielectric loss of the alumina-based sintered body. Therefore, in order to obtain low-loss porcelain, it is necessary to control the generation of the grain boundary phase. Generally, for the purpose of minimizing the generation of the grain boundary phase, a high-purity raw material is used to regulate the total amount of impurities in order to avoid impurities that cause the generation. [0006] Among them, it is necessary to avoid an alkali component which easily forms a glass phase as much as possible. However, there is a problem that the dielectric loss does not always become 1 × 10 −4 or less even when a high-purity alumina raw material (purity of about 99.999%) is actually used. Further, in the alumina-based sintered body disclosed in Japanese Patent Application Laid-Open No. 1-213910, it is necessary to reduce the content of impurities other than the alkali metal oxide and to make the porcelain highly pure as a whole. There was a problem that productivity fell. Furthermore, the firing temperature tends to be high. Further, in the alumina-based sintered body disclosed in Japanese Patent Application Laid-Open No. 4-356922, the total amount of alkali metals (Na 2 O, K 2 O) is suppressed in order to reduce the dielectric loss. However, there is a problem that a dielectric loss of 1 × 10 −4 or less cannot always be achieved. According to the present invention, there is provided an alumina-based sintering method capable of reliably reducing dielectric loss to 1 × 10 -4 or less without using a high-purity alumina raw material and improving productivity and sinterability. The purpose is to provide the body. The present inventors have conducted intensive studies to solve the above problems, and as a result, there are various crystal phases in the grain boundary phase formed in the alumina-based sintered body. all are not necessarily have to increase the dielectric loss, the causes of the dielectric loss increases not only the Na content, existence of CaO · 6Al 2 O 3 of the precipitated crystal phases of grain boundary phase, aluminous It was found that the dielectric loss of the sintered body was increased.
In addition, Ca hardly dissolves in alumina and CaO.
Since it precipitates as 6Al 2 O 3 , the dielectric loss of the alumina-based sintered body can be reduced by reducing the amount of Ca and reducing the amount of CaO · 6Al 2 O 3 in the grain boundary phase. Was found. Furthermore, it is known that MgO generates MgAl 2 O 4 at the grain boundary when added in a small amount (0.03 to 10% by weight), and has an effect of promoting sinterability of alumina. However, without adding CaO, Ca
If O.6Al 2 O 3 is not generated, densification is hindered,
The firing temperature is increased, which is not preferable in production. Therefore, MgAl 2 O 4 and CaO · 6 are contained in the grain boundary phase of the alumina sintered body.
By precipitating Al 2 O 3 and suppressing the Na content to a certain level or less, the dielectric loss of the alumina-based sintered body can be reliably reduced to 1 × 10 −4 or less,
The present inventors have found that productivity and sinterability can be improved, and have reached the present invention. That is, in the alumina sintered body of the present invention, the alumina as a main component has a Na content of 7 in terms of Na 2 O.
0-100 ppm, Ca is 0.05-0.
5 wt%, Mg is contained in a proportion of 0.03 to 10 wt% in terms of MgO, and, if the grain boundary phase were measured X-ray diffraction peak of CaO · 6Al 2 O 3 and MgAl 2 O 4 is And a dielectric loss tan δ at a measurement frequency of 14 GHz is 1 × 10 −4 or less. In the alumina-based sintered body of the present invention, the Na content is set to 100 ppm or less in terms of Na 2 O because Na
If the content is greater than 100 ppm in terms of Na 2 O, the dielectric loss will be greater than 1 × 10 −4 . It is preferable that the Na content is small, and it is desirable that the peak of the Na-containing crystal phase has substantially no peak in the X-ray diffraction measurement.
Even if it is not less than pm, the dielectric loss can be reduced. The reason why the content of Ca is set to 0.5% by weight or less in terms of CaO is that if the content is more than 0.5% by weight, CaO
This is because the amount of 6Al 2 O 3 deposited is large, and the dielectric loss is larger than 1 × 10 −4 . Ca is 0.0 in CaO conversion
5 to 0.5% by weight. Further, the reason why Mg is made 0.03% by weight or more in terms of MgO is that if less than 0.03% by weight, the firing temperature becomes high and the dielectric loss becomes 1 × 10 -4 or more. It is. Mg is required to be 0.03 to 10% by weight in terms of MgO from the viewpoint of dielectric loss. When the grain boundary phase was measured by X-ray diffraction, the peaks of CaO.6Al 2 O 3 and MgAl 2 O 4 were present because the dielectric loss was 1 × 10
-4 or less to further improve the sinterability of the alumina-based sintered body. And since the dielectric loss is high CaO · 6Al 2 O 3 is large, it is necessary to as small as possible. X-ray diffraction measurement is performed, for example, using CuKα having a wavelength λ = 1.5418 °.
Perform by line. The alumina-based sintered body of the present invention is obtained, for example, by adding Mg (OH) 2 powder and CaCO 2 to high-purity alumina powder.
3 Add a predetermined amount of powder and add isopropyl alcohol (IP
A) and pulverized and mixed with alumina balls. The mixed slurry is dried, and the powder obtained by calcination is formed by, for example, a die press, and varies depending on the sintering aid. By calcining for 4 hours, the alumina sintered body of the present invention is obtained. In the alumina-based sintered body of the present invention, even if the Na content is 70 to 100 ppm in terms of Na 2 O, 0.05 to 0.5% by weight of Ca in terms of CaO and Mg 0.03 to 10% by weight in terms of MgO, and CaO.6A
The presence of l 2 O 3 and MgAl 2 O 4 makes it possible to reduce the dielectric loss of the sintered body to 1 × 10 −4 or less. Further, in the alumina sintered body of the present invention, it is not necessary to use a high-purity alumina raw material, and even if a general-purpose raw material having an alumina purity of about 99.9% is used, a dielectric loss of 1 × 10 −4 or less is used. Is obtained, the firing temperature can be lowered by using an appropriate sintering aid, and sinterability and productivity can be improved. EXAMPLE Alumina raw materials (purity 99.9%) having different Na 2 O contents, CaCO 3 and Mg (OH) 2 were weighed so as to have the composition shown in Table 1, and this mixed powder was weighed. , Purity 9
Put into a 1 liter polypot with 9.9% alumina balls and isopropyl alcohol (IPA),
The mixture was mixed on a rotary mill table for an hour. 6% by weight of paraffin wax was added as a binder to the mixed slurry, followed by mixing and stirring. This slurry was dried in the air at 80 ° C. to obtain an evaluation powder. In Table 1, CaCO 3 is converted to CaO, and Mg (OH) 2 is converted to MgO. This powder was pressed at 1000 kg /
It was molded to a diameter of 12 mm and a thickness of 8 mm in cm 2 . The molded body was degreased in the air at 400 ° C. for 2 hours, and then fired while maintaining the firing temperature shown in Table 1 for 2 hours. The sintered body was processed and polished to a diameter of 10 mm and a thickness of 5 mm. The high-frequency dielectric loss of this sample was measured at a measurement frequency of 14 GHz. Further, the crystal phase of the sample was identified by X-ray diffraction measurement using CuKα radiation having a wavelength λ = 1.5418 °. Table 1 shows the results. [Table 1] From Table 1, it can be seen that CaO.6Al is contained in the grain boundary phase.
It can be seen that the sample of the present invention, on which MgAl 2 O 4 was precipitated in addition to 2 O 3 , exhibited a low dielectric loss of 1 × 10 −4 or less (samples No. 2 to 5, 8 to 11). Further, in the sample of the present invention, the firing temperature is 1600 ° C. or lower, which indicates that firing can be performed at a lower temperature than in the past. Furthermore, as the addition amount of CaO increases, the dielectric loss increases, and Mg increases.
It can be seen that the firing temperature decreases as the amount of O added increases. As described above, in the alumina-based sintered body of the present invention, the Na content is reduced to 100 ppm or less in terms of Na 2 O, Ca and Mg are contained in predetermined amounts, and By the presence of CaO.6Al 2 O 3 and MgAl 2 O 4 , the dielectric loss of the sintered body can be reliably reduced to 1 × 10 −4 or less, and without using a high-purity alumina raw material. Even if a general-purpose material having a purity of about 99.9% is used, a dielectric loss of 1 × 10 −4 or less can be obtained.
Sinterability and productivity can be improved.

Claims (1)

(57)【特許請求の範囲】 【請求項1】主成分としてのアルミナに、Na含有量が
Na2O換算で70〜100ppm、CaがCaO換算
で0.05〜0.5重量%、MgがMgO換算で0.0
3〜10重量%の割合で含有し、かつ、粒界相をX線回
折測定した場合に、CaO・6Al23とMgAl24
のピークが存在するとともに、測定周波数14GHzに
おける誘電損失tanδが1×10-4以下であることを
特徴とすることを特徴とするアルミナ質焼結体。
(57) [Claims 1] An alumina as a main component has a Na content of 70 to 100 ppm in terms of Na 2 O, Ca is 0.05 to 0.5% by weight in terms of CaO, Mg Is 0.0 in MgO conversion
In a proportion of 3 to 10 wt%, and the grain boundary phase when measured X-ray diffraction, CaO · 6Al 2 O 3 and MgAl 2 O 4
Characterized in that the dielectric loss tan δ at a measurement frequency of 14 GHz is 1 × 10 −4 or less.
JP03979395A 1995-02-28 1995-02-28 Alumina sintered body Expired - Fee Related JP3454957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03979395A JP3454957B2 (en) 1995-02-28 1995-02-28 Alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03979395A JP3454957B2 (en) 1995-02-28 1995-02-28 Alumina sintered body

Publications (2)

Publication Number Publication Date
JPH08235933A JPH08235933A (en) 1996-09-13
JP3454957B2 true JP3454957B2 (en) 2003-10-06

Family

ID=12562841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03979395A Expired - Fee Related JP3454957B2 (en) 1995-02-28 1995-02-28 Alumina sintered body

Country Status (1)

Country Link
JP (1) JP3454957B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530380B2 (en) * 1999-11-29 2010-08-25 日本特殊陶業株式会社 Spark plug insulator and spark plug including the same
JP4762168B2 (en) * 2006-02-24 2011-08-31 京セラ株式会社 Alumina sintered body, member for processing apparatus using the same, and processing apparatus
US8247337B2 (en) 2007-11-28 2012-08-21 Kyocera Corporation Alumina sintered article
WO2009069770A1 (en) * 2007-11-28 2009-06-04 Kyocera Corporation Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator
JP6352686B2 (en) * 2014-01-30 2018-07-04 京セラ株式会社 Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member
JP6462449B2 (en) * 2015-03-26 2019-01-30 京セラ株式会社 High-frequency window member, semiconductor manufacturing device member, and flat panel display (FPD) manufacturing device member

Also Published As

Publication number Publication date
JPH08235933A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
CN111470864A (en) Silicon-based temperature-stable microwave dielectric ceramic material and preparation method thereof
JP3454957B2 (en) Alumina sintered body
Varghese et al. Effect of glass fillers in Cu2ZnNb2O8 ceramics for advanced microwave applications
JPH08143358A (en) Aluminous sintered compact
JP5481781B2 (en) Dielectric porcelain
JPH03223156A (en) Production of sintered material of mgo-based beta"-alumina
JP5170522B2 (en) Dielectric porcelain composition
JP3220360B2 (en) Alumina porcelain composition and method for producing the same
JPH1017367A (en) Aluminum nitride sintered compact and its production
JP3595090B2 (en) Dielectric porcelain composition
JPH0686291B2 (en) Spinel powder and method for producing the same
JP3339989B2 (en) Low dielectric loss material
JP3311928B2 (en) Alumina sintered body for high frequency
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP2005239446A (en) Porcelain composition and its manufacturing method
JP3404220B2 (en) Dielectric porcelain composition
JP3377915B2 (en) Dielectric porcelain composition and electronic component
JPH0952760A (en) Dielectric ceramic composition
JP3523413B2 (en) Dielectric porcelain composition
JP3215004B2 (en) Dielectric porcelain composition
JP3699598B2 (en) Dielectric porcelain composition
JP3777075B2 (en) Dielectric porcelain
JP3101968B2 (en) Dielectric porcelain composition
JP3439959B2 (en) Dielectric porcelain composition
JP3393764B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees