JP3452314B2 - Shape measuring instrument - Google Patents

Shape measuring instrument

Info

Publication number
JP3452314B2
JP3452314B2 JP2001324119A JP2001324119A JP3452314B2 JP 3452314 B2 JP3452314 B2 JP 3452314B2 JP 2001324119 A JP2001324119 A JP 2001324119A JP 2001324119 A JP2001324119 A JP 2001324119A JP 3452314 B2 JP3452314 B2 JP 3452314B2
Authority
JP
Japan
Prior art keywords
voltage
cantilever
measured
probe
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001324119A
Other languages
Japanese (ja)
Other versions
JP2002195927A (en
Inventor
淳一 高橋
元美 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001324119A priority Critical patent/JP3452314B2/en
Publication of JP2002195927A publication Critical patent/JP2002195927A/en
Application granted granted Critical
Publication of JP3452314B2 publication Critical patent/JP3452314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真装置にお
ける感光体ドラム表面の電位分布測定、トナー形状測
定、トナー帯電分布測定に用いられる表面電位計及び形
状測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface potential meter and a shape measuring instrument used for measuring a potential distribution on a surface of a photosensitive drum, a toner shape, a toner charge distribution in an electrophotographic apparatus.

【0002】[0002]

【従来の技術】従来における表面電位計及び形状測定器
としては、例えば、「走査型マクスウェル応力顕微鏡に
よる有機薄膜の表面電位の観察」なる名称で、走査型プ
ローブ顕微鏡システムセミナー、1992、12.10
に開示されているものがある。これを、今、図14に基
づいて説明する。試料1に対向してその上部には、先端
に探針2を有するカンチレバー3(片持ち梁)が配設さ
れている。このカンチレバー3には、交流電圧4(AC
sinωt)と、直流電圧5(VDC)とを重畳させた電
圧が印加される。交流電圧4の周波数ωは、カンチレバ
ー3の機械的共振周波数ω0 の1/6〜1/3の周波数
に設定されている。今、交流電圧4と試料1の表面電位
との間に電位差が生じると、静電引力が発生し、これに
よりカンチレバー3は振動する。この振動によりカンチ
レバー3の一面に取付けられたミラー6により反射され
たレーザ光aは、いわゆる「光テコ法」の原理により受
光素子7に検知され、この検知信号はプリアンプ8を介
して、ロックインアンプ9,10に送られる。この場
合、ロックインアンプ9では振動のω成分から直流電圧
5と表面電位との間の電位差を測定し、その電位差がな
くなるように直流電圧5を制御する。一方、ロックイン
アンプ10では振動の2ω成分から探針2の先端と試料
1の表面との間の距離を測定し、その距離を一定に保つ
ようにZ軸ピエゾコントローラ11によりピエゾアクチ
ュエータ12をZ軸方向に駆動させる。このピエゾアク
チュエータ12上には試料台13が取付けられており、
これにより試料台13に載置された前記試料1表面と探
針2との間で距離の調整がなされる。また、ピエゾアク
チュエータ12には、コントローラ14が接続されてお
り、X,Y軸方向の移動調整もなされる。そして、この
ような各種の制御信号をもとに、表面電位と表面形状を
同時にかつ独立して測定することができる。
2. Description of the Related Art As a conventional surface potential meter and shape measuring instrument, for example, under the name of "observation of surface potential of organic thin film by scanning Maxwell stress microscope", scanning probe microscope system seminar, 1992, 12.10.
Are disclosed in. This will now be described with reference to FIG. A cantilever 3 (cantilever) having a probe 2 at its tip is disposed above the sample 1 so as to face the sample 1. This cantilever 3 has an AC voltage 4 (AC
sin ωt) and DC voltage 5 (V DC ) are superimposed and applied. The frequency ω of the AC voltage 4 is set to 1/6 to 1/3 of the mechanical resonance frequency ω 0 of the cantilever 3. Now, when a potential difference occurs between the AC voltage 4 and the surface potential of the sample 1, an electrostatic attractive force is generated, which causes the cantilever 3 to vibrate. The laser beam a reflected by the mirror 6 attached to one surface of the cantilever 3 due to this vibration is detected by the light receiving element 7 by the principle of the so-called “optical lever method”, and this detection signal is locked in via the preamplifier 8. It is sent to the amplifiers 9 and 10. In this case, the lock-in amplifier 9 measures the potential difference between the DC voltage 5 and the surface potential from the ω component of vibration, and controls the DC voltage 5 so that the potential difference disappears. On the other hand, in the lock-in amplifier 10, the distance between the tip of the probe 2 and the surface of the sample 1 is measured from the 2ω component of vibration, and the Z-axis piezo controller 11 causes the piezo actuator 12 to move the Z actuator so that the distance is kept constant. Drive in the axial direction. A sample table 13 is attached on the piezo actuator 12,
As a result, the distance between the surface of the sample 1 placed on the sample table 13 and the probe 2 is adjusted. A controller 14 is connected to the piezo actuator 12, and movement adjustment in the X and Y axis directions is also performed. The surface potential and the surface shape can be measured simultaneously and independently based on such various control signals.

【0003】[0003]

【発明が解決しようとする課題】前述したような従来例
においては、カンチレバー3の機械的共振周波数ω0
1/6〜1/3の周波数ω(=ω0/6〜ω0/3)の交
流電圧4を探針2に印加し、試料1表面と探針2との間
の静電引力によりカンチレバー3を振動させている。こ
のような振動は、ロックインアンプ9,10により振動
周波数に同期して振幅に比例した直流電圧に増幅変換さ
れる。この場合、ロックインアンプ9,10は、カンチ
レバー3の振動を表す交流信号を同期検波し、図示しな
いローパスフィルタにより平滑化して直流化するが、そ
のローパスフィルタの時定数は振動周期T(=2π/
ω)の100倍以上にしないと、直流化された信号の平
滑度が悪くなりS/Nが悪くなる。従って、ωが小さく
なると、周期Tが大きくなり、図14のフィードバック
ループ中の遅れ要素が大きくなり、これにより帰還の応
答速度が遅くなり、測定時間が多くかかることになる。
[SUMMARY OF THE INVENTION In the conventional example as described above, the frequency ω (= ω 0 / 6~ω 0 /3) 1 / 6-1 / 3 of the mechanical resonance frequency omega 0 of the cantilever 3 Is applied to the probe 2, and the cantilever 3 is vibrated by the electrostatic attraction between the surface of the sample 1 and the probe 2. Such a vibration is amplified and converted by the lock-in amplifiers 9 and 10 into a DC voltage that is proportional to the amplitude in synchronization with the vibration frequency. In this case, the lock-in amplifiers 9 and 10 synchronously detect an AC signal representing the vibration of the cantilever 3 and smooth it by a low-pass filter (not shown) to convert it into a direct current. The time constant of the low-pass filter is the vibration cycle T (= 2π). /
If it is not 100 times or more than ω), the smoothness of the signal converted to DC becomes poor and the S / N becomes poor. Therefore, when ω becomes small, the period T becomes large and the delay element in the feedback loop of FIG. 14 becomes large, which slows the response speed of feedback and takes a long time for measurement.

【0004】また、探針2と試料1の表面との間の電位
差をV、距離をdとすると、両者間に働く静電引力F
は、F∝(V2/d2)で表され、交流電圧振幅をVAC
すると、F∝(VAC 2/d2)で表される。探針2に働く
力Fとその変位xとの関係は、カンチレバー3が板バネ
と考えられることから、F=Kx(K:バネ定数)で表
される。ここで、プリアンプ8の出力電圧Vsig はxに
比例するため、 Vsig ∝(VAC 2/d2) となる。従って、Vsig の値を大きくするには、交流電
圧振幅VACを大きくするか、測定する際の距離dを短く
する必要がある。VACを大きくすると、探針2と試料1
の表面との間に放電が生じ易くなり、また、dを小さく
すると、放電の可能性があがり、試料1の表面の凹凸に
探針2の先端が衝突しやすくなる。
When the potential difference between the probe 2 and the surface of the sample 1 is V and the distance is d, the electrostatic attractive force F acting between the two.
Is represented by Fα (V 2 / d 2) , when an AC voltage amplitude and V AC, represented by Fα (V AC 2 / d 2 ). The relationship between the force F acting on the probe 2 and its displacement x is expressed by F = Kx (K: spring constant) because the cantilever 3 is considered to be a leaf spring. Here, the output voltage V sig of the preamplifier 8 is proportional to x, the V sig α (V AC 2 / d 2). Therefore, in order to increase the value of V sig , it is necessary to increase the AC voltage amplitude V AC or shorten the distance d at the time of measurement. If V AC is increased, the probe 2 and the sample 1
Discharge is more likely to occur between the surface of the sample 1 and the smaller d, the possibility of discharge increases, and the tip of the probe 2 is likely to collide with the irregularities on the surface of the sample 1.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明で
は、測定物に対向配置された導電性探針を片持ち梁の先
端に保持させ、前記測定物と前記導電性探針との間に作
用する静電引力により前記片持ち梁を変形させ、この片
持ち梁の変形により前記測定物と前記探針との間に作用
する静電引力を検出して前記測定物の形状を測定するよ
うにした形状測定器において、前記片持ち梁の共振周波
数の2分の1の周波数の交流電圧を前記導電性探針に印
加する探針印加制御手段を設け、前記測定物と前記導電
性探針との間の距離を制御するアクチュエータを備えて
このアクチュエータを帰還制御することで前記交流電圧
による前記探針と前記測定物の間の静電引力により生じ
る前記片持ち梁の振動の振幅が一定値になるように前記
測定物と前記導電性探針との間の距離を制御する距離制
御手段を設け、前記アクチュエータの変位量を測定する
変位量測定手段を設けた。
According to a first aspect of the present invention, a conductive probe arranged to face an object to be measured is held at the tip of a cantilever so that the distance between the object to be measured and the conductive probe is increased. The cantilever is deformed by an electrostatic attractive force acting on, and the shape of the measured object is measured by detecting the electrostatic attractive force acting between the measuring object and the probe by the deformation of the cantilever. in such a manner a shape measuring instrument, the probe application control means for applying a first AC voltage frequency of half the resonance frequency of the cantilever to the conductive probe provided, the conductive and the measured
Equipped with an actuator that controls the distance to the sex probe
By performing feedback control of this actuator, the AC voltage
Caused by electrostatic attraction between the probe and the object
The vibration of the cantilever is
Distance control for controlling the distance between the object to be measured and the conductive probe
Control means to measure the displacement of the actuator
A displacement amount measuring means was provided.

【0006】請求項2記載の発明では、測定物に対向配
置された導電性探針を片持ち梁の先端に保持させ、前記
測定物と前記導電性探針との間に作用する静電引力によ
り前記片持ち梁を変形させ、この片持ち梁の変形により
前記測定物と前記探針との間に作用する静電引力を検出
して前記測定物の形状を測定するようにした形状測定器
において、前記片持ち梁の共振周波数の2分の1の周波
数と等しい周波数の2分の1の周波数の交流電圧を前記
導電性探針に印加する探針印加制御手段を設け、前記測
定物と前記導電性探針との間の距離を制御するアクチュ
エータを備えてこのアクチュエータを帰還制御すること
前記交流電圧による前記探針と前記測定物の間の静電
引力により生じる前記片持ち梁の振動の振幅が一定値に
なるように前記測定物と前記導電性探針との間の距離を
制御する距離制御手段を設け、前記アクチュエータの変
位量を測定する変位量測定手段を設けた。
According to the second aspect of the present invention, the conductive probe arranged to face the object to be measured is held at the tip of the cantilever, and the electrostatic attraction force acting between the object to be measured and the conductive probe. The shape measuring instrument configured to deform the cantilever by means of the deformation of the cantilever and detect the electrostatic attractive force acting between the object to be measured and the probe due to the deformation of the cantilever to measure the shape of the object to be measured. At half the resonance frequency of the cantilever
The number and the first AC voltage having a frequency of half the equal Shii frequency provided a probe applying control means for applying to said conductive probe, the measurement
Actuator that controls the distance between the fixed object and the conductive probe.
Feedback control of this actuator with an ETA
In the distance between the conductive probe and the measured object so that the amplitude of vibration of the cantilever caused by electrostatic attraction becomes a constant value between the probe and the measurement object by the alternating voltage the distance control means that controls provided, provided a displacement amount measuring means for measuring the displacement amount of the actuator.

【0007】請求項3記載の発明では、測定物に対向配
置された導電性探針を片持ち梁の先端に保持させ、前記
測定物と前記導電性探針との間に作用する静電引力によ
り前記片持ち梁を変形させ、この片持ち梁の変形により
前記測定物と前記探針との間に作用する静電引力を検出
して前記測定物の電位又は形状を測定するようにした形
状測定器において、前記片持ち梁の共振周波数又は前記
片持ち梁の共振周波数と等しい周波数の第1交流電圧と
前記片持ち梁の共振周波数の2分の1の周波数又は前記
片持ち梁の共振周波数と等しい周波数の2分の1の周波
数の第2交流電圧とを重畳させた電圧を前記導電性探針
に印加する探針印加制御手段を設け、前記第1交流電圧
による前記導電性探針と前記測定物の間の静電引力によ
り生じる前記片持ち梁の振動の振幅から前記測定物の電
位を測定する表面電位測定手段を設け、前記第2交流電
圧による前記導電性探針と前記測定物の間の静電引力に
より生じる前記片持ち梁の振動の振幅から前記測定物の
形状を測定する形状測定手段を設けた。
According to the third aspect of the present invention, the conductive probe arranged to face the object to be measured is held at the tip of the cantilever, and an electrostatic attractive force acting between the object to be measured and the conductive probe is applied. A shape that deforms the cantilever by means of which the electrostatic attraction acting between the object to be measured and the probe is detected by the deformation of the cantilever to measure the potential or shape of the object to be measured. in the measuring device, the resonant frequency or the said cantilever
1 of frequency or the half of the resonance frequency of the first alternating voltage of a resonance frequency and equal Shii frequency of the cantilever cantilever
The probe application control means for applying to said conductive probe a voltage obtained by superimposing the second alternating voltage of a frequency one-half of the resonance frequency and equal Shii frequency of the cantilever is provided, wherein the first alternating voltage The surface electric potential measuring means for measuring the electric potential of the object to be measured from the amplitude of the vibration of the cantilever generated by the electrostatic attraction between the conductive probe and the object to be measured. The shape measuring means is provided for measuring the shape of the object to be measured from the amplitude of vibration of the cantilever generated by the electrostatic attraction between the sex probe and the object to be measured.

【0008】請求項4記載の発明では、請求項3記載の
発明において、導電性探針に第1交流電圧と第2交流電
圧とに加えて直流電圧を重畳した電圧を印加する直流電
圧重畳探針印加制御手段と、前記第1交流電圧による前
記導電性探針と前記測定物の間の静電引力により生じる
前記片持ち梁の振動の振幅が零又は一定値になるように
前記直流電圧を可変させる電位制御手段と、前記直流電
圧の電位を測定する電位測定手段とを有するようにし
た。
According to a fourth aspect of the present invention, in the third aspect of the present invention, a DC voltage superposition probe for applying a voltage obtained by superposing a DC voltage to the conductive probe in addition to the first AC voltage and the second AC voltage. The DC voltage is applied so that the amplitude of the vibration of the cantilever beam caused by the electrostatic attraction between the conductive probe and the object to be measured by the first AC voltage is zero or a constant value. The potential control means for varying the potential and the potential measuring means for measuring the potential of the DC voltage are provided.

【0009】請求項5記載の発明では、請求項3記載の
発明において、第2交流電圧による導電性探針と前記測
定物の間の静電引力により生じる片持ち梁の振動の振幅
が一定値になるように前記測定物と前記導電性探針との
間の距離を制御するアクチュエータを備えた距離制御手
段と、前記アクチュエータの変位量を測定する変位量測
定手段とを有するようにした。
According to a fifth aspect of the invention, in the third aspect of the invention, the amplitude of vibration of the cantilever generated by the electrostatic attraction between the conductive probe and the object to be measured by the second AC voltage is a constant value. As described above, a distance control means having an actuator for controlling the distance between the measured object and the conductive probe and a displacement amount measuring means for measuring the displacement amount of the actuator are provided.

【0010】請求項6記載の発明では、請求項3記載の
発明において、導電性探針に第1交流電圧と第2交流電
圧とに加えて直流電圧を重畳した電圧を印加する直流電
圧重畳探針印加制御手段と、前記第1交流電圧による前
記導電性探針と前記測定物の間の静電引力により生じる
前記片持ち梁の振動の振幅が零又は一定値になるように
前記直流電圧を可変させる電位制御手段と、前記直流電
圧の電位を測定する電位測定手段と、第2交流電圧によ
る導電性探針と前記測定物の間の静電引力により生じる
片持ち梁の振動の振幅が一定値になるように前記測定物
と前記導電性探針との間の距離を制御するアクチュエー
タを備えた距離制御手段と、前記アクチュエータの変位
量を測定する変位量測定手段とを有するようにした。
According to a sixth aspect of the present invention, in the third aspect of the present invention, a DC voltage superposition probe for applying a voltage obtained by superimposing a DC voltage in addition to the first AC voltage and the second AC voltage to the conductive probe. The DC voltage is applied so that the amplitude of the vibration of the cantilever beam caused by the electrostatic attraction between the conductive probe and the object to be measured by the first AC voltage is zero or a constant value. The potential control means for varying the potential, the potential measuring means for measuring the potential of the DC voltage, and the amplitude of the vibration of the cantilever generated by the electrostatic attraction between the conductive probe and the object to be measured by the second AC voltage are constant. A distance control means having an actuator for controlling the distance between the object to be measured and the conductive probe so that the value becomes a value, and a displacement amount measuring means for measuring the displacement amount of the actuator are provided.

【0011】請求項7記載の発明では、請求項3,4,
5又は6記載の発明において、第2交流電圧により生じ
る片持ち梁の振動波形の位相から90°の位相差をもっ
て位相検波した信号により測定物の電位を測定する電位
測定手段と、第1交流電圧により生じる前記片持ち梁の
振動波形の位相から90°の位相差をもって位相検波し
た信号により前記測定物の形状を測定する形状測定手段
とを有するようにした。
According to the invention of claim 7, claims 3, 4,
In the invention described in 5 or 6, potential measuring means for measuring the potential of the object to be measured by a signal whose phase is detected with a phase difference of 90 ° from the phase of the vibration waveform of the cantilever generated by the second AC voltage, and the first AC voltage. And a shape measuring means for measuring the shape of the object to be measured by a signal phase-detected with a phase difference of 90 ° from the phase of the vibration waveform of the cantilever.

【0012】請求項8記載の発明では、請求項7記載の
発明において、第2交流電圧により生じる片持ち梁の振
動波形と第1交流電圧により生じる前記片持ち梁の振動
波形との位相差が90°になるように第2交流電圧と第
1交流電圧の間の位相差を決定する位相差決定手段を有
するようにした。
According to the invention of claim 8, in the invention of claim 7, the phase difference between the vibration waveform of the cantilever generated by the second AC voltage and the vibration waveform of the cantilever generated by the first AC voltage is The phase difference determining means for determining the phase difference between the second AC voltage and the first AC voltage is provided so as to be 90 °.

【0013】請求項9記載の発明では、請求項3,4,
5,6,7又は8記載の発明において、導電性探針に第
1交流電圧と第2交流電圧を交互に印加し、前記第1交
流電圧が印加されているときに測定物の電位を測定し、
第2交流電圧が印加されているときに前記測定物の形状
を測定する電位形状測定選択手段を有するようにした。
According to the invention of claim 9, claims 3, 4,
In the invention described in 5, 6, 7 or 8, the first alternating voltage and the second alternating voltage are alternately applied to the conductive probe, and the potential of the measurement object is measured when the first alternating voltage is applied. Then
A potential shape measurement selection means for measuring the shape of the object to be measured when the second AC voltage is applied is provided.

【0014】請求項10記載の発明では、請求項1,
2,3,4,5,6,7,8又は9記載の発明におい
て、導電性探針に印加する電圧を測定物の導電性基板に
印加し、その導電性探針の電位を基準電位とした。
According to the invention of claim 10, claim 1
In the invention described in 2, 3, 4, 5, 6, 7, 8 or 9, the voltage applied to the conductive probe is applied to the conductive substrate of the object to be measured, and the potential of the conductive probe is set as the reference potential. did.

【0015】請求項11記載の発明では、請求項1,
2,3,4,5,6,7,8又は9記載の発明におい
て、第1交流電圧と第2交流電圧と直流電圧のうち、い
ずれか2つを導電性探針に印加し、残りの1つを測定物
の導電性基板に印加する電圧印加制御手段を有するよう
にした。
According to the invention of claim 11, claim 1,
In the invention described in 2, 3, 4, 5, 6, 7, 8 or 9, any two of the first AC voltage, the second AC voltage and the DC voltage are applied to the conductive probe, and the remaining A voltage application control means for applying one to the conductive substrate of the object to be measured is provided.

【0016】請求項12記載の発明では、請求項1,
2,3,4,5,6,7,8又は9記載の発明におい
て、第1交流電圧と第2交流電圧と直流電圧のうち、い
ずれか2つを測定物の導電性基板に印加し、残りの1つ
を導電性探針に印加する電圧印加制御手段を有するよう
にした。
According to the invention of claim 12, claim 1,
In the invention described in 2, 3, 4, 5, 6, 7, 8 or 9, any two of the first AC voltage, the second AC voltage and the DC voltage are applied to the conductive substrate of the object to be measured, A voltage application control means for applying the remaining one to the conductive probe is provided.

【0017】請求項13記載の発明では、請求項3,
4,5,6,7,8,9,10,11又は12記載の発
明において、第2交流電圧の周波数を片持ち梁の共振周
波数の2倍の周波数又はこの共振周波数とほぼ等しい周
波数の2倍の周波数に設定した。
According to a thirteenth aspect of the present invention, the third and third aspects are provided.
In the invention described in 4, 5, 6, 7, 8, 9, 10, 11 or 12, the frequency of the second AC voltage is twice the frequency of the resonance frequency of the cantilever beam or 2 times the frequency substantially equal to this resonance frequency. It was set to double the frequency.

【0018】請求項1,2記載の発明においては、測定
物の表面形状を従来よりも高速にかつ高感度に測定する
ことが可能となる。
According to the first and second aspects of the invention, it becomes possible to measure the surface shape of the object to be measured at a higher speed and with higher sensitivity than in the past.

【0019】請求項3,4,5,6,7,8,11,1
2,13記載の発明においては、測定物の表面電位と表
面形状を従来よりも高速にかつ高感度に、しかも、同時
にかつ独立に測定することが可能となる。
Claims 3, 4, 5, 6, 7, 8, 11, 1
In the inventions described in Nos. 2 and 13, it becomes possible to measure the surface potential and the surface shape of the object to be measured faster and with higher sensitivity than before, and simultaneously and independently.

【0020】請求項7記載の発明においては、測定物の
表面電位と表面形状を従来よりも高速にかつ高感度に、
しかも、互いに干渉なく測定することが可能となる。
According to the seventh aspect of the present invention, the surface potential and surface shape of the object to be measured are faster and more sensitive than before.
Moreover, it is possible to perform measurement without interference with each other.

【0021】請求項8記載の発明においては、測定物の
表面電位と表面形状を従来よりも高速にかつ高感度に、
しかも、互いに干渉なく、最大の感度をもって測定する
ことが可能となる。
According to the present invention of claim 8, the surface potential and surface shape of the object to be measured are faster and more sensitive than before.
Moreover, it is possible to perform measurements with maximum sensitivity without mutual interference.

【0022】[0022]

【発明の実施の形態】本発明の参考例を図1〜図5に基
づいて説明する。まず、表面電位計の全体構成を図1に
基づいて述べる。試料台15上には測定物としての試料
16が設けられている。この試料16の上部には先端に
導電性探針17(以下、探針と呼ぶ)を有する片持ち梁
18が配置されており、この片持ち梁18はその一端部
が基台19に支持されてカンチレバーを構成している。
片持ち梁18の探針17が取付けられた面と反対側の面
にはミラー20が貼付けられている。半導体レーザ21
から出射されたレーザ光aは、いわゆる光テコの原理に
より、ミラー20面により反射され光検知器22に検出
される。この光検知器22はプリアンプ23を介してロ
ックインアンプ24と接続されている。このロックイン
アンプ24の後段には、直流電位制御手段としての積分
器25が接続されている。この積分器25は、交流電圧
による探針17と試料16の間の静電引力により生じる
片持ち梁18の振動の振幅が零又は一定値になるように
直流電圧を可変させる。積分器25の出力側のアースと
の間には、直流電圧の電位を測定する直流電位測定手段
としての電圧計26が接続されている。また、積分器2
5の出力側は加算器27の一方の入力端子に接続され、
この加算器27の出力側はパワーアンプ28に接続さ
れ、このパワーアンプ28は片持ち梁18と接続されて
いる。加算器27の他方の入力端子には正弦波交流電圧
源29が接続されている。この正弦波交流電圧源29
は、前記片持ち梁18の共振周波数又はこの共振周波数
とほぼ等しい周波数の交流電圧を有している。この場
合、前記加算器27と、前記パワーアンプ28と、前記
正弦波交流電圧源29は、前記片持ち梁18の共振周波
数又はこの共振周波数とほぼ等しい周波数の交流電圧に
直流電圧を重畳させた電圧を前記探針17に印加する直
流電圧重畳探針印加制御手段30を構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A reference example of the present invention will be described with reference to FIGS. First, the overall structure of the surface electrometer will be described with reference to FIG. A sample 16 as a measurement object is provided on the sample table 15. A cantilever 18 having a conductive probe 17 (hereinafter referred to as a probe) at its tip is arranged above the sample 16, and the cantilever 18 has one end supported by a base 19. Form a cantilever.
A mirror 20 is attached to the surface of the cantilever 18 opposite to the surface on which the probe 17 is attached. Semiconductor laser 21
The laser light a emitted from the mirror is reflected by the surface of the mirror 20 and detected by the photodetector 22 according to the so-called optical lever principle. The photodetector 22 is connected to a lock-in amplifier 24 via a preamplifier 23. An integrator 25 as a DC potential control means is connected to the latter stage of the lock-in amplifier 24. The integrator 25 varies the DC voltage so that the amplitude of vibration of the cantilever 18 generated by the electrostatic attraction between the probe 17 and the sample 16 due to the AC voltage becomes zero or a constant value. A voltmeter 26 as a DC potential measuring means for measuring the potential of the DC voltage is connected between the output side earth of the integrator 25 and the earth. Also, the integrator 2
The output side of 5 is connected to one input terminal of the adder 27,
The output side of the adder 27 is connected to the power amplifier 28, and the power amplifier 28 is connected to the cantilever 18. A sine wave AC voltage source 29 is connected to the other input terminal of the adder 27. This sine wave AC voltage source 29
Has an AC voltage having a resonance frequency of the cantilever 18 or a frequency substantially equal to this resonance frequency. In this case, the adder 27, the power amplifier 28, and the sine wave AC voltage source 29 superimpose a DC voltage on an AC voltage having a resonance frequency of the cantilever 18 or a frequency substantially equal to the resonance frequency. A DC voltage superposition probe application control means 30 for applying a voltage to the probe 17 is configured.

【0023】このような構成において、表面電位計の具
体的な動作について述べる。今、片持ち梁18の探針1
7と試料16の表面との間に電位差が生じ静電引力が作
用すると、片持ち梁18は振動する。これにより、光テ
コ法により片持ち梁18の振動をプリアンプ23の出力
Voとして検出する。そのVoは交流信号であり、ロッ
クインアンプ24において正弦波交流電圧源29の同期
信号(ω0)と同期して、直流電圧信号V1 に変換され
る。この場合、ロックインアンプ24の参照信号入力の
モードは、同期信号の周波数fに同期して増幅するモー
ドになっている。その後、直流電圧V1 は積分器25に
より積分されて反転増幅された電圧V2 となる。このV
2 と正弦波交流電圧源29の出力V3 とは加算器27に
加算され、これにより、直流電圧V2 に交流電圧V3
重畳した電圧V4 となる。この重畳された電圧V4 はゲ
インGをもつパワーアンプ28に入力されることによ
り、その出力はV5 =GV4 =G(V2+V3)となる。
この電圧V5 の値が探針17の電位となる。
A specific operation of the surface electrometer having such a structure will be described. Now, the cantilever 18 probe 1
When a potential difference is generated between the surface of the sample 7 and the surface of the sample 16, the cantilever 18 vibrates when an electrostatic attractive force acts. Thus, the vibration of the cantilever 18 is detected as the output Vo of the preamplifier 23 by the optical lever method. The Vo is an AC signal and is converted into a DC voltage signal V 1 in the lock-in amplifier 24 in synchronization with the synchronization signal (ω 0 ) of the sine wave AC voltage source 29. In this case, the reference signal input mode of the lock-in amplifier 24 is a mode for amplifying in synchronization with the frequency f of the synchronization signal. Thereafter, the DC voltage V 1 is integrated by the integrator 25 and becomes the inverted and amplified voltage V 2 . This V
2 and the output V 3 of the sine wave AC voltage source 29 are added to the adder 27, whereby a voltage V 4 is obtained by superimposing the AC voltage V 3 on the DC voltage V 2 . The superimposed voltage V 4 is input to the power amplifier 28 having a gain G, and the output becomes V 5 = GV 4 = G (V 2 + V 3 ).
The value of this voltage V 5 becomes the potential of the probe 17.

【0024】図2は、探針17の先端部と試料16の表
面との間の様子を模式的に描いたものである。今、探針
17の先端面を面積Sをもつ平板と考え、この平板が試
料16の表面に対して平行に対向しているものとする。
この場合、探針17の先端面と試料16との間の距離を
dとし、両者間の電位差をVとすると、両者間に働く力
Fは、
FIG. 2 schematically shows a state between the tip of the probe 17 and the surface of the sample 16. Now, assume that the tip surface of the probe 17 is a flat plate having an area S, and that this flat plate faces the surface of the sample 16 in parallel.
In this case, if the distance between the tip surface of the probe 17 and the sample 16 is d and the potential difference between them is V, the force F acting between them is

【0025】[0025]

【数1】 で表される。ただし、aは比例定数である。[Equation 1] It is represented by. However, a is a proportional constant.

【0026】また、図1において、試料表面の接地電位
(基準電位)に対する電位をVs、V5 の直流電圧分を
Vb(=GV2 )、V5 の交流電圧成分をVasinω
t(=GV3)とすると、(1)式において、V=Vb−
Vs+VA sinωtとなる。従って、力F(t)は、
Further, Vasinomega 1, the potential to ground potential of the sample surface (reference potential) Vs, the DC voltage of the V 5 Vb (= GV 2) , an AC voltage component of V 5
If t (= GV 3 ), then V = Vb− in the equation (1).
Vs + VA sin ωt. Therefore, the force F (t) is

【0027】[0027]

【数2】 となる。この(2)式より、[Equation 2] Becomes From this equation (2),

【0028】[0028]

【数3】 となる。[Equation 3] Becomes

【0029】ここで、図3を用いて、振動の基本的な動
作について考える。今、図1の片持ち梁18の探針17
にF(t)が加わった場合の振動は、固定端31に質量
mがバネkとダッシュポットCを介して接続され、質量
mに力F(t)が印加された場合の振動に近似すること
ができる。この振動は粘性減衰1自由度系の強制振動で
あり、
Here, the basic operation of vibration will be considered with reference to FIG. Now, the probe 17 of the cantilever 18 in FIG.
The vibration when F (t) is applied to is similar to the vibration when the mass m is connected to the fixed end 31 via the spring k and the dashpot C and the force F (t) is applied to the mass m. be able to. This vibration is forced vibration of viscous damping one degree of freedom system,

【0030】[0030]

【数4】 の微分方程式で表される。この(4)式は粘性減衰1自
由度系の強制振動を表し、右辺の項F(t)を強制項と
いう。力F(t)は一般に調和加振力の形式をとり、F
(t)=Fosinωtとなる。ただし、Foは時間に
無関係な定数である。もし、力F(t)が(3)式のよ
うに周期的であるが調和力でない時は、その周期(2π
/ω)で決まる周波数を基本波としてF(t)をフーリ
エ級数に展開する。すなわち、
[Equation 4] It is represented by the differential equation of. This equation (4) represents the forced vibration of the viscous damping one-degree-of-freedom system, and the term F (t) on the right side is called the forced term. The force F (t) generally takes the form of a harmonic excitation force, F
(T) = Fosin ωt. However, Fo is a constant unrelated to time. If the force F (t) is periodic as in equation (3) but is not a harmonic force, its period (2π
F (t) is expanded to a Fourier series with the frequency determined by / ω) as the fundamental wave. That is,

【0031】[0031]

【数5】 となる。この時、(4)式の特別解は(5)式の右辺の
各項が単独に(4)式の左辺の系に作用した、すなわち
図3の質量mに(5)式の右辺の各項の力が作用したと
して得られる多くの特別解の和となる。そこで、(4)
式の解は、
[Equation 5] Becomes At this time, the special solution of the equation (4) is that each term on the right side of the equation (5) independently acts on the system on the left side of the equation (4), that is, the mass m of FIG. It is the sum of many special solutions obtained as the force of terms acts. Therefore, (4)
The solution of the formula is

【0032】[0032]

【数6】 [Equation 6]

【0033】[0033]

【数7】 で与えられる強制力の振動のみの成分となる。また、F
osinωtによる振動の振幅の最大値は、
[Equation 7] It is the only component of the vibration of the forced force given by. Also, F
The maximum value of the vibration amplitude due to osin ωt is

【0034】[0034]

【数8】 [Equation 8]

【0035】[0035]

【数9】 となる。これは、周波数ωのときの定常振幅とFoによ
り生じるmの変位(たわみ)との比を示すものである。
図4及び図5は、種々のζについてのωとX/Xo及び
φの関係を示す。これにより、X/Xoが最大となる
時、図3の系は共振する。この時のωは、
[Equation 9] Becomes This shows the ratio between the steady amplitude at the frequency ω and the displacement (deflection) of m caused by Fo.
4 and 5 show the relationship between ω and X / Xo and φ for various ζ. This causes the system of FIG. 3 to resonate when X / Xo is maximized. Ω at this time is

【0036】[0036]

【数10】 で与えられる。この時、mの振動の位相は90°(=π
/2)の遅れとなる。
[Equation 10] Given in. At this time, the phase of the vibration of m is 90 ° (= π
/ 2) will be delayed.

【0037】以上のようなことから、次に(3)式で表
される力F(t)がmに加わった場合を考える。(3)
式をもう一度書き直すと、
From the above, consider the case where the force F (t) represented by the equation (3) is applied to m. (3)
If you rewrite the formula again,

【0038】[0038]

【数11】 [Equation 11]

【0039】となる。この(14)式で表される力F
(t)がmに加わった場合は、その(14)式の〜
項の力が単独に加わった場合の解を(7)式から求めて
加算すればよい。
It becomes Force F expressed by equation (14)
If (t) is added to m, then in the equation (14),
The solution when the force of the term is applied independently can be obtained from equation (7) and added.

【0040】この(14)式でω=ω0 とした時、すな
わち、交流印加電圧の周波数を片持ち梁18の共振周波
数とした時、項は直流的な力なので振動には寄与しな
い。項の力の成分の周波数はω0 であるため、この力
成分により片持ち梁18は共振し、振幅は最大値をと
る。項については、周波数が2ω0 となる。片持ち梁
18のQ値は最低でも20以上はあるため、2ω0 の周
波数をもつ力による振動の振幅はω0 のそれに対して数
十分の一以下となる。従って、実質上は、項の力によ
るω0 の周波数をもつ振動しか現れない。この時の振幅
は、
When ω = ω 0 in the equation (14), that is, when the frequency of the AC applied voltage is the resonance frequency of the cantilever 18, the term does not contribute to vibration because it is a DC force. Since the frequency of the force component of the term is ω 0 , the cantilever 18 resonates due to this force component, and the amplitude has the maximum value. For the term, the frequency is 2ω 0 . Since the Q value of the cantilever 18 is at least 20 or more, the amplitude of vibration due to a force having a frequency of 2ω 0 is several tenths or less of that of ω 0 . Therefore, substantially only the vibration having the frequency of ω 0 due to the force of the term appears. The amplitude at this time is

【0041】[0041]

【数12】 に比例し、位相は交流印加電圧VA sinω0tに対し
て、φ=π/2の位相遅れをもつ振動となる。なお、V
A は交流電圧の振幅であるから定数とすることができ
る。
[Equation 12] And the phase becomes an oscillation having a phase delay of φ = π / 2 with respect to the AC applied voltage VA sinω 0 t. In addition, V
Since A is the amplitude of the AC voltage, it can be a constant.

【0042】さて、ここで再び図1の構成に戻り、片持
ち梁18の探針17にF(t)が加わった場合の振動に
ついて考える。今、Vb>Vsであった場合、ロックイ
ンアンプ24は正弦波交流電圧源29の周波数ω0 の同
期信号に同期してV0 を増幅するため、その出力V1
Vb−Vsに比例した直流電圧となる。従って、Vb>
Vsの場合、Vb−Vs>0となるためV1 >0とな
る。積分器25は反転増幅器の機能をもつため、V2
電位は小さくなっていき、これによりパワーアンプ28
の出力V5 の直流成分Vbも小さくなっていく。そし
て、このような動作は、Vb=Vsになるまで続き、V
b=Vsで安定する。Vbの値は、Vb=GV2 の関係
があるため、電圧計26でV2 を測定することにより得
ることができる。本発明の場合、片持ち梁が共振してい
るため、従来技術よりも小さな静電引力により測定が可
能となり、これにより高感度となる。また、従来技術で
は片持ち梁の共振周波数の1/6〜1/3の周波数で片
持ち梁が振動するのに比べて、本発明では共振周波数で
振動するため、ロックインアンプ24のローパスフィル
タの時定数を従来技術よりも高くすることができ、これ
により測定の高速化が可能となる。従って、このような
ことから、従来よりも高速にかつ高感度に試料16の表
面電位を測定することができる。
Now, let us return to the configuration of FIG. 1 again, and consider the vibration when F (t) is applied to the probe 17 of the cantilever 18. If Vb> Vs, the lock-in amplifier 24 amplifies V 0 in synchronization with the synchronizing signal of the frequency ω 0 of the sine wave AC voltage source 29, so that its output V 1 is proportional to Vb-Vs. It becomes a DC voltage. Therefore, Vb>
In the case of Vs, the V 1> 0 for the Vb-Vs> 0. Since the integrator 25 has the function of an inverting amplifier, the potential of V 2 becomes smaller, which causes the power amplifier 28
Also, the DC component Vb of the output V 5 of V.sub.2 becomes smaller. Then, such an operation continues until Vb = Vs, and
It stabilizes at b = Vs. Since the value of Vb has a relationship of Vb = GV 2 , it can be obtained by measuring V 2 with the voltmeter 26. In the case of the present invention, since the cantilever resonates, it is possible to perform measurement with a smaller electrostatic attraction than in the prior art, which results in high sensitivity. Further, in the prior art, the cantilever vibrates at a frequency of ⅙ to ⅓ of the resonance frequency of the cantilever, whereas in the present invention, the cantilever vibrates at the resonance frequency, so the low-pass filter of the lock-in amplifier 24. The time constant of can be made higher than that of the prior art, which enables faster measurement. Therefore, because of this, it is possible to measure the surface potential of the sample 16 faster and with higher sensitivity than in the past.

【0043】次に、本発明の別の参考例を図6に基づい
て説明する。なお、前述した参考例と同一部分について
の説明は省略し、その同一部分については同一符号を用
いる。
Next, another reference example of the present invention will be described with reference to FIG. The description of the same parts as those of the above-described reference example will be omitted, and the same reference numerals will be used for the same parts.

【0044】ここでは、図6に示すような表面電位計に
おいて、正弦波交流電圧源29は、片持ち梁18の共振
周波数又はこの共振周波数とほぼ等しい周波数の交流電
圧を有している。この正弦波交流電圧源29とパワーア
ンプ28とは、片持ち梁18の共振周波数又はこの共振
周波数とほぼ等しい周波数の交流電圧を探針17に印加
する探針印加制御手段32を構成している。また、本回
路は、図1で述べたようなロックインアンプ24からの
帰還回路を備えていない。
Here, in the surface electrometer as shown in FIG. 6, the sinusoidal AC voltage source 29 has an AC voltage having a resonance frequency of the cantilever 18 or a frequency substantially equal to this resonance frequency. The sine wave AC voltage source 29 and the power amplifier 28 constitute a probe application control means 32 that applies an AC voltage having a resonance frequency of the cantilever 18 or a frequency substantially equal to the resonance frequency to the probe 17. . Further, this circuit does not include the feedback circuit from the lock-in amplifier 24 as described in FIG.

【0045】以下、具体的な動作について説明する。図
6に示すように、ロックインアンプ24からの出力V1
をパワーアンプ28に帰還をかけず、Vbを常に0Vに
した回路状態とする。これにより、探針17には正弦波
交流電圧源29から得られた片持ち梁18の共振周波数
又はこの共振周波数とほぼ等しい周波数の交流電圧(ω
0)が印加されると、V1 は−Vsに比例した値となるた
め、そのV1 の値を電圧計26により求めることによっ
て、請求項3記載の発明と同様に、高速にかつ高感度に
試料16の表面電位を測定することができる。
The specific operation will be described below. As shown in FIG. 6, the output V 1 from the lock-in amplifier 24
Is not fed back to the power amplifier 28, and Vb is always set to 0 V in a circuit state. Thus, the probe 17 has a resonance frequency of the cantilever 18 obtained from the sinusoidal AC voltage source 29 or an AC voltage (ω) having a frequency substantially equal to the resonance frequency.
0 ) is applied, V 1 has a value proportional to −Vs, and therefore, the value of V 1 is obtained by a voltmeter 26, so that high speed and high sensitivity are obtained as in the case of the invention according to claim 3. Moreover, the surface potential of the sample 16 can be measured.

【0046】次に、請求項1及び2記載の発明の一実施
の形態を図7に基づいて説明する。なお、前述した参考
例と同一部分についての説明は省略し、その同一部分に
ついては同一符号を用いる。
Next, an embodiment of the invention described in claims 1 and 2 will be described with reference to FIG. The description of the same parts as those of the above-described reference example will be omitted, and the same reference numerals will be used for the same parts.

【0047】図7は、形状測定器の回路構成を示すもの
である。正弦波交流電圧源29はパワーアンプ33に接
続され、このパワーアンプ33は片持ち梁18に接続さ
れている。正弦波交流電圧源29は、片持ち梁18の共
振周波数の2分の1の周波数又はこの周波数とほぼ等し
い周波数の2分の1の周波数の交流電圧を有している
(「この周波数とほぼ等しい周波数」というのは、「片
持ち梁18の共振周波数と等しい周波数」の意味である
(以下、同様))。この場合、正弦波交流電圧源29と
パワーアンプ33とは、片持ち梁18の共振周波数の2
分の1の周波数又はこの周波数とほぼ等しい周波数の2
分の1の周波数の交流電圧を探針17に印加する探針印
加制御手段34を構成している。また、ロックインアン
プ24には比較器35が接続され、この比較器35は積
分器25と接続され、この積分器25はパワーアンプ2
8と接続され、このパワーアンプ28はZ軸アクチュエ
ータ36を駆動させる。この場合、比較器35と、積分
器25と、パワーアンプ28とは、距離制御手段37を
構成している。この距離制御手段37は、交流電圧によ
る探針17と試料16との間の静電引力により生じる片
持ち梁18の振動の振幅が一定値になるように、Z軸ア
クチュエータ36を用いて試料16と探針17との間の
距離を制御する。さらに、積分器25の出力側には、Z
軸アクチュエータ36の変位量を測定する変位量測定手
段としての電圧計38が接続されている。
FIG. 7 shows a circuit configuration of the shape measuring instrument. The sine wave AC voltage source 29 is connected to the power amplifier 33, and the power amplifier 33 is connected to the cantilever 18. The sinusoidal AC voltage source 29 has an AC voltage having a frequency half the resonance frequency of the cantilever beam 18 or a frequency half the frequency substantially equal to the resonance frequency.
("Frequency almost equal to this frequency" means "
It means the frequency equal to the resonance frequency of the beam 18.
(The same applies hereinafter)) . In this case, the sine wave AC voltage source 29 and the power amplifier 33 have a resonance frequency of 2 of the resonance frequency of the cantilever 18.
One-half the frequency or two of the frequencies almost equal to this frequency
The probe application control means 34 for applying an AC voltage having a frequency of one-half to the probe 17 is configured. Further, a comparator 35 is connected to the lock-in amplifier 24, the comparator 35 is connected to an integrator 25, and the integrator 25 is connected to the power amplifier 2
8, the power amplifier 28 drives the Z-axis actuator 36. In this case, the comparator 35, the integrator 25, and the power amplifier 28 form a distance control means 37. The distance control means 37 uses the Z-axis actuator 36 so that the amplitude of the vibration of the cantilever 18 generated by the electrostatic attraction between the probe 17 and the sample 16 by the AC voltage becomes a constant value. The distance between the probe 17 and the probe 17 is controlled. Furthermore, the output side of the integrator 25 has Z
A voltmeter 38 is connected as a displacement amount measuring means for measuring the displacement amount of the shaft actuator 36.

【0048】このような構成において、形状測定器の具
体的な動作について述べる。今、正弦波交流電圧源29
の周波数ωは、片持ち梁18の共振周波数ω0 の1/2
の値とする。また、ロックインアンプ24の参照信号入
力は、参照信号の2倍の周波数に同期して増幅するよう
に2fモードになっている。また、探針17は接地して
いるためVb=0となる。今、正弦波交流電圧源29か
らパワーアンプ33を介して、片持ち梁18の共振周波
数の2分の1の周波数又はこの周波数とほぼ等しい周波
数の2分の1の周波数の交流電圧を探針17に印加す
る。(14)式において、ω=ω0 /2とすると、探針
17に働く力F(t)は、
A specific operation of the shape measuring instrument having such a structure will be described. Now, the sine wave AC voltage source 29
Of the resonance frequency ω 0 of the cantilever 18 is 1/2
Value of. Further, the reference signal input of the lock-in amplifier 24 is in the 2f mode so as to be amplified in synchronization with a frequency twice as high as the reference signal. Further, since the probe 17 is grounded, Vb = 0. Now, from the sine wave AC voltage source 29, through the power amplifier 33, an AC voltage having a frequency half the resonance frequency of the cantilever beam 18 or a frequency half the frequency substantially equal to this frequency is probed. 17 is applied. In (14), when ω = ω 0/2, the force F (t) is acting on the probe 17,

【0049】[0049]

【数13】 のようになる。この場合、請求項3記載の発明の実施の
形態(ω=ω0 )と同様に、実際の振動に寄与する力
は、(15)式内の項のみとなる。この項の力によ
る片持ち梁18の共振した時の位相は、交流電圧VA s
in(ω0/2)tに対してφ=πの位相遅れをもつ。
また、振幅は、(aVA 2)/(2d2)に比例する。こ
れにより、振幅はVb、Vsに依存せず、また、a、V
A は定数であるため振幅はdのみに依存する。
[Equation 13] become that way. In this case, similarly to the embodiment (ω = ω 0 ) of the invention described in claim 3, the force contributing to the actual vibration is only the term in the expression (15). The phase when the cantilever 18 resonates due to the force of this term is the AC voltage VA s.
with a phase delay of φ = π against in (ω 0/2) t .
The amplitude is proportional to (aVA 2 ) / (2d 2 ). As a result, the amplitude does not depend on Vb and Vs, and a and V
Since A is a constant, the amplitude depends only on d.

【0050】図7において、片持ち梁18の振動は光テ
コ法により検出されプリアンプ23から出力V0 として
得られ、その出力V0 は振動に比例した交流電圧信号で
あり、正弦波交流電圧源29の周波数ω0 /2の2倍の
周波数ω0 に同期してロックインアンプ24によりV0
の振幅に比例した直流電圧V1 に変換される。従って、
このV1 の値から探針17の先端と試料16の表面との
間の距離dを、試料表面電位Vsに依存せず測定するこ
とができる。
In FIG. 7, the vibration of the cantilever 18 is detected by the optical lever method and is obtained as an output V 0 from the preamplifier 23. The output V 0 is an AC voltage signal proportional to the vibration, and a sine wave AC voltage source. V 0 by a lock-in amplifier 24 in synchronization with twice the frequency ω 0 of the frequency ω 0/2 of 29
Is converted into a DC voltage V 1 proportional to the amplitude of Therefore,
From this value of V 1 , the distance d between the tip of the probe 17 and the surface of the sample 16 can be measured without depending on the sample surface potential Vs.

【0051】また、ロックインアンプ24から得られた
電圧V1 は比較器35により基準値V01と比較されその
差V7 が求められ、V7 は積分器25により積分されて
2となる。このV2 はパワーアンプ28によりZ軸ア
クチュエータ36を制御して距離dを変化させることが
できる。これにより、V7 が0となるようにZ軸アクチ
ュエータ36が動作し、距離dは常に一定となる。ま
た、Z軸アクチュエータ36への入力電圧とアクチュエ
ータの変位の関係が予めわかっていれば、電圧計38に
よりV2 を測定することにより表面の形状を試料表面電
位Vsに関係なく測定することができる。従って、本実
施の形態の場合にも、請求項3記載の発明の実施の形態
と同様な理由から、従来に比べて、高速にかつ高感度に
試料16の表面形状を測定することができる。
Further, the voltage V 1 obtained from the lock-in amplifier 24 is compared with the reference value V 01 by the comparator 35 to obtain the difference V 7 , and V 7 is integrated by the integrator 25 to become V 2. . This V 2 can change the distance d by controlling the Z-axis actuator 36 by the power amplifier 28. As a result, the Z-axis actuator 36 operates so that V 7 becomes 0, and the distance d is always constant. If the relationship between the input voltage to the Z-axis actuator 36 and the displacement of the actuator is known in advance, the surface shape can be measured by measuring V 2 with the voltmeter 38 regardless of the sample surface potential Vs. . Therefore, in the case of the present embodiment as well, for the same reason as in the embodiment of the invention described in claim 3, the surface shape of the sample 16 can be measured at higher speed and with higher sensitivity than in the conventional case.

【0052】次に、発明の更に別の参考例を図8に基
づいて説明する。なお、前述した参考例及び請求項1及
2記載の発明の実施の形態と同一部分についての説明
は省略し、その同一部分については同一符号を用いる。
Next, another reference example of the present invention will be described with reference to FIG. In addition, the above-mentioned reference example and claim 1 and
Description of embodiments the same parts of the embodiment of the invention beauty 2 described will be omitted, using the same reference numerals for the same parts.

【0053】図8は形状測定器の回路構成を示すもので
あり、ここでは図7に示したようなZ軸アクチュエータ
36への帰還回路を備えていない。また、正弦波交流電
圧源29は、片持ち梁18の共振周波数の2分の1の周
波数又はこの周波数とほぼ等しい周波数の2分の1の周
波数の交流電圧を有する。この正弦波交流電圧源29
と、パワーアンプ33とは、片持ち梁18の共振周波数
の2分の1の周波数又はこの周波数とほぼ等しい周波数
の2分の1の周波数の交流電圧を探針17に印加する探
針印加制御手段39を構成している。
FIG. 8 shows a circuit configuration of the shape measuring instrument, in which the feedback circuit to the Z-axis actuator 36 as shown in FIG. 7 is not provided. Further, the sinusoidal AC voltage source 29 has an AC voltage having a frequency half of the resonance frequency of the cantilever 18 or a frequency half of the resonance frequency. This sine wave AC voltage source 29
And the power amplifier 33 is a probe application control for applying to the probe 17 an AC voltage having a half frequency of the resonance frequency of the cantilever 18 or a half frequency of a frequency substantially equal to this frequency. It constitutes means 39.

【0054】以下、具体的な動作について述べる。図8
においては、ロックインアンプ24の出力V1 の値から
帰還をかけていない。このV1 の値は1/d2 に比例し
た値となるため、電圧計38によりそのV1 の値を測定
することにより距離dを求めることができ、試料16の
表面形状を測定することができる。従って、本実施の形
態の場合にも、従来よりも、高速にかつ高感度に試料1
6の表面形状を測定することができる。
The specific operation will be described below. Figure 8
In, the feedback is not applied from the value of the output V 1 of the lock-in amplifier 24. Since the value of V 1 is a value proportional to 1 / d 2 , the distance d can be obtained by measuring the value of V 1 with the voltmeter 38, and the surface shape of the sample 16 can be measured. it can. Therefore, in the case of the present embodiment as well, the sample 1 is faster and more sensitive than the conventional one.
The surface shape of 6 can be measured.

【0055】次に、請求項6,7,8記載の発明の一実
施の形態を図9〜図11に基づいて説明する。なお、前
述した参考例及び請求項1、2記載の発明の実施の形態
と同一部分についての説明は省略し、その同一部分につ
いては同一符号を用いる。
Next, an embodiment of the invention described in claims 6, 7 and 8 will be described with reference to FIGS. It should be noted that description of the same parts as those of the reference example and the embodiments of the invention described in claims 1 and 2 is omitted, and the same reference numerals are used for the same parts.

【0056】図9は、表面電位計及び形状測定器を同一
回路内に備えた構成を示すものである。プリアンプ23
からの出力V0 は、ロックインアンプ40,41に送ら
れる。ロックインアンプ40の後段に接続された回路は
表面電位計の回路構成を示し、ロックインアンプ41の
後段に接続された回路は形状測定器の回路構成を示す。
そこで、まず、表面電位計の回路構成について述べる。
ロックインアンプ40から出力された直流電圧V11は、
電位制御手段としての積分器42に送られる。この積分
器42は、第1正弦波交流電圧源43の第1交流電圧V
31による探針17と試料16との間の静電引力により生
じる片持ち梁18の振動の振幅が零又は一定値になるよ
うに直流電圧V11を可変させる。この積分器42には、
直流電圧V11の電位を測定する電位測定手段としての電
圧計44が接続されている。そして、積分器42からの
出力V21は、加算器45の3つの入力端子のうちの一つ
に入力される。また、加算器45の他の入力端子には、
第1正弦波交流電圧源43からの第1交流電圧V31と、
第2正弦波交流電圧源46からの第2交流電圧V32とが
入力される。加算器45からの出力V41はパワーアンプ
47に送られ、この出力V51は片持ち梁18の探針17
に印加される。この場合、第1正弦波交流電圧源43
と、第2正弦波交流電圧源46と、加算器45と、パワ
ーアンプ47とは、探針17に第1交流電圧V31と第2
交流電圧V32とに加えて直流電圧V21を重畳した電圧を
印加する直流電圧重畳探針印加制御手段48を構成して
いる。
FIG. 9 shows a configuration in which a surface electrometer and a shape measuring instrument are provided in the same circuit. Preamplifier 23
The output V 0 from is sent to the lock-in amplifiers 40 and 41. The circuit connected to the latter stage of the lock-in amplifier 40 shows the circuit configuration of the surface electrometer, and the circuit connected to the latter stage of the lock-in amplifier 41 shows the circuit configuration of the shape measuring instrument.
Therefore, first, the circuit configuration of the surface electrometer will be described.
The DC voltage V 11 output from the lock-in amplifier 40 is
It is sent to the integrator 42 as a potential control means. This integrator 42 uses the first AC voltage V of the first sine wave AC voltage source 43.
The DC voltage V 11 is varied so that the amplitude of vibration of the cantilever 18 generated by the electrostatic attraction between the probe 17 and the sample 16 by 31 becomes zero or a constant value. This integrator 42 has
A voltmeter 44 is connected as a potential measuring means for measuring the potential of the DC voltage V 11 . The output V 21 from the integrator 42 is input to one of the three input terminals of the adder 45. The other input terminal of the adder 45 is
A first AC voltage V 31 from the first sine wave AC voltage source 43,
The second AC voltage V 32 from the second sine wave AC voltage source 46 is input. The output V 41 from the adder 45 is sent to the power amplifier 47, and this output V 51 is the probe 17 of the cantilever 18.
Applied to. In this case, the first sine wave AC voltage source 43
The second sine wave AC voltage source 46, the adder 45, and the power amplifier 47 cause the probe 17 to receive the first AC voltage V 31 and the second AC voltage V 31 .
A DC voltage superimposing probe application control means 48 for applying a voltage obtained by superimposing the DC voltage V 21 in addition to the AC voltage V 32 is configured.

【0057】次に、形状測定器の回路構成について述べ
る。ロックインアンプ41から出力された直流電圧V12
は比較器49に送られる。この比較器49からの出力V
6 は積分器50に送られる。この積分器50には、Z軸
アクチュエータ36の変位量を測定する変位量測定手段
としての電圧計51が接続されている。積分器50の出
力V22はパワーアンプ52に送られ、このパワーアンプ
52によりZ軸アクチュエータ36は駆動される。この
場合、比較器49と、積分器50と、パワーアンプ52
とは、距離制御手段53を構成している。この距離制御
手段53は、第2交流電圧V32による探針17と試料1
6の間の静電引力により生じる片持ち梁18の振動の振
幅が一定値になるように、Z軸アクチュエータ36を用
いて試料16と探針17との間の距離を制御する(ここ
までの構成は、請求項6記載の発明に対応する)。
Next, the circuit configuration of the shape measuring instrument will be described. DC voltage V 12 output from the lock-in amplifier 41
Is sent to the comparator 49. Output V from this comparator 49
6 is sent to the integrator 50. To this integrator 50, a voltmeter 51 is connected as a displacement amount measuring means for measuring the displacement amount of the Z-axis actuator 36. The output V 22 of the integrator 50 is sent to the power amplifier 52, which drives the Z-axis actuator 36. In this case, the comparator 49, the integrator 50, and the power amplifier 52
And constitute the distance control means 53. The distance control means 53 is provided with the probe 17 and the sample 1 by the second AC voltage V 32.
The distance between the sample 16 and the probe 17 is controlled using the Z-axis actuator 36 so that the amplitude of the vibration of the cantilever 18 generated by the electrostatic attraction between 6 and 6 becomes a constant value. The configuration corresponds to the invention according to claim 6).

【0058】また、第2交流電圧V32により生じる片持
ち梁18の振動波形の位相から90°の位相差をもって
位相検波した信号により試料16の電位を測定する電位
測定手段と、第1交流電圧V31により生じる片持ち梁1
8の振動波形の位相から90°の位相差をもって位相検
波した信号により試料16の形状を測定する形状測定手
段とを設けた(請求項7記載の発明に対応する)。
Further, a potential measuring means for measuring the potential of the sample 16 by a signal phase-detected with a phase difference of 90 ° from the phase of the vibration waveform of the cantilever 18 generated by the second AC voltage V 32 , and the first AC voltage. Cantilever 1 caused by V 31
A shape measuring means for measuring the shape of the sample 16 by a signal whose phase is detected with a phase difference of 90 ° from the phase of the vibration waveform of No. 8 is provided (corresponding to the invention of claim 7).

【0059】さらに、第2交流電圧V32により生じる片
持ち梁18の振動波形と第1交流電圧V31により生じる
片持ち梁18の振動波形との位相差が90°になるよう
に第2交流電圧V32と第1交流電圧V31との間の位相差
を決定する位相差決定手段を設けた(請求項8記載の発
明に対応する)。
Further, the second AC current is adjusted so that the phase difference between the vibration waveform of the cantilever 18 generated by the second AC voltage V 32 and the vibration waveform of the cantilever 18 generated by the first AC voltage V 31 becomes 90 °. Phase difference determining means for determining the phase difference between the voltage V 32 and the first AC voltage V 31 is provided (corresponding to the invention of claim 8).

【0060】このような構成において、以下、請求項
6,7,8記載の発明の具体例を順次説明していく。ま
ず、請求項記載の発明に係る、表面電位計及び形状測
定器を構成する本回路の具体的な動作について述べる。
今、第1正弦波交流電圧源43は、V31=VA sinω
0t 、第2正弦波交流電圧源46は、V32=VB sin
(ω0/2)t の交流電圧を同期して発生する。そし
て、V31、V32、V21は、加算器45により加算され、
パワーアンプ47により増幅され、探針17に印加され
る。
In such a structure, the following claims
Specific examples of the invention described in 6, 7, and 8 will be sequentially described. First, the specific operation of the present circuit constituting the surface electrometer and the shape measuring instrument according to the invention of claim 6 will be described.
Now, the first sine wave AC voltage source 43 is V 31 = VA sinω
0 t, the second sinusoidal AC voltage source 46 has V 32 = VB sin
0/2) is generated in synchronization with an AC voltage of t. Then, V 31 , V 32 , and V 21 are added by the adder 45,
It is amplified by the power amplifier 47 and applied to the probe 17.

【0061】ここで、探針17の電位と試料16の表面
電位との電位差をVとすると、
If the potential difference between the potential of the probe 17 and the surface potential of the sample 16 is V,

【0062】[0062]

【数14】 となる。従って、力F(t)は、[Equation 14] Becomes Therefore, the force F (t) is

【0063】[0063]

【数15】 となる。これにより、F(t)は、[Equation 15] Becomes As a result, F (t) becomes

【0064】[0064]

【数16】 [Equation 16]

【0065】ここで、ω1=ω0、ω2=ω0/2とする
と、F(t)は、
[0065] In this case, ω 1 = ω 0, and the ω 2 = ω 0/2, F (t) is,

【0066】[0066]

【数17】 となる。この(19)式で表されるF(t)が片持ち梁
18に加わった場合、前述した場合と同様に、振動に寄
与する項は、項と項である。項による振動の振幅
は1/d2 に比例し、項による振動の振幅は(Vb−
Vs)/d2 に比例する。また、項による振動の位相
差は、V31=VA sinω0t に対して、ψ1 =−(π
/2)、項による振動の位相差は、ψ2=−πとな
る。そして、片持ち梁18の振動は、項による振動波
形v1 、項による振動波形v2
[Equation 17] Becomes When F (t) represented by the equation (19) is applied to the cantilever 18, as in the case described above, the terms contributing to the vibration are the terms and the terms. The amplitude of the vibration due to the term is proportional to 1 / d 2, and the amplitude of the vibration due to the term is (Vb−
Proportional to Vs) / d 2 . Further, the phase difference of vibration due to the term is ψ 1 = − (π for V 31 = VA sinω 0 t
/ 2), the phase difference of vibration due to the term is ψ 2 = −π. Then, the vibration of the cantilever 18 is the vibration waveform v 1 according to the term and the vibration waveform v 2 according to the term.

【0067】[0067]

【数18】 の和(v1+v2)となる。[Equation 18] Is the sum of (v 1 + v 2 ).

【0068】図10は、V31、V32、V51、v1、v2
1+v2の関係を示す。ここで、 v1=v01sin(ω0t−π/2) …(22) v2=v02sin(ω0t−π) …(23) ただし、 v01=a1(Vb−Vs)/d2 …(24−1) v02=a2/d2 …(24−2) Vo=v1+v2 =v01sin(ω0t−π/2)+v02sin(ω0t−π) …(25)
FIG. 10 shows that V 31 , V 32 , V 51 , v 1 , v 2 ,
The relationship of v 1 + v 2 is shown. Here, v 1 = v 01 sin (ω 0 t−π / 2) (22) v 2 = v 02 sin (ω 0 t−π) (23) where v 01 = a 1 (Vb-Vs ) / D 2 (24-1) v 02 = a 2 / d 2 (24-2) Vo = v 1 + v 2 = v 01 sin (ω 0 t−π / 2) + v 02 sin (ω 0 t -Π) (25)

【0069】ロックインアンプ40,41は、入力信号
を参照信号に対して任意の位相差をもって同期検波し、
これを図示しないローパスフィルタにて平滑化し直流信
号に変換する。例えば、図11に示すように、入力電圧
vi 、参照信号vr vi =asin(ωt+ψ) …(26−1) vr =sinωt …(26−2) とすると、θだけの位相をもって同期検波し、積分した
場合の出力Vout は、
The lock-in amplifiers 40 and 41 synchronously detect the input signal with respect to the reference signal with an arbitrary phase difference,
This is smoothed by a low-pass filter (not shown) and converted into a DC signal. For example, as shown in FIG. 11, assuming that the input voltage vi and the reference signal vr vi = asin (ωt + ψ) (26-1) vr = sin ωt (26-2), synchronous detection is performed with a phase of θ and integration is performed. The output V out when

【0070】[0070]

【数19】 で与えられる。この場合、θ=−ψならば、Vo=2a
/πとなり、Voはθに対して最大値をとる。また、θ
+ψ=π/2ならばVo=0となる。
[Formula 19] Given in. In this case, if θ = −ψ, Vo = 2a
/ Π, and Vo takes the maximum value with respect to θ. Also, θ
If + ψ = π / 2, Vo = 0.

【0071】ここで、再び、図11、図12に基づいて
述べる。ロックインアンプ40は、Voの同期検波を参
照信号に対してθ1 =π/2で行う。また、ロックイン
アンプ41はθ2 =πで行う。ロックインアンプ40の
出力は、(25)式を(27)式に適用すると、
Here, the description will be made again with reference to FIGS. 11 and 12. The lock-in amplifier 40 performs Vo synchronous detection on the reference signal at θ 1 = π / 2. The lock-in amplifier 41 performs θ 2 = π. When the equation (25) is applied to the equation (27), the output of the lock-in amplifier 40 is

【0072】[0072]

【数20】 ここで、θ1=π/2だから、[Equation 20] Here, since θ 1 = π / 2,

【0073】[0073]

【数21】 となり、項による振動振幅v01=a1{(Vb−V
s)/d2}に比例する直流電圧を得ることができる。
[Equation 21] And the vibration amplitude v 01 = a 1 {(Vb-V
A DC voltage proportional to s) / d 2 } can be obtained.

【0074】一方、ロックインアンプ41の出力につい
ても同様に、
On the other hand, the same applies to the output of the lock-in amplifier 41.

【0075】[0075]

【数22】 [Equation 22]

【0076】ここで、θ2 =πだから、Here, since θ 2 = π,

【0077】[0077]

【数23】 となり、項による振動振幅v02=a2(1/d2)に比
例する直流電圧を得ることができる。すなわち、V11
ら図1のV1 と同様に試料表面と探針電位の差Vb−V
sを、また、V12から図7のV1 と同様に距離dを同時
にかつ独立に検出することができる。従って、これらV
11、V12をもとに、請求項2記載の実施の形態と同様
に、Vb及びZ軸アクチュエータ36へ帰還をかけるこ
とにより、試料表面電位と表面形状を同時にかつ独立に
測定することができる。V11は、(Vb−Vs)/d2
に比例する値となるため、実際はVb−Vsだけでなく
dにも依存する。しかし、Vb−Vs=0となるように
Vbに帰還をかけることにより、V21よりdに無関係に
Vsを測定することができる。また、本実施の形態にお
いても、従来よりも、高速にかつ高感度に表面電位と表
面形状を測定することができる。
[Equation 23] Thus, a DC voltage proportional to the vibration amplitude v 02 = a 2 (1 / d 2 ) according to the term can be obtained. That is, the difference between V 1 similarly to the sample surface and the probe potential of Figure 1 from V 11 Vb-V
It is possible to detect s and also the distance d from V 12 to V 1 in FIG. 7 simultaneously and independently. Therefore, these V
Based on 11 and V 12 , feedback to the Vb and Z axis actuators 36 can be performed simultaneously and independently to measure the sample surface potential and the surface shape, as in the second embodiment. . V 11 is (Vb−Vs) / d 2
Since the value is proportional to, it actually depends not only on Vb-Vs but also on d. However, by feeding back Vb so that Vb−Vs = 0, Vs can be measured from V 21 regardless of d. Further, also in the present embodiment, the surface potential and the surface shape can be measured at higher speed and with higher sensitivity than ever before.

【0078】次に、請求項7記載の発明である位相差電
位測定手段及び位相差形状測定手段の具体例について述
べる。ここでは、v1 とv2 の位相差がπ/2でない時
にV11にv02が、V12にv01が混入しないことを目的と
する。その一例として、 v1=v01sin(ω0t+φ1) …(31) v2=v02sin(ω0t+φ2) …(32) とし、|φ1−φ2|≠π/2とする。ここで、V11を求
めると、
Next, specific examples of the phase difference potential measuring means and the phase difference shape measuring means according to the invention of claim 7 will be described. Here, it is intended that v 02 is not mixed into V 11 and v 01 is mixed into V 12 when the phase difference between v 1 and v 2 is not π / 2. As an example, v 1 = v 01 sin (ω 0 t + φ 1 ) ... (31) v 2 = v 02 sin (ω 0 t + φ 2 ) ... (32), and | φ 1 −φ 2 | ≠ π / 2 To do. Here, when V 11 is calculated,

【0079】[0079]

【数24】 となる。ここで、θ1=−φ2−(π/2)、すなわち、
ロックインアンプ40の位相検波の位相θ1 をv2 の位
相とπ/2(90°)だけずらすことにより、V11は、
[Equation 24] Becomes Where θ 1 = −φ 2 − (π / 2), that is,
By shifting the phase detection phase θ 1 of the lock-in amplifier 40 from the phase of v 2 by π / 2 (90 °), V 11 becomes

【0080】[0080]

【数25】 となり、これによりv02の混入を防ぐことができる。た
だし、v01に対する感度は|φ1−φ2 |=π/2の場
合よりも低下する。
[Equation 25] Therefore, mixing of v 02 can be prevented. However, the sensitivity to v 01 is lower than that in the case of | φ 1 −φ 2 | = π / 2.

【0081】また、これと同様に、V12 についても同
様にしてv01の混入を防ぐことができる。従って、本実
施の形態の場合にも、従来よりも、高速にかつ高感度に
試料16の表面電位と表面形状を互いに干渉なく測定す
ることができる。
Similarly, with respect to V 12 , it is possible to prevent v 01 from being mixed in the same manner. Therefore, also in the case of the present embodiment, the surface potential and the surface shape of the sample 16 can be measured at higher speed and with higher sensitivity than before, without interference with each other.

【0082】次に、請求項8記載の発明である位相差決
定手段の具体例について述べる。ここでは、第1交流電
圧V31と第2交流電圧V32の位相差が図10に示すよう
に0の場合でも、v1 とv2 の位相差がπ/2にならな
い場合に、V31とV32との間の位相差を調整することに
より、V31、V32に各々生じるv1 とv2 との間の位相
差をπ/2に設定し、これによりV11、V12各々に
02、v01が混入せず、かつ、各々v01、v02に対して
最大感度をもつようにしたものである。従って、本実施
の形態においても、従来よりも、表面電位と表面形状
を、高速にかつ高感度に、しかも、互いに干渉なくかつ
最大の感度をもって測定することができる。
Next, a specific example of the phase difference determining means according to the present invention will be described. Here, even if the phase difference between the first AC voltage V 31 and the second AC voltage V 32 is 0 as shown in FIG. 10, if the phase difference between v 1 and v 2 does not become π / 2, V 31 By adjusting the phase difference between V 32 and V 32 , the phase difference between v 1 and v 2 generated in V 31 and V 32 is set to π / 2, and V 11 and V 12 are set accordingly. V 02 and v 01 are not mixed in and the maximum sensitivity to v 01 and v 02 , respectively, is obtained. Therefore, also in this embodiment, the surface potential and the surface shape can be measured at higher speed and with higher sensitivity than before, and with maximum sensitivity without mutual interference.

【0083】次に、請求項3,4,5記載の発明の一実
施の形態を図9に基づいて説明する。なお、請求項1、
2、6〜8記載の発明と同一部分についての説明は省略
し、その同一部分については同一符号を用いる。
Next, an embodiment of the invention described in claims 3, 4, and 5 will be described with reference to FIG. In addition, claim 1,
Descriptions of the same parts as those in the inventions 2 and 6 to 8 will be omitted, and the same reference numerals will be used for the same parts.

【0084】請求項3〜5記載の発明は、請求項6〜8
記載の発明と関連している。そこで、まず、請求項3記
載の発明について述べる。本請求項3の発明は、片持ち
梁18の共振周波数又はこの共振周波数とほぼ等しい周
波数の第1交流電圧V31と片持ち梁18の共振周波数の
2分の1の周波数又はこの共振周波数とほぼ等しい周波
数の2分の1の周波数の第2交流電圧V32とを重畳させ
た電圧を探針17に印加する探針印加制御手段を設け、
第1交流電圧V31による探針17と試料16との間の静
電引力により生じる片持ち梁18の振動の振幅から試料
16の電位を測定する表面電位測定手段を設け、第2交
流電圧V32による探針17と試料16との間の静電引力
により生じる片持ち梁18の振動の振幅から試料16の
形状を測定する形状測定手段を設けたことに特徴があ
る。
The inventions described in claims 3 to 5 are claims 6 to 8.
It is related to the described invention. Therefore, first, the invention according to claim 3 will be described. According to the third aspect of the present invention, the first alternating voltage V 31 having a resonance frequency of the cantilever 18 or a frequency substantially equal to the resonance frequency and half the resonance frequency of the cantilever 18 or the resonance frequency thereof. Providing a probe application control means for applying to the probe 17 a voltage obtained by superimposing a second AC voltage V 32 having a frequency that is ½ of the substantially equal frequency,
Surface potential measuring means for measuring the potential of the sample 16 from the amplitude of vibration of the cantilever 18 generated by electrostatic attraction between the probe 17 and the sample 16 by the first AC voltage V 31 is provided, and the second AC voltage V 31 It is characterized in that a shape measuring means for measuring the shape of the sample 16 from the amplitude of vibration of the cantilever 18 generated by electrostatic attraction between the probe 17 and the sample 16 by 32 is provided.

【0085】具体的には、請求項6記載の発明を示す図
9の回路においては、探針17に第1交流電圧V31と第
2交流電圧V32とに加えてさらに直流電圧V21を重畳し
た電圧を印加したが、ここでは、その直流電圧V21によ
る印加はなく第1交流電圧V 31と第2交流電圧V32のみ
を探針17に印加するようにしたものである。これによ
り、従来よりも高速にかつ高感度に試料16の表面電位
と表面形状とを同時にかつ独立して測定することができ
る。
Specifically, the diagram showing the invention according to claim 6.
In the circuit of No. 9, the first AC voltage V is applied to the probe 17.31And the
2 AC voltage V32In addition to the DC voltage Vtwenty oneSuperimpose
Applied voltage, but here, the DC voltage Vtwenty oneBy
The first AC voltage V 31And the second AC voltage V32only
Is applied to the probe 17. By this
The surface potential of the sample 16 is faster and more sensitive than before.
And surface profile can be measured simultaneously and independently.
It

【0086】次に、請求項4記載の発明について述べ
る。本請求項4の発明は、前記請求項3記載の発明で述
べた表面電位測定手段の具体的な内部構成手段を示すも
のである。すなわち、第1交流電圧V31による探針17
と試料16との間の静電引力により生じる片持ち梁18
の振動の振幅が零又は一定値になるように直流電圧V21
を可変させる電位制御手段と、直流電圧V21の電位を測
定する電位測定手段とを設けたものである。また、ここ
では、直流電圧重畳探針印加制御手段として、探針17
に第1交流電圧V31と第2交流電圧V32とに加えて直流
電圧V21を重畳した電圧を印加するようにした。
Next, the invention according to claim 4 will be described. The invention according to claim 4 shows a concrete internal configuration means of the surface potential measuring means described in the invention according to claim 3. That is, the probe 17 with the first AC voltage V 31
Beam 18 generated by electrostatic attraction between the sample 16 and the sample 16
DC voltage V 21 so that the amplitude of the vibration of
Is provided with potential control means for varying the voltage and potential measuring means for measuring the potential of the DC voltage V 21 . Further, here, the probe 17 is used as the DC voltage superimposing probe application control means.
In addition to the first AC voltage V 31 and the second AC voltage V 32 , a voltage obtained by superimposing the DC voltage V 21 is applied.

【0087】具体的には、電位制御手段とは請求項6記
載の発明(図9参照)で述べた積分器42に相当し、ま
た、電位測定手段とは請求項6記載の発明(図9参照)
で述べた電圧計44に相当する。さらに、直流電圧重畳
探針印加制御手段とは、請求項8記載の発明(図9参
照)で述べた第1正弦波交流電圧源43と第2正弦波交
流電圧源46と加算器45とパワーアンプ47とからな
る直流電圧重畳探針印加制御手段48に相当する。これ
により、従来よりも高速にかつ高感度に試料16の表面
電位と表面形状とを同時にかつ独立して測定することが
できる。
Specifically, the potential control means corresponds to the integrator 42 described in the invention of claim 6 (see FIG. 9), and the potential measuring means is the invention of claim 6 (FIG. 9). reference)
It corresponds to the voltmeter 44 described in. Further, the DC voltage superposition probe application control means is the first sine wave AC voltage source 43, the second sine wave AC voltage source 46, the adder 45, and the power described in the invention (see FIG. 9) of claim 8. It corresponds to the DC voltage superposition probe application control means 48 including the amplifier 47. As a result, the surface potential and the surface shape of the sample 16 can be simultaneously and independently measured at higher speed and with higher sensitivity than before.

【0088】次に、請求項5記載の発明について述べ
る。本請求項5の発明は、前記請求項5記載の発明で述
べた形状測定手段の具体的な内部構成手段を示すもので
ある。すなわち、第2交流電圧V32による探針17と試
料16との間の静電引力により生じる片持ち梁18の振
動の振幅が一定値になるように試料16と探針17との
間の距離を制御するアクチュエータを備えた距離制御手
段と、そのアクチュエータの変位量を測定する変位量測
定手段とを設けたものである。
Next, the invention according to claim 5 will be described. The invention of claim 5 shows a concrete internal configuration means of the shape measuring means described in the invention of claim 5. That is, the distance between the sample 16 and the probe 17 is set so that the amplitude of the vibration of the cantilever 18 generated by the electrostatic attraction between the probe 17 and the sample 16 by the second AC voltage V 32 becomes a constant value. A distance control means having an actuator for controlling the actuator and a displacement amount measuring means for measuring the displacement amount of the actuator are provided.

【0089】具体的には、距離制御手段とは、請求項6
記載の発明(図9参照)で述べた比較器49と積分器5
0とパワーアンプ52とからなる距離制御手段53に相
当する。また、変位量測定手段とは、請求項6記載の発
明(図9参照)で述べた電圧計51に相当する。これに
より、従来よりも、高速にかつ高感度に試料16の表面
電位と表面形状とを同時にかつ独立して測定することが
できる。
Specifically, the distance control means is defined in claim 6.
Comparator 49 and integrator 5 described in the described invention (see FIG. 9)
It corresponds to the distance control means 53 composed of 0 and the power amplifier 52. Further, the displacement amount measuring means corresponds to the voltmeter 51 described in the invention of claim 6 (see FIG. 9). As a result, the surface potential and the surface shape of the sample 16 can be measured simultaneously and independently with higher speed and higher sensitivity than in the past.

【0090】次に、請求項9記載の発明の一実施の形態
について説明する。なお、請求項1〜8記載の発明と同
一部分についての説明は省略し、その同一部分について
は同一符号を用いる。
Next, an embodiment of the invention described in claim 9 will be described. It should be noted that the description of the same parts as those in the first to eighth aspects of the present invention is omitted, and the same parts are designated by the same reference numerals.

【0091】ここでは、前述した請求項3〜8記載の発
明である表面電位計及び形状測定器において、探針17
に第1交流電圧V31と第2交流電圧V32を交互に印加
し、第1交流電圧V31が印加されているときに試料16
の電位を測定し、第2交流電圧V32が印加されていると
きに試料1の形状を測定する電位形状測定選択手段を設
けたことに特徴がある。具体的には、図9に示す回路に
おいて、第1正弦波交流電圧源43の第1交流電圧V31
と第2正弦波交流電圧源46の第2交流電圧V32とを時
間的に交互に選択して発生させることにより、試料16
の表面電位と表面形状とを交互に測定するようにした。
これにより、従来よりも、高速にかつ高感度に試料16
の表面電位と表面形状とを同時にかつ独立して測定する
ことができる。
Here, in the surface electrometer and the shape measuring instrument according to the invention described in claims 3 to 8, the probe 17 is used.
The first AC voltage V 31 and the second AC voltage V 32 are alternately applied to the sample 16 and the sample 16 is applied when the first AC voltage V 31 is applied.
Is characterized in that a potential shape measurement selection means for measuring the potential of the sample 1 and measuring the shape of the sample 1 when the second AC voltage V 32 is applied is provided. Specifically, in the circuit shown in FIG. 9, the first AC voltage V 31 of the first sine wave AC voltage source 43
And the second AC voltage V 32 of the second sine wave AC voltage source 46 are alternately generated in time to generate the sample 16
The surface potential and the surface shape of were measured alternately.
As a result, the sample 16 can be processed at higher speed and sensitivity than ever before.
It is possible to simultaneously and independently measure the surface potential and the surface shape.

【0092】次に、請求項10〜12記載の発明の一実
施の形態を図12に基づいて説明する。なお、請求項1
〜9記載の発明と同一部分についての説明は省略し、そ
の同一部分については同一符号を用いる。
Next, an embodiment of the invention described in claims 10 to 12 will be described with reference to FIG. In addition, claim 1
The description of the same parts as those in the inventions described in 9 to 9 is omitted, and the same parts are denoted by the same reference numerals.

【0093】ここでは、探針17に印加する電圧を試料
16の導電性基板としての試料台15に印加し、その探
針17の電位を基準電位とした(請求項12記載の発明
に対応する)。また、第1交流電圧V31と第2交流電圧
32と直流電圧V21のうち、いずれか2つを探針17に
印加し、残りの1つを試料台15に印加する電圧印加制
御手段を設けた(請求項13記載の発明に対応する)。
さらに、第1交流電圧V31と第2交流電圧V32と直流電
圧V21のうち、いずれか2つを試料台15に印加し、残
りの1つを探針17に印加する電圧印加制御手段を設け
た(請求項12記載の発明に対応する)。
Here, the voltage applied to the probe 17 is applied to the sample stage 15 as the conductive substrate of the sample 16, and the potential of the probe 17 is used as the reference potential (corresponding to the invention of claim 12). ). Further, a voltage application control means for applying any two of the first AC voltage V 31 , the second AC voltage V 32, and the DC voltage V 21 to the probe 17 and the remaining one to the sample stage 15. Is provided (corresponding to the invention of claim 13).
Further, a voltage application control means for applying any two of the first AC voltage V 31 , the second AC voltage V 32, and the DC voltage V 21 to the sample stage 15 and the remaining one to the probe 17. Is provided (corresponding to the invention of claim 12).

【0094】そこで、以下、請求項10,11記載の発
明である基準電位設定手段、電圧印加制御手段の具体例
について述べる。図12において、加算器45には、第
1正弦波交流電圧源43の第1交流電圧V31と第2正弦
波交流電圧源46の第2交流電圧V32との2つの電圧が
印加されている。また、積分器42の出力V21は反転パ
ワーアンプ54に送られ、この反転パワーアンプ54の
出力は−Vbとされ試料台15と接続されている。この
場合、反転パワーアンプ54が基準電位設定手段、電圧
印加制御手段を構成している。
Therefore, specific examples of the reference potential setting means and the voltage application control means according to the present invention will be described below. In FIG. 12, two voltages, that is, a first AC voltage V 31 of the first sine wave AC voltage source 43 and a second AC voltage V 32 of the second sine wave AC voltage source 46 are applied to the adder 45. There is. The output V 21 of the integrator 42 is sent to the inverting power amplifier 54, and the output of the inverting power amplifier 54 is set to −Vb and is connected to the sample table 15. In this case, the inverting power amplifier 54 constitutes the reference potential setting means and the voltage application control means.

【0095】以下、具体的な動作を図12に基づいて述
べる。一般に、試料16(以下、ここでは膜と呼ぶ)と
しては、試料台15(以下、ここでは基板と呼ぶ)上に
絶縁膜や光半導体の膜が積層されたものが多い。これま
での各回路(図1,7,8,9参照)では、基板15が
基準電位とされたGNDに接地されていた。本回路で
は、基板15がGNDではなく、探針17に帰還されて
いた直流電圧V21を反転パワーアンプ54にて反転した
電圧−Vbを印加する。また、基板15と膜16との間
の表面電位差(膜厚にかかる電圧)をVsとする。これ
により、試料表面とGND間の電位差はVs−Vbとな
る。一方、探針17に加わる電圧Vtは、第1交流電圧
31と第2交流電圧V32による電圧のみが印加されるた
め、 Vt=VA sinω1t+VB sinω2t となる。従って、試料表面を基準とした探針17の先端
間の電位差Vは、 V=VA sinω1t+VB sinω2t−(Vs−Vb) …(35) となり、(16)式と同様になる。従って、本実施の形
態においても、従来よりも高速にかつ高感度に膜16の
表面電位と表面形状とを同時にかつ独立して測定するこ
とができる。
The specific operation will be described below with reference to FIG. In general, as the sample 16 (hereinafter, referred to as a film here), there are many cases in which an insulating film or a film of an optical semiconductor is laminated on a sample table 15 (hereinafter, referred to as a substrate). In each of the circuits up to now (see FIGS. 1, 7, 8, and 9), the substrate 15 is grounded to the GND, which is the reference potential. In this circuit, the substrate 15 is not GND, but the DC voltage V 21 fed back to the probe 17 is inverted by the inverting power amplifier 54, and the voltage −Vb is applied. Further, the surface potential difference (voltage applied to the film thickness) between the substrate 15 and the film 16 is Vs. As a result, the potential difference between the sample surface and GND becomes Vs-Vb. On the other hand, the voltage Vt applied to the probe 17 is Vt = VA sin ω 1 t + VB sin ω 2 t because only the voltage of the first AC voltage V 31 and the second AC voltage V 32 is applied. Therefore, the potential difference V between the tips of the probe 17 based on the sample surface is V = VA sin ω 1 t + VB sin ω 2 t- (Vs-Vb) (35), which is similar to the equation (16). Therefore, also in the present embodiment, the surface potential and the surface shape of the film 16 can be simultaneously and independently measured at higher speed and with higher sensitivity than in the conventional case.

【0096】なお、基板15に印加する電圧は、Vbの
みならず、VA sinω1t、VBsinω2tさらには
これらを組み合わせたものでも同様の動作を行うことが
できる。また、上述した例は、第1交流電圧V31と第2
交流電圧V32と直流電圧V 21のうち、いずれか2つを探
針17に印加し、残りの1つを基板15に印加したが、
これに限るものではなく、いずれか2つを基板15に印
加し、残りの1つを探針17に印加するようにしてもよ
い。
The voltage applied to the substrate 15 is Vb.
Not only VA sinω1t, VBsinω2t Furthermore
The same operation can be performed with a combination of these.
it can. In addition, in the example described above, the first AC voltage V31And the second
AC voltage V32And DC voltage V twenty oneFind any two of them
It was applied to the needle 17, and the other one was applied to the substrate 15,
The number is not limited to this, and any two of them can be printed on the substrate 15.
The remaining one may be applied to the probe 17.
Yes.

【0097】次に、請求項13記載の発明の一実施の形
態を図13に基づいて説明する。なお、請求項1〜12
記載の発明と同一部分についての説明は省略し、その同
一部分については同一符号を用いる。
Next, an embodiment of the invention according to claim 13 will be described with reference to FIG. Note that claims 1 to 12
A description of the same parts as those in the described invention is omitted, and the same parts are denoted by the same reference numerals.

【0098】ここでは、第2交流電圧V32の周波数を片
持ち梁18の共振周波数の2倍の周波数又はこの共振周
波数とほぼ等しい周波数の2倍の周波数に設定したもの
である。以下、具体的に説明する。図13に示す回路に
おいて、第2正弦波交流電圧源46の周波数を片持ち梁
18の共振周波数ω0 の2倍である2ω0 に設定する。
ここで、探針17に働く力F(t)は(18)式におい
て、ω1=ω0、ω2=2ω0とした場合であることから、
Here, the frequency of the second AC voltage V 32 is set to be twice the resonance frequency of the cantilever 18 or twice the frequency substantially equal to this resonance frequency. The details will be described below. In the circuit shown in FIG. 13, the frequency of the second sinusoidal AC voltage source 46 is set to 2ω 0 which is twice the resonance frequency ω 0 of the cantilever 18.
Here, since the force F (t) acting on the probe 17 is the case where ω 1 = ω 0 and ω 2 = 2ω 0 in the equation (18),

【0099】[0099]

【数26】 となる。この(36)式において、片持ち梁18の振動
に寄与する力は項と項であり、各々の項により生じ
る振動振幅は、項では(a/d2)(Vb−Vs)VA
に、項では(a/d2)(VA VB )に比例する。そ
して、a、VA、VB は定数と考えられるため、請求項
5〜14記載の発明と同様にして、項による振動から
試料表面の電位を、項による振動から試料表面形状を
同時にかつ独立して測定することができる。
[Equation 26] Becomes In this equation (36), the forces that contribute to the vibration of the cantilever 18 are terms and terms, and the vibration amplitude caused by each term is (a / d 2 ) (Vb-Vs) VA
The term is proportional to (a / d 2 ) (VA VB). Since a, VA, and VB are considered to be constants, the potential of the sample surface is determined by the vibration of the term and the sample surface shape is determined by the vibration of the term simultaneously and independently in the same manner as the invention of claims 5-14. Can be measured.

【0100】[0100]

【発明の効果】請求項1記載の発明は、測定物に対向配
置された導電性探針を片持ち梁の先端に保持させ、前記
測定物と前記導電性探針との間に作用する静電引力によ
り前記片持ち梁を変形させ、この片持ち梁の変形により
前記測定物と前記探針との間に作用する静電引力を検出
して前記測定物の形状を測定するようにした形状測定器
において、前記片持ち梁の共振周波数の2分の1の周波
数の交流電圧を前記導電性探針に印加する探針印加制御
手段を設け、前記測定物と前記導電性探針との間の距離
を制御するアクチュエータを備えてこのアクチュエータ
を帰還制御することで前記交流電圧による前記探針と前
記測定物の間の静電引力により生じる前記片持ち梁の振
動の振幅が一定値になるように前記測定物と前記導電性
探針との間の距離を制御する距離制御手段を設け、前記
アクチュエータの変位量を測定する変位量測定手段を設
けたので、測定物の表面形状を従来よりも高速にかつ高
感度に測定することができるものである。
According to the first aspect of the present invention, the conductive probe that is arranged to face the object to be measured is held at the tip of the cantilever so that the static probe acts between the object to be measured and the conductive probe. A shape in which the cantilever is deformed by an electric attractive force, and the deformation of the cantilever detects the electrostatic attractive force acting between the measuring object and the probe to measure the shape of the measuring object. In the measuring device, a frequency half the resonance frequency of the cantilever
And a distance between the object to be measured and the conductive probe, which is provided with a probe application control unit that applies a number of alternating voltage to the conductive probe.
This actuator is equipped with an actuator to control
Feedback control of the probe with the AC voltage
Vibration of the cantilever caused by electrostatic attraction between the measured objects.
The object to be measured and the conductivity are adjusted so that the amplitude of the motion becomes constant.
The distance control means for controlling the distance between the probe and
A displacement amount measuring means for measuring the displacement amount of the actuator is installed.
Since girder, in which the surface shape of the measured object can be measured at high speed and sensitive than the conventional.

【0101】請求項2記載の発明は、測定物に対向配置
された導電性探針を片持ち梁の先端に保持させ、前記測
定物と前記導電性探針との間に作用する静電引力により
前記片持ち梁を変形させ、この片持ち梁の変形により前
記測定物と前記探針との間に作用する静電引力を検出し
て前記測定物の形状を測定するようにした形状測定器に
おいて、前記片持ち梁の共振周波数と等しい周波数の2
分の1の周波数の交流電圧を前記導電性探針に印加する
探針印加制御手段を設け、前記測定物と前記導電性探針
との間の距離を制御するアクチュエータを備えてこのア
クチュエータを帰還制御することで前記交流電圧による
前記探針と前記測定物の間の静電引力により生じる前記
片持ち梁の振動の振幅が一定値になるように前記測定物
と前記導電性探針との間の距離を制御する距離制御手段
を設け、前記アクチュエータの変位量を測定する変位量
測定手段を設けたので、測定物の表面形状を従来よりも
高速にかつ高感度に測定することができるものである。
According to a second aspect of the present invention, an electrostatic attraction force acting between the measurement object and the conductive probe is obtained by holding the conductive probe arranged to face the measurement object at the tip of the cantilever. The shape measuring instrument configured to deform the cantilever by means of the deformation of the cantilever and detect the electrostatic attractive force acting between the object to be measured and the probe due to the deformation of the cantilever to measure the shape of the object to be measured. in two of the resonance frequency and equal Shii frequency of the cantilever
The probe and the conductive probe are provided with a probe application control means for applying an AC voltage having a frequency of one half to the conductive probe.
This actuator is equipped with an actuator that controls the distance between
The object to be measured and the conductive probe are controlled so that the amplitude of the vibration of the cantilever caused by the electrostatic attraction between the probe and the object to be measured due to the AC voltage is controlled by feedback control of the actuator. the distance control means that controls the distance between the provided, since there is provided a displacement measuring means for measuring a displacement amount of the actuator, to measure the surface shape of the measurement object at high speed and sensitive than the conventional Is something that can be done.

【0102】請求項3記載の発明は、測定物に対向配置
された導電性探針を片持ち梁の先端に保持させ、前記測
定物と前記導電性探針との間に作用する静電引力により
前記片持ち梁を変形させ、この片持ち梁の変形により前
記測定物と前記探針との間に作用する静電引力を検出し
て前記測定物の電位又は形状を測定するようにした形状
測定器において、前記片持ち梁の共振周波数又は前記片
持ち梁の共振周波数と等しい周波数の第1交流電圧と前
記片持ち梁の共振周波数の2分の1の周波数又は前記片
持ち梁の共振周波数と等しい周波数の2分の1の周波数
の第2交流電圧とを重畳させた電圧を前記導電性探針に
印加する探針印加制御手段を設け、前記第1交流電圧に
よる前記導電性探針と前記測定物の間の静電引力により
生じる前記片持ち梁の振動の振幅から前記測定物の電位
を測定する表面電位測定手段を設け、前記第2交流電圧
による前記導電性探針と前記測定物の間の静電引力によ
り生じる前記片持ち梁の振動の振幅から前記測定物の形
状を測定する形状測定手段を設けたので、測定物の表面
電位と表面形状を従来よりも高速にかつ高感度に、しか
も、同時にかつ独立に測定することができるものであ
る。
According to a third aspect of the present invention, a conductive probe arranged opposite to the object to be measured is held at the tip of the cantilever, and an electrostatic attractive force acting between the object to be measured and the conductive probe. A shape that deforms the cantilever by means of which the electrostatic attraction acting between the object to be measured and the probe is detected by the deformation of the cantilever to measure the potential or shape of the object to be measured. in the measuring device, the resonant frequency or the piece of the cantilever
First frequency or said piece 2 minutes of the resonance frequency of the first alternating voltage of a resonance frequency and equal Shii frequency of the beam has said cantilever
The probe application control means for applying a voltage obtained by superimposing a second alternating voltage of a frequency one-half of the resonance frequency and equal Shii frequency of the beam to the conductive probe has provided, according to the first alternating voltage Surface potential measuring means for measuring the potential of the object to be measured from the amplitude of vibration of the cantilever generated by electrostatic attraction between the conductive probe and the object to be measured is provided, and the conductivity by the second AC voltage is provided. Since the shape measuring means for measuring the shape of the object to be measured from the amplitude of the vibration of the cantilever generated by the electrostatic attraction between the probe and the object to be measured is provided, Can also be measured at high speed and with high sensitivity, and simultaneously and independently.

【0103】請求項4記載の発明は、請求項3記載の発
明においては、導電性探針に第1交流電圧と第2交流電
圧とに加えて直流電圧を重畳した電圧を印加する直流電
圧重畳探針印加制御手段と、前記第1交流電圧による前
記導電性探針と前記測定物の間の静電引力により生じる
前記片持ち梁の振動の振幅が零又は一定値になるように
前記直流電圧を可変させる電位制御手段と、前記直流電
圧の電位を測定する電位測定手段とを有するようにした
ので、測定物の表面電位と表面形状を従来よりも高速に
かつ高感度に、しかも、同時にかつ独立に測定すること
ができるものである。
According to a fourth aspect of the present invention, in the third aspect of the invention, a DC voltage superimposition is applied to the conductive probe in which a voltage obtained by superimposing a DC voltage in addition to the first AC voltage and the second AC voltage is applied. The probe application control means, and the DC voltage so that the amplitude of the vibration of the cantilever caused by the electrostatic attraction between the conductive probe and the object to be measured by the first AC voltage becomes zero or a constant value. Since it has a potential control means for varying the potential and a potential measuring means for measuring the potential of the direct current voltage, the surface potential and surface shape of the object to be measured are faster and more sensitive than before, and at the same time, It can be measured independently.

【0104】請求項5記載の発明は、請求項3記載の発
明において、第2交流電圧による導電性探針と前記測定
物の間の静電引力により生じる片持ち梁の振動の振幅が
一定値になるように前記測定物と前記導電性探針との間
の距離を制御するアクチュエータを備えた距離制御手段
と、前記アクチュエータの変位量を測定する変位量測定
手段とを有するようにしたので、測定物の表面電位と表
面形状を従来よりも高速にかつ高感度に、しかも、同時
にかつ独立に測定することができるものである。
According to a fifth aspect of the invention, in the third aspect of the invention, the amplitude of vibration of the cantilever generated by the electrostatic attraction between the conductive probe and the object to be measured by the second AC voltage is a constant value. Since it has a distance control means provided with an actuator for controlling the distance between the measured object and the conductive probe, and a displacement amount measuring means for measuring the displacement amount of the actuator, It is possible to measure the surface potential and the surface shape of an object to be measured at higher speed and with higher sensitivity than before, and simultaneously and independently.

【0105】請求項6記載の発明は、請求項3記載の発
明において、導電性探針に第1交流電圧と第2交流電圧
とに加えて直流電圧を重畳した電圧を印加する直流電圧
重畳探針印加制御手段と、前記第1交流電圧による前記
導電性探針と前記測定物の間の静電引力により生じる前
記片持ち梁の振動の振幅が零又は一定値になるように前
記直流電圧を可変させる電位制御手段と、前記直流電圧
の電位を測定する電位測定手段と、第2交流電圧による
導電性探針と前記測定物の間の静電引力により生じる片
持ち梁の振動の振幅が一定値になるように前記測定物と
前記導電性探針との間の距離を制御するアクチュエータ
を備えた距離制御手段と、前記アクチュエータの変位量
を測定する変位量測定手段とを有するようにしたので、
測定物の表面電位と表面形状を従来よりも高速にかつ高
感度に、しかも、同時にかつ独立に測定することができ
るものである。
According to a sixth aspect of the present invention, in the third aspect of the present invention, a DC voltage superposition probe for applying a voltage obtained by superposing a DC voltage to the conductive probe in addition to the first AC voltage and the second AC voltage. The DC voltage is applied so that the amplitude of the vibration of the cantilever beam caused by the electrostatic attraction between the conductive probe and the object to be measured by the first AC voltage is zero or a constant value. The potential control means for varying the potential, the potential measuring means for measuring the potential of the DC voltage, and the amplitude of the vibration of the cantilever generated by the electrostatic attraction between the conductive probe and the object to be measured by the second AC voltage are constant. Since the distance control means having an actuator for controlling the distance between the object to be measured and the conductive probe so that the value becomes a value and the displacement amount measuring means for measuring the displacement amount of the actuator are provided. ,
It is possible to measure the surface potential and the surface shape of an object to be measured at higher speed and with higher sensitivity than before, and simultaneously and independently.

【0106】請求項7記載の発明は、請求項3,4,5
又は6記載の発明において、第2交流電圧により生じる
片持ち梁の振動波形の位相から90°の位相差をもって
位相検波した信号により測定物の電位を測定する電位測
定手段と、第1交流電圧により生じる前記片持ち梁の振
動波形の位相から90°の位相差をもって位相検波した
信号により前記測定物の形状を測定する形状測定手段と
を有するようにしたので、測定物の表面電位と表面形状
を従来よりも高速にかつ高感度に、しかも、互いに干渉
なく測定することができるものである。
The invention according to claim 7 is the invention according to claims 3, 4, and 5.
Alternatively, in the invention described in 6, the electric potential measuring means for measuring the electric potential of the object to be measured by the signal phase-detected with a phase difference of 90 ° from the phase of the vibration waveform of the cantilever generated by the second AC voltage, and the first AC voltage. Since there is provided a shape measuring means for measuring the shape of the object to be measured by a signal phase-detected with a phase difference of 90 ° from the phase of the vibration waveform of the cantilever generated, the surface potential and surface shape of the object to be measured are determined. It is possible to measure at higher speed and higher sensitivity than before and without mutual interference.

【0107】請求項8記載の発明は、請求項7記載の発
明において、第2交流電圧により生じる片持ち梁の振動
波形と第1交流電圧により生じる前記片持ち梁の振動波
形との位相差が90°になるように第2交流電圧と第1
交流電圧の間の位相差を決定する位相差決定手段を有す
るようにしたので、測定物の表面電位と表面形状を従来
よりも高速にかつ高感度に、しかも、互いに干渉なく、
最大の感度をもって測定することができるものである。
According to an eighth aspect of the invention, in the invention of the seventh aspect, the phase difference between the vibration waveform of the cantilever generated by the second AC voltage and the vibration waveform of the cantilever generated by the first AC voltage is The second AC voltage and the first so that it becomes 90 °.
Since the phase difference determining means for determining the phase difference between the AC voltages is provided, the surface potential and the surface shape of the object to be measured are faster and more sensitive than conventional ones, and there is no interference with each other.
It can be measured with maximum sensitivity.

【0108】請求項9記載の発明は、請求項3,4,
5,6,7又は8記載の発明において、導電性探針に第
1交流電圧と第2交流電圧を交互に印加し、前記第1交
流電圧が印加されているときに測定物の電位を測定し、
第2交流電圧が印加されているときに前記測定物の形状
を測定する電位形状測定選択手段を有するようにしたの
で、測定物の表面電位と表面形状を従来よりも高速にか
つ高感度に、しかも、同時にかつ独立に測定することが
できるものである。
The invention according to claim 9 is,
In the invention described in 5, 6, 7 or 8, the first alternating voltage and the second alternating voltage are alternately applied to the conductive probe, and the potential of the measurement object is measured when the first alternating voltage is applied. Then
Since the device has the potential shape measurement selection means for measuring the shape of the object to be measured when the second AC voltage is applied, the surface potential and surface shape of the object to be measured are faster and with higher sensitivity than before. Moreover, it can be measured simultaneously and independently.

【0109】請求項10記載の発明は、請求項1,2,
3,4,5,6,7,8又は9記載の発明において、導
電性探針に印加する電圧を測定物の導電性基板に印加
し、その導電性探針の電位を基準電位としたので、測定
物の表面電位と表面形状を従来よりも高速にかつ高感度
に、しかも、同時にかつ独立に測定することができるも
のである。
The invention according to claim 10 is the same as claim 1,
In the invention described in 3, 4, 5, 6, 7, 8 or 9, the voltage applied to the conductive probe is applied to the conductive substrate of the measurement object, and the potential of the conductive probe is used as the reference potential. The surface potential and surface shape of the object to be measured can be measured faster and with higher sensitivity than before, and simultaneously and independently.

【0110】請求項11記載の発明は、請求項1,2,
3,4,5,6,7,8又は9記載の発明において、第
1交流電圧と第2交流電圧と直流電圧のうち、いずれか
2つを導電性探針に印加し、残りの1個を測定物の導電
性基板に印加する電圧印加制御手段を有するようにした
ので、測定物の表面電位と表面形状を従来よりも高速に
かつ高感度に、しかも、同時にかつ独立に測定すること
ができるものである。
The invention described in claim 11 is,
In the invention described in 3, 4, 5, 6, 7, 8 or 9, any two of the first AC voltage, the second AC voltage and the DC voltage are applied to the conductive probe, and the remaining one is applied. Since it has a voltage application control means for applying to the conductive substrate of the object to be measured, it is possible to measure the surface potential and surface shape of the object to be measured faster and with higher sensitivity than before, and simultaneously and independently. It is possible.

【0111】請求項12記載の発明は、請求項1,2,
3,4,5,6,7,8又は9記載の発明において、第
1交流電圧と第2交流電圧と直流電圧のうち、いずれか
2つを測定物の導電性基板に印加し、残りの1個を導電
性探針に印加する電圧印加制御手段を有するようにした
ので、測定物の表面電位と表面形状を従来よりも高速に
かつ高感度に、しかも、同時にかつ独立に測定すること
ができるものである。
The invention described in claim 12 is the same as in claim 1,
In the invention described in 3, 4, 5, 6, 7, 8 or 9, any two of the first AC voltage, the second AC voltage and the DC voltage are applied to the conductive substrate of the object to be measured, and the remaining Since the voltage application control means for applying one to the conductive probe is provided, it is possible to measure the surface potential and the surface shape of the object to be measured faster and with higher sensitivity than before and simultaneously and independently. It is possible.

【0112】請求項13記載の発明は、請求項3,4,
5,6,7,8,9,10,11又は12記載の発明に
おいて、第2交流電圧の周波数を片持ち梁の共振周波数
の2倍の周波数又はこの共振周波数とほぼ等しい周波数
の2倍の周波数に設定したので、測定物の表面電位と表
面形状を従来よりも高速にかつ高感度に、しかも、同時
にかつ独立に測定することができるものである。
The invention described in claim 13 is,
In the invention described in 5, 6, 7, 8, 9, 10, 11 or 12, the frequency of the second AC voltage is twice as high as the resonance frequency of the cantilever or twice as high as the resonance frequency. Since the frequency is set, the surface potential and the surface shape of the object to be measured can be measured faster and with higher sensitivity than before, and simultaneously and independently.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の参考例である表面電位計の構成を示す
回路図である。
FIG. 1 is a circuit diagram showing a configuration of a surface electrometer that is a reference example of the present invention.

【図2】試料表面に近接した探針先端部の様子を示す模
式図である。
FIG. 2 is a schematic view showing a state of a tip end portion of a probe in the vicinity of a sample surface.

【図3】振動を近似して示す模式図である。FIG. 3 is a schematic diagram showing vibration in an approximate manner.

【図4】振幅倍率曲線を示す特性図である。FIG. 4 is a characteristic diagram showing an amplitude magnification curve.

【図5】位相遅れ曲線を示す特性図である。FIG. 5 is a characteristic diagram showing a phase delay curve.

【図6】発明の別の参考例である表面電位計の構成を
示す回路図である。
FIG. 6 is a circuit diagram showing a configuration of a surface electrometer which is another reference example of the present invention.

【図7】請求項1及び2記載の発明の一実施の形態であ
る形状測定器の構成を示す回路図である。
FIG. 7 is a circuit diagram showing a configuration of a shape measuring instrument according to an embodiment of the invention described in claims 1 and 2 .

【図8】発明の更に別の参考例である形状測定器の構
成を示す回路図である。
FIG. 8 is a circuit diagram showing a configuration of a shape measuring instrument which is still another reference example of the present invention.

【図9】請求項6,7,8記載の発明の一実施の形態で
ある表面電位計及び形状測定器の構成を示す回路図であ
る。
9 is a circuit diagram showing the configuration of a surface electrometer and shape measuring device according to an embodiment of the invention of claim 6, 7, 8, wherein.

【図10】波形図である。FIG. 10 is a waveform diagram.

【図11】波形図である。FIG. 11 is a waveform diagram.

【図12】請求項10〜12記載の発明の一実施の形態
である表面電位計及び形状測定器の構成を示す回路図で
ある。
12 is a circuit diagram showing the configuration of a surface electrometer and shape measuring device according to an embodiment of the invention of claim 10 to 12 wherein.

【図13】請求項13記載の発明の一実施の形態である
表面電位計及び形状測定器の構成を示す回路図である。
13 is a circuit diagram showing the configuration of a surface electrometer and shape measuring device according to an embodiment of the invention of claim 13, wherein.

【図14】従来の表面電位計及び形状測定器の構成を示
す回路図である。
FIG. 14 is a circuit diagram showing a configuration of a conventional surface electrometer and a shape measuring instrument.

【符号の説明】[Explanation of symbols]

15 導電性基板 16 測定物 17 導電性探針 18 片持ち梁 25 直流電位制御手段 26 直流電位測定手段 30 直流電圧重畳探針印加制御手段 32 探針印加制御手段 34 探針印加制御手段 36 アクチュエータ 37 距離制御手段 38 変位量測定手段 42 電位制御手段 43 電位測定手段 48 直流電圧重畳探針印加制御手段 51 変位量測定手段 53 距離制御手段 15 Conductive substrate 16 measured objects 17 Conductive probe 18 cantilever 25 DC potential control means 26 DC potential measuring means 30 DC voltage superposition probe application control means 32 probe application control means 34 Probe application control means 36 actuators 37 Distance control means 38 Displacement amount measuring means 42 potential control means 43 Potential measuring means 48 DC voltage superimposed probe application control means 51 Displacement amount measuring means 53 Distance control means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−26855(JP,A) 特開 平6−3397(JP,A) 特開 平6−308180(JP,A) 特開 平6−109787(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 13/00 - 13/24 G01B 7/00 - 7/34 G01B 21/00 - 21/32 G12B 21/00 - 21/24 G01R 29/00 - 29/12 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-6-26855 (JP, A) JP-A-6-3397 (JP, A) JP-A-6-308180 (JP, A) JP-A-6- 109787 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 13/00-13/24 G01B 7/ 00-7/34 G01B 21/00-21/32 G12B 21/00 -21/24 G01R 29/00-29/12

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定物に対向配置された導電性探針を片
持ち梁の先端に保持させ、前記測定物と前記導電性探針
との間に作用する静電引力により前記片持ち梁を変形さ
せ、この片持ち梁の変形により前記測定物と前記探針と
の間に作用する静電引力を検出して前記測定物の形状を
測定するようにした形状測定器において、前記片持ち梁
の共振周波数の2分の1の周波数の交流電圧を前記導電
性探針に印加する探針印加制御手段を設け、前記測定物
と前記導電性探針との間の距離を制御するアクチュエー
タを備えてこのアクチュエータを帰還制御することで前
記交流電圧による前記探針と前記測定物の間の静電引力
により生じる前記片持ち梁の振動の振幅が一定値になる
ように前記測定物と前記導電性探針との間の距離を制御
する距離制御手段を設け、前記アクチュエータの変位量
を測定する変位量測定手段を設けたことを特徴とする形
状測定器。
1. A conductive probe that is arranged to face a measurement object is held at the tip of a cantilever, and the cantilever is moved by electrostatic attraction acting between the measurement object and the conductive probe. In the shape measuring instrument, which is deformed, and the shape of the measurement object is measured by detecting an electrostatic attractive force acting between the measurement object and the probe due to the deformation of the cantilever, the first AC voltage frequency of half the resonant frequency is provided a probe applying control means for applying to said conductive probe of the measured object
Actuator for controlling the distance between the conductive probe and the conductive probe
The feedback control of this actuator
The electrostatic attraction between the probe and the object to be measured by the alternating voltage
The vibration amplitude of the cantilever caused by
To control the distance between the measured object and the conductive probe
A distance control means for controlling the displacement of the actuator.
A shape measuring instrument comprising a displacement amount measuring means for measuring
【請求項2】 測定物に対向配置された導電性探針を片
持ち梁の先端に保持させ、前記測定物と前記導電性探針
との間に作用する静電引力により前記片持ち梁を変形さ
せ、この片持ち梁の変形により前記測定物と前記探針と
の間に作用する静電引力を検出して前記測定物の形状を
測定するようにした形状測定器において、前記片持ち梁
の共振周波数と等しい周波数の2分の1の周波数の交流
電圧を前記導電性探針に印加する探針印加制御手段を設
け、前記測定物と前記導電性探針との間の距離を制御す
るアクチュエータを備えてこのアクチュエータを帰還制
御することで前記交流電圧による前記探針と前記測定物
の間の静電引力により生じる前記片持ち梁の振動の振幅
が一定値になるように前記測定物と前記導電性探針との
間の距離を制御する距離制御手段を設け、前記アクチュ
エータの変位量を測定する変位量測定手段を設けたこと
を特徴とする形状測定器。
2. A conductive probe arranged opposite to the object to be measured is held at the tip of the cantilever, and the cantilever is moved by electrostatic attraction acting between the object to be measured and the conductive probe. In the shape measuring instrument, which is deformed, and the shape of the measurement object is measured by detecting an electrostatic attractive force acting between the measurement object and the probe due to the deformation of the cantilever, of an AC voltage of a frequency one-half of the resonance frequency and equal Shii frequency provided a probe applying control means for applying to said conductive probe, the distance between the conductive probe and the measurement object Control
Equipped with an actuator
Between the measured object and the conductive probe so that the amplitude of vibration of the cantilever caused by an electrostatic attraction between the workpiece and the probe by the alternating voltage becomes a constant value by Gosuru shape measuring apparatus of the distance control means that controls provided distance, characterized in that a displacement measuring means for measuring a displacement amount of the actuator.
【請求項3】 測定物に対向配置された導電性探針を片
持ち梁の先端に保持させ、前記測定物と前記導電性探針
との間に作用する静電引力により前記片持ち梁を変形さ
せ、この片持ち梁の変形により前記測定物と前記探針と
の間に作用する静電引力を検出して前記測定物の電位又
は形状を測定するようにした形状測定器において、前記
片持ち梁の共振周波数又は前記片持ち梁の共振周波数
しい周波数の第1交流電圧と前記片持ち梁の共振周波
数の2分の1の周波数又は前記 片持ち梁の共振周波数
しい周波数の2分の1の周波数の第2交流電圧とを重
畳させた電圧を前記導電性探針に印加する探針印加制御
手段を設け、前記第1交流電圧による前記導電性探針と
前記測定物の間の静電引力により生じる前記片持ち梁の
振動の振幅から前記測定物の電位を測定する表面電位測
定手段を設け、前記第2交流電圧による前記導電性探針
と前記測定物の間の静電引力により生じる前記片持ち梁
の振動の振幅から前記測定物の形状を測定する形状測定
手段を設けたことを特徴とする形状測定器。
3. A conductive probe that is arranged to face the object to be measured is held at the tip of the cantilever, and the cantilever is moved by electrostatic attraction acting between the object to be measured and the conductive probe. In the shape measuring device, which is deformed and detects the electrostatic attraction force acting between the measuring object and the probe due to the deformation of the cantilever to measure the potential or shape of the measuring object, the resonant frequency or resonant frequency of the cantilever beam has
Etc. correct the resonant frequency of the first frequency or the cantilever-half the resonant frequency of the cantilever and the first AC voltage having a frequency
The probe application control means for applying a voltage obtained by superimposing a second alternating voltage of a frequency one-half of the equal correct frequency to the conductive probe provided with the conductive probe according to the first alternating voltage Surface potential measuring means for measuring the potential of the object to be measured from the amplitude of vibration of the cantilever generated by electrostatic attraction between the objects to be measured is provided, and the conductive probe and the object to be measured by the second AC voltage are provided. A shape measuring instrument provided with shape measuring means for measuring the shape of the object to be measured from the amplitude of vibration of the cantilever generated by electrostatic attraction between the two.
【請求項4】 導電性探針に第1交流電圧と第2交流電
圧とに加えて直流電圧を重畳した電圧を印加する直流電
圧重畳探針印加制御手段と、前記第1交流電圧による前
記導電性探針と前記測定物の間の静電引力により生じる
前記片持ち梁の振動の振幅が零又は一定値になるように
前記直流電圧を可変させる電位制御手段と、前記直流電
圧の電位を測定する電位測定手段とを有することを特徴
とする請求項3記載の形状測定器。
4. A DC voltage superimposing probe application control means for applying a voltage obtained by superimposing a DC voltage in addition to the first AC voltage and the second AC voltage to the conductive probe, and the conductivity by the first AC voltage. Potential control means for varying the DC voltage so that the amplitude of vibration of the cantilever caused by electrostatic attraction between the sex probe and the object to be measured becomes zero or a constant value, and the potential of the DC voltage is measured. 4. The shape measuring instrument according to claim 3, further comprising an electric potential measuring means.
【請求項5】 第2交流電圧による導電性探針と前記測
定物の間の静電引力により生じる片持ち梁の振動の振幅
が一定値になるように前記測定物と前記導電性探針との
間の距離を制御するアクチュエータを備えた距離制御手
段と、前記アクチュエータの変位量を測定する変位量測
定手段とを有することを特徴とする請求項3記載の形状
測定器。
5. The object to be measured and the conductive probe so that the amplitude of vibration of a cantilever generated by electrostatic attraction between the conductive probe and the object to be measured by a second AC voltage becomes a constant value. 4. The shape measuring instrument according to claim 3, further comprising a distance control means having an actuator for controlling the distance between the two, and a displacement amount measuring means for measuring the displacement amount of the actuator.
【請求項6】 導電性探針に第1交流電圧と第2交流電
圧とに加えて直流電圧を重畳した電圧を印加する直流電
圧重畳探針印加制御手段と、前記第1交流電圧による前
記導電性探針と前記測定物の間の静電引力により生じる
前記片持ち梁の振動の振幅が零又は一定値になるように
前記直流電圧を可変させる電位制御手段と、前記直流電
圧の電位を測定する電位測定手段と、第2交流電圧によ
る導電性探針と前記測定物の間の静電引力により生じる
片持ち梁の振動の振幅が一定値になるように前記測定物
と前記導電性探針との間の距離を制御するアクチュエー
タを備えた距離制御手段と、前記アクチュエータの変位
量を測定する変位量測定手段とを有することを特徴とす
る請求項5記載の表面電位計及び形状測定器。
6. A DC voltage superimposing probe application control means for applying a voltage obtained by superimposing a DC voltage in addition to the first AC voltage and the second AC voltage to the conductive probe, and the conductivity according to the first AC voltage. Potential control means for varying the DC voltage so that the amplitude of vibration of the cantilever caused by electrostatic attraction between the sex probe and the object to be measured becomes zero or a constant value, and the potential of the DC voltage is measured. Measuring means, and the measuring object and the conductive probe so that the amplitude of the vibration of the cantilever generated by the electrostatic attraction between the conductive probe and the measuring object by the second AC voltage becomes a constant value. 6. The surface electrometer and the shape measuring instrument according to claim 5, further comprising a distance control means having an actuator for controlling a distance between the surface potential meter and the shape measuring device, and a displacement amount measuring means for measuring a displacement amount of the actuator.
【請求項7】 第2交流電圧により生じる片持ち梁の振
動波形の位相から90°の位相差をもって位相検波した
信号により測定物の電位を測定する電位測定手段と、第
1交流電圧により生じる前記片持ち梁の振動波形の位相
から90°の位相差をもって位相検波した信号により前
記測定物の形状を測定する形状測定手段とを有すること
を特徴とする請求項2,3又は4記載の形状測定器。
7. A potential measuring means for measuring the potential of the object to be measured by a signal phase-detected with a phase difference of 90 ° from the phase of the vibration waveform of the cantilever generated by the second AC voltage, and the first AC voltage. The shape measuring device according to claim 2, 3 or 4, further comprising shape measuring means for measuring the shape of the object to be measured by a signal phase-detected with a phase difference of 90 ° from the phase of the vibration waveform of the cantilever. vessel.
【請求項8】 第2交流電圧により生じる片持ち梁の振
動波形と第1交流電圧により生じる前記片持ち梁の振動
波形との位相差が90°になるように第2交流電圧と第
1交流電圧の間の位相差を決定する位相差決定手段を有
することを特徴とする請求項9記載の形状測定器。
8. The second AC voltage and the first AC voltage so that the phase difference between the vibration waveform of the cantilever generated by the second AC voltage and the vibration waveform of the cantilever generated by the first AC voltage is 90 °. 10. The shape measuring instrument according to claim 9, further comprising phase difference determining means for determining a phase difference between the voltages.
【請求項9】 導電性探針に第1交流電圧と第2交流電
圧を交互に印加し、前記第1交流電圧が印加されている
ときに測定物の電位を測定し、第2交流電圧が印加され
ているときに前記測定物の形状を測定する電位形状測定
選択手段を有することを特徴とする請求項3,4,5,
6,7又は8記載の形状測定器。
9. A first alternating voltage and a second alternating voltage are alternately applied to the conductive probe, and the potential of the object to be measured is measured when the first alternating voltage is applied. 6. An electric potential shape measurement selecting means for measuring the shape of the object to be measured when being applied, 6.
The shape measuring instrument according to 6, 7 or 8.
【請求項10】 導電性探針に印加する電圧を測定物の
導電性基板に印加し、その導電性探針の電位を基準電位
としたことを特徴とする請求項1,2,3,4,5,
6,7,8又は9記載の形状測定器。
10. The voltage applied to the conductive probe is applied to the conductive substrate of the object to be measured, and the potential of the conductive probe is used as a reference potential. , 5,
The shape measuring instrument according to 6, 7, 8 or 9.
【請求項11】 第1交流電圧と第2交流電圧と直流電
圧のうち、いずれか2つを導電性探針に印加し、残りの
1つを測定物の導電性基板に印加する電圧印加制御手段
を有することを特徴とする請求項1,2,3,4,5,
6,7,8又は9記載の形状測定器。
11. A voltage application control for applying any two of a first AC voltage, a second AC voltage and a DC voltage to a conductive probe and applying the remaining one to a conductive substrate of a measured object. Means 1, 2, 3, 4, 5, characterized in that it has means.
The shape measuring instrument according to 6, 7, 8 or 9.
【請求項12】 第1交流電圧と第2交流電圧と直流電
圧のうち、いずれか2つを測定物の導電性基板に印加
し、残りの1つを導電性探針に印加する電圧印加制御手
段を有することを特徴とする請求項1,2,3,4,
5,6,7,8又は9記載の形状測定器。
12. A voltage application control in which any two of a first AC voltage, a second AC voltage and a DC voltage are applied to a conductive substrate of a measurement object, and the remaining one is applied to a conductive probe. Claims 1, 2, 3, 4, characterized in that it has means.
The shape measuring instrument according to 5, 6, 7, 8 or 9.
【請求項13】 第2交流電圧の周波数を片持ち梁の共
振周波数の2倍の周波数又はこの共振周波数とほぼ等し
い周波数の2倍の周波数に設定したことを特徴とする請
求項3,4,5,6,7,8,9,10,11又は12
記載の形状測定器。
13. The frequency of the second AC voltage is set to a frequency twice the resonance frequency of the cantilever or a frequency twice the resonance frequency substantially equal to the resonance frequency. 5, 6, 7, 8, 9, 10, 11 or 12
The shape measuring instrument described.
JP2001324119A 2001-10-22 2001-10-22 Shape measuring instrument Expired - Fee Related JP3452314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324119A JP3452314B2 (en) 2001-10-22 2001-10-22 Shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324119A JP3452314B2 (en) 2001-10-22 2001-10-22 Shape measuring instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09349993A Division JP3294662B2 (en) 1993-04-21 1993-04-21 Surface electrometer

Publications (2)

Publication Number Publication Date
JP2002195927A JP2002195927A (en) 2002-07-10
JP3452314B2 true JP3452314B2 (en) 2003-09-29

Family

ID=19140902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324119A Expired - Fee Related JP3452314B2 (en) 2001-10-22 2001-10-22 Shape measuring instrument

Country Status (1)

Country Link
JP (1) JP3452314B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064835A (en) * 2005-08-31 2007-03-15 Ricoh Co Ltd Surface potential evaluating system
JP4696022B2 (en) * 2006-05-09 2011-06-08 キヤノン株式会社 Probe microscope and measuring method using probe microscope
JP4831484B2 (en) * 2006-08-30 2011-12-07 セイコーインスツル株式会社 Potential difference detection method and scanning probe microscope
US8839461B2 (en) 2011-09-12 2014-09-16 National University Corporation Kanazawa University Potential measurement device and atomic force microscope

Also Published As

Publication number Publication date
JP2002195927A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
US6668627B2 (en) Sensor apparatus with magnetically deflected cantilever
US6422069B1 (en) Self-exciting and self-detecting probe and scanning probe apparatus
JP5813966B2 (en) Displacement detection mechanism and scanning probe microscope using the same
KR20070032936A (en) Resonant magnetometer device
JP3481720B2 (en) Surface potential measuring device
US8615811B2 (en) Method of measuring vibration characteristics of cantilever
JP2007232596A (en) Magnetic resonance force microscope
JP3452314B2 (en) Shape measuring instrument
JP3294662B2 (en) Surface electrometer
JP2005501260A (en) Sensor for non-contact electrostatic detector
JP4024451B2 (en) Scanning Kelvin probe microscope
JP2012093325A (en) Cantilever for atomic force microscope, atomic force microscope, and method of measuring interatomic force
Vyshatko et al. Fiber-optic based method for the measurements of electric-field induced displacements in ferroelectric materials
JP2001264355A (en) Acceleration sensor
JP3592655B2 (en) Surface electrometer and shape measuring instrument
JP3251049B2 (en) Surface potential and shape measuring instrument
JP6001728B2 (en) Displacement detection mechanism and scanning probe microscope using the same
JP3484429B2 (en) Force microscope
JP3453277B2 (en) Scanning probe microscope
JP3054509B2 (en) Scanning force microscope, electrometer, potential and shape measuring instrument
JP2003185555A (en) Frequency detecting method and scanning probe microscope using the same
JP3155326B2 (en) Surface potential and shape measuring instrument
WO2014162858A1 (en) Scanning probe microscope and scanning probe microscopy
JPH09119938A (en) Scanning probe microscope
JP3293725B2 (en) Surface electrometer and shape measuring instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees