JP3452161B2 - Hollow fiber artificial liver - Google Patents

Hollow fiber artificial liver

Info

Publication number
JP3452161B2
JP3452161B2 JP23917595A JP23917595A JP3452161B2 JP 3452161 B2 JP3452161 B2 JP 3452161B2 JP 23917595 A JP23917595 A JP 23917595A JP 23917595 A JP23917595 A JP 23917595A JP 3452161 B2 JP3452161 B2 JP 3452161B2
Authority
JP
Japan
Prior art keywords
hollow fiber
artificial liver
type artificial
blood
hepatocytes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23917595A
Other languages
Japanese (ja)
Other versions
JPH0956814A (en
Inventor
義人 筏
博夫 岩田
靖二 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP23917595A priority Critical patent/JP3452161B2/en
Publication of JPH0956814A publication Critical patent/JPH0956814A/en
Application granted granted Critical
Publication of JP3452161B2 publication Critical patent/JP3452161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は人工肝臓装置に関し、よ
り詳細には肝細胞或いは肝腫瘍由来の培養細胞を包含し
たゲルを中空糸内腔に内蔵する人工肝臓装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial liver device, and more particularly to an artificial liver device having a hollow fiber lumen containing a gel containing hepatocytes or cultured cells derived from liver tumor.

【0002】[0002]

【従来の技術】肝臓は、生命に必要な物質の代謝や合
成、更に毒性物質の解毒や***等の生体にとって必要不
可欠ないくつかの機能を行う臓器であり、その複雑(単
一でない)な働きのために、人工物によって肝臓の機能
全てを代行させようとする試みはいまだに成功していな
い。これまで、急性肝不全の患者を救うために、以下の
ような肝臓機能の一部を代行する人工肝臓装置が臨床で
使用されてきた。大別すると、活性炭を使用した吸着型
人工肝臓と血漿分離型人工肝臓であり、それぞれ長所と
短所を有していた。前者は全血灌流することが可能であ
り、血中の低分子物質は比較的除去し易いが、一方、中
・高分子の物質は除去しにくい特性を有していた。後者
は膜を介して、全血から血漿を分離して、新鮮な血漿を
補液するため、毒性物質の除去効率が低く、大量の新鮮
な血漿が必要であるという問題があった。
2. Description of the Related Art The liver is an organ that performs several functions essential for the living body, such as metabolism and synthesis of substances necessary for life, detoxification and excretion of toxic substances, and its complex (not single) Attempts to substitute all the functions of the liver by artificial bodies in order to work have not been successful. Up to now, in order to save patients with acute liver failure, artificial liver devices acting as a part of the following liver functions have been clinically used. When roughly classified, they are an adsorption-type artificial liver using activated carbon and a plasma-separation-type artificial liver, which have advantages and disadvantages, respectively. The former is capable of perfusing whole blood, and has a property that low molecular weight substances in blood are relatively easy to remove, while medium and high molecular weight substances are difficult to remove. The latter has a problem in that plasma is separated from whole blood through a membrane and fresh plasma is replenished, so that the removal efficiency of toxic substances is low and a large amount of fresh plasma is required.

【0003】上記のように、従来臨床使用されてきた人
工肝臓には解決できない欠点があり、また毒物の除去等
の肝臓のほんの一部の機能しか代行できない、毒物の除
去効果にも限界がある等の問題を抱えているため、併行
して肝細胞を包含するタイプの人工肝臓も研究されてい
る。例として浮遊肝細胞を利用したもの、中空糸内外に
肝細胞を包含したゲルを保持するもの等が提案されてき
た。しかし、これらも肝細胞の生存率、或いは増殖の制
御が困難という問題があり、解毒作用、必要な物質の代
謝活性や生合成等の期待する肝機能の代行の点で満足で
きるものではなかった。前記の、中空糸の外側に肝細胞
を包含したコラ−ゲンゲルを保持したものは特開昭53
−56897号公報に開示されており、中空糸の内側に
肝細胞のコラ−ゲンゲルを保持したものは特開平2−7
1755号公報に開示されている。これらは優れた特徴
を有するが、(肝細胞による)コラ−ゲンゲルの収縮や
コラ−ゲンによる肝細胞の過増殖等という欠点も有して
いた。前者のゲルの収縮は、その中に包含している肝細
胞の変性をもたらす恐れがあり、人工肝臓の機能を安定
に保持させる点から好ましくない。後者の肝細胞の過増
殖も安全性の点から軽視できない問題である。コラ−ゲ
ンゲル内では、肝細胞の増殖を制御できないためにゲル
内の肝細胞が過増殖し、中空糸膜から漏出して血液と直
接接触する危険性(特に中空糸にクラックやピンホ−ル
が生じた場合)を有していた。この肝細胞の増殖が制御
できなければ、異種動物の肝臓由来の細胞や肝腫瘍由来
の培養細胞(以下、腫瘍肝細胞という)は、血液中への
混入の危険性を有するために使用できない。そのため、
人工肝臓に使用できる肝細胞は大幅に限定されることに
なる。
As described above, the artificial livers that have been clinically used in the past have drawbacks that cannot be solved, and only a part of the functions of the liver such as the removal of toxic substances can be substituted, and the toxic substance removing effect is also limited. Due to such problems as described above, a type of artificial liver that includes hepatocytes in parallel has also been studied. As examples, those using floating hepatocytes, those retaining a gel containing hepatocytes inside and outside the hollow fiber, and the like have been proposed. However, these also have the problem that it is difficult to control the survival rate or proliferation of hepatocytes, and they were not satisfactory in terms of detoxification, the metabolic activity of necessary substances, and the substitution of expected liver functions such as biosynthesis. . The above-mentioned one in which collagen gel containing hepatocytes is retained on the outside of the hollow fiber is disclosed in JP-A-53 / 1978.
Japanese Patent Application Laid-Open No. 2-6897 discloses a method in which a collagen gel of hepatocytes is retained inside a hollow fiber.
It is disclosed in Japanese Patent No. 1755. Although these have excellent characteristics, they also have drawbacks such as contraction of collagen gel (due to hepatocytes) and overgrowth of hepatocytes due to collagen. The former gel contraction may cause degeneration of the hepatocytes contained therein, which is not preferable from the viewpoint of stably maintaining the function of the artificial liver. The latter overgrowth of hepatocytes is also a problem that cannot be neglected in terms of safety. In collagen gel, since the proliferation of hepatocytes cannot be controlled, hepatocytes in the gel over-proliferate and may leak from the hollow fiber membrane and come into direct contact with blood (especially if the hollow fiber has cracks or pinholes). Had occurred). If the proliferation of the hepatocytes cannot be controlled, cells derived from the liver of a heterologous animal or cultured cells derived from liver tumor (hereinafter referred to as tumor hepatocytes) cannot be used because they have a risk of being mixed into blood. for that reason,
The hepatocytes that can be used in the artificial liver will be greatly limited.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明が解決
しようとする課題は、肝細胞等をゲル内に包含した人工
肝臓において、血液−細胞間の物質移動が容易であり、
且つこの物質移動や血液と前記細胞の相互作用の安定し
た装置を提供することであり、また該装置を使用するこ
とによって、前記細胞が血液中に混入する等の使用時の
危険性の少ない装置を提供することにある。
Therefore, the problem to be solved by the present invention is that in an artificial liver in which hepatocytes and the like are contained in a gel, blood-cell mass transfer is easy,
The object of the present invention is to provide a device having stable mass transfer and interaction between blood and the cells, and by using the device, there is little risk of the cells being mixed in the blood during use. To provide.

【0005】[0005]

【課題を解決するための手段】本発明において、多孔質
の中空糸内腔に肝細胞或いは肝腫瘍由来の培養細胞の包
含したアガロ−スゲルを内蔵した人工肝臓であって、該
中空糸の外部に血液を灌流し、前記細胞が前記アガロ−
スゲルを内蔵した中空糸の膜を介して血液と接触するこ
とを特徴とする中空糸型人工肝臓によって、上記課題を
解決した。
According to the present invention, there is provided an artificial liver in which agarose gel containing hepatocytes or cultured cells derived from liver tumor is incorporated in a porous hollow fiber lumen, the hollow fiber being outside the hollow fiber. Blood is perfused and the cells are
The above-mentioned problems have been solved by a hollow fiber type artificial liver characterized by being in contact with blood through a hollow fiber membrane containing sgel.

【0006】[0006]

【作用】本発明で使用するアガロ−スゲルはコラ−ゲン
ゲルに比較して、含水率のコントロ−ルが容易に且つ広
範囲にできるため、血液−細胞間の物質移動の異なるも
の(小さいものから、大きなものまで)を簡単に作製す
ることができる。また、細胞によるゲル収縮が抑えられ
るので、肝細胞等の変性が抑制され、機能が長期間、安
定して保持される。更にアガロ−スゲルは、コラ−ゲン
ゲルのように細胞を基材に付着させて増殖を行わせるも
のではなく、単に細胞を包含した状態で保持しているだ
けであるから、肝細胞等は生存しているけれども、増殖
はしにくい。従って、ゲル内の肝細胞が過増殖して中空
糸外部に漏出したり、肝細胞等が直接血液と接触する可
能性はほとんどない。
Compared with collagen gel, the agarose gel used in the present invention can easily and widely control the water content, so that blood-cell mass transfer is different (from small to (Up to large ones) can be easily manufactured. Further, since gel contraction by cells is suppressed, denaturation of hepatocytes and the like is suppressed, and the function is stably maintained for a long period of time. Furthermore, agarose gel does not allow cells to adhere to a substrate for growth like collagen gel, but merely retains cells in a contained state, so that hepatocytes and the like survive. However, it is difficult to grow. Therefore, there is almost no possibility that the hepatocytes in the gel will overgrow and leak to the outside of the hollow fiber, or the hepatocytes or the like will come into direct contact with blood.

【0007】[0007]

【実施例】以下に、本発明の具体的な実施例を示す。図
1は本発明の中空糸型人工肝臓の一実施例であり、1が
その中空糸型人工肝臓、2は血液流入口、3は血液流出
口、4は培養液流入口、5は培養液流出口である。6は
中空糸で、10は中空糸を外包するハウジングである。
図2は人工肝臓1内の中空糸6を軸方向に分割した断面
図であり、中空糸6内腔に肝細胞(或いは腫瘍肝細胞)
7の包含したアガロ−スゲル8を内蔵している。本発明
の人工肝臓の特徴となる構成は、多孔質の中空糸6内腔
に肝細胞等、肝臓の機能の一部を代行し得る細胞の包含
したアガロ−スゲル8を内蔵したことにあり、更に中空
糸6の内径、膜厚、孔径、(血液と接触する)有効表面
積や、肝細胞7等の種類とその包含密度、アガロ−スゲ
ル8の種類とその含水率等の構成要素を選択し、組み合
わせることによって、最適な血液浄化の効果を得るもの
である。実施例における血液浄化作用は人工肝臓1を構
成する上記構成要素によって、以下に示すように影響さ
れる。
EXAMPLES Specific examples of the present invention will be shown below. FIG. 1 shows an embodiment of the hollow fiber type artificial liver of the present invention, 1 is the hollow fiber type artificial liver, 2 is a blood inlet, 3 is a blood outlet, 4 is a culture solution inlet, 5 is a culture solution. It is an outlet. 6 is a hollow fiber, and 10 is a housing that encloses the hollow fiber.
FIG. 2 is a cross-sectional view in which the hollow fiber 6 in the artificial liver 1 is axially divided, and hepatocytes (or tumor hepatocytes) are placed in the hollow fiber 6 lumen.
7 incorporated agarose gel 8 incorporated. The characteristic constitution of the artificial liver of the present invention is that the agarose gel 8 containing cells capable of acting a part of the function of the liver such as hepatocytes is incorporated in the inner cavity of the porous hollow fiber 6, Further, constituent elements such as the inner diameter of the hollow fiber 6, the membrane thickness, the pore diameter, the effective surface area (in contact with blood), the type of hepatocyte 7 and its inclusion density, the type of agarose gel 8 and its water content, etc. are selected. By combining them, the optimum blood purification effect is obtained. The blood purification action in the examples is influenced by the above-mentioned components constituting the artificial liver 1 as described below.

【0008】まず、第1にアガロ−スゲルを内蔵し、且
つ血液と直接接触する中空糸について述べる。中空糸の
膜素材は比較的簡単に多孔質に製膜することができ、製
膜したときに適度の強度を有する樹脂であれば良いが、
例えばポリエチレン、ポリプロピレン、ポリスルホン等
が好ましい。中空糸の膜厚は15〜100μm、膜の内
径は200〜1000μmが適当であり、より好ましく
はそれぞれ膜厚が25〜70μm、内径が200〜40
0μmのものである。中空糸の内径や膜厚は肝細胞等の
細胞と血液との間の間接的接触効率、物質移動効率に影
響を及ぼす。例えば、内径が大き過ぎると細胞と血液と
の中空糸膜を介しての接触効率が低下するが、内径が小
さ過ぎると包含する細胞数が減少し、有効な血液浄化作
用を行うことができない。また中空糸の膜厚が小さ過ぎ
ると、使用する際に必要な強度を保持できず、中空糸の
クラックやピンホ−ル等を生じ易くなる。逆に膜厚が大
き過ぎると、中空糸膜やアガロ−スゲルを介して血液と
細胞が相互作用しにくくなる。(細胞と血液の間の物質
移動の効率が悪くなって、血液浄化作用が低下する)。
中空糸膜の孔径も血液と細胞の相互作用に大きく影響
し、膜の孔径が大き過ぎると透過性は向上するけれど
も、血液が中空糸から漏出したり、細胞が膜を通過して
血液中に侵入する危険性(本発明のようなハイブリッド
人工肝臓では、入手のし易さのため、腫瘍肝細胞や動物
の肝細胞等を積極的に利用する方法が研究されている)
がある。反対に孔径が小さ過ぎると、血液と細胞の間の
物質移動効率が減少し、その結果血液浄化作用が低下す
る。従って、中空糸膜の孔径は0.1〜0.5μmのも
のが望ましく、その結果、得られる中空糸の膜透過性と
して、アルブミンふるい係数は1のものが望ましい。前
記のふるい係数を有するものは、アルブミンに結合した
毒素も解毒できるので有効である。また、血液と接触で
きる中空糸の(血液接触)有効表面積も重要であり、こ
れは中空糸の内径、膜厚、本数、ハウジングの大きさ等
によって、規定されるものである。ただし、人体に使用
する人工肝臓においては、理論的に必要な中空糸の(血
液接触)有効表面積は、2m以上であろうと考えら
れる。というのは、一般的に人間に使用する人工肝臓に
おいて、最低限必要な細胞は健常人の生体肝の有する細
胞数の1/10(2.5×1010個)といわれてお
り、その細胞が血液と有効に相互作用するのに上記の有
効表面積が必要のためだからである。有効表面積の範囲
としては、アガロ−スに包含される肝細胞等のの包含密
度にもよるが、細胞の生存性を損なわない(後に記述す
るが)程度の細胞包含密度で包含したならば2〜6m
が適当であろうと考えられる。
First, a hollow fiber which contains agarose gel and is in direct contact with blood will be described. The hollow fiber membrane material can be formed into a porous film relatively easily, and a resin having an appropriate strength when the film is formed may be used.
For example, polyethylene, polypropylene, polysulfone and the like are preferable. The hollow fiber has a film thickness of 15 to 100 μm, and the inner diameter of the film is preferably 200 to 1,000 μm, more preferably 25 to 70 μm and the inner diameter of 200 to 40, respectively.
The thickness is 0 μm. The inner diameter and film thickness of the hollow fibers affect the indirect contact efficiency between cells such as hepatocytes and blood and the mass transfer efficiency. For example, if the inner diameter is too large, the contact efficiency between cells and blood via the hollow fiber membrane is lowered, but if the inner diameter is too small, the number of cells contained is reduced, and an effective blood purification action cannot be performed. On the other hand, if the thickness of the hollow fiber is too small, the strength required during use cannot be maintained and cracks, pinholes, etc. of the hollow fiber are likely to occur. On the contrary, if the film thickness is too large, it becomes difficult for blood and cells to interact with each other through the hollow fiber membrane or the agarose gel. (The efficiency of mass transfer between cells and blood becomes poor, and the blood purification effect decreases).
The pore size of the hollow fiber membrane also greatly affects the interaction between blood and cells, and if the pore size of the membrane is too large, the permeability improves, but blood leaks from the hollow fiber or cells pass through the membrane and enter the blood. Risk of invasion (For hybrid artificial livers such as those of the present invention, methods for positively utilizing tumor hepatocytes, animal hepatocytes, etc. have been studied because of their easy availability)
There is. On the other hand, if the pore size is too small, the mass transfer efficiency between blood and cells is reduced, and as a result, the blood purification action is reduced. Therefore, the pore diameter of the hollow fiber membrane is preferably 0.1 to 0.5 μm, and as a result, the membrane permeability of the resulting hollow fiber is preferably one having an albumin sieving coefficient of 1. Those having the above-mentioned sieving coefficient are effective because they can detoxify the toxin bound to albumin. In addition, the effective surface area of blood (contact with blood) that can come into contact with blood is also important, which is defined by the inner diameter, thickness, number of hollow fibers, housing size, and the like. However, in the artificial liver used for the human body, it is considered that the theoretically necessary effective surface area of blood fiber (blood contact) will be 2 m 2 or more. This is because it is generally said that the minimum required number of cells in an artificial liver used for humans is 1/10 (2.5 × 10 10 ) of the number of cells that a living human liver has. Because the effective surface area is required for effective interaction with blood. The range of the effective surface area depends on the inclusion density of hepatocytes and the like contained in agarose, but if it is included at such a cell inclusion density that does not impair cell viability (described later), 2 ~ 6m
2 is considered appropriate.

【0009】第2に、血液処理するための細胞の種類
と、(アガロ−スに包含させる)密度、細胞の絶対数
(絶対量)が重要である。細胞の種類として、異種或い
は同種の動物の肝臓由来の細胞や、継代培養可能な肝腫
瘍由来の細胞等がその有効性、生存性の点から適当であ
るが、特に前者の動物由来の肝細胞が望ましい。アガロ
−ス内での肝細胞の包含密度は、肝臓細胞の機能性と生
存性の点から1×10〜1×10個/cm
望ましい。
Secondly, the type of cells for blood treatment, the density (included in agarose), and the absolute number (absolute amount) of cells are important. As the type of cells, cells derived from livers of animals of the same or different species, cells derived from liver tumors that can be subcultured, etc. are suitable in terms of their effectiveness and viability, but livers derived from the former animals are particularly preferable. Cells are preferred. The inclusion density of hepatocytes in the agarose is preferably 1 × 10 7 to 1 × 10 8 cells / cm 3 from the viewpoint of liver cell functionality and viability.

【0010】第3に、中空糸において既述したような理
由で、肝細胞を包含しているアガロ−スゲルの透過性や
強度(細胞を保持できるゲル強度)も中空糸と同様に重
要である。特にアガロ−スゲルの含水率が上記の透過性
やゲル強度に影響する。アガロ−スゲルの含水率は90
%以上が望ましく、これ以上小さいと粘度が大きくなっ
て取扱いにくく、また透過性が悪く血液浄化効率が低下
する。しかし、含水率があまり大き過ぎると機械的強度
が低下し、細胞を均一に包含することが困難になる。ま
た、生細胞をゲルに包含しなくてはならないので、使用
するアガロ−スゲルは低温ゲル化アガロ−スが適当であ
る。
Thirdly, the permeability and strength (gel strength capable of retaining cells) of the agarose gel containing hepatocytes are as important as those of the hollow fiber for the reason described above in the hollow fiber. . In particular, the water content of the agarose gel affects the above permeability and gel strength. The water content of agarose gel is 90.
% Or more is desirable, and if it is less than this, the viscosity becomes large and it is difficult to handle, and the permeability is poor and the blood purification efficiency is reduced. However, if the water content is too high, the mechanical strength decreases, and it becomes difficult to uniformly contain cells. Since alive cells must be included in the gel, low temperature gelled agarose is suitable as the agarose gel to be used.

【0011】実施例1 7週令の雄のウィスタ−ラットから肝細胞をコラゲナ−
ゼ灌流法によって遊離させた。次に氷冷したHanks 液に
よる洗浄と低速遠心を数回繰り返して肝細胞を精製、単
離した。エリスロシン染色で測定した単離肝細胞の生存
率は80〜90%であった。得られた肝細胞を350r
pmで2分間遠心して遠沈管の底に集め、約0.6ml
のこの肝細胞ペレットと、予め高圧蒸気滅菌後37℃に
加温しておいた1%アガロ−ス/PBS(−)水溶液約
0.8mlとをよく混和して、肝細胞懸濁液を得た。ア
ガロ−スにはゲル化点温度が29℃の低温ゲル化アガロ
−ス(清水食品製)を使用した。一方、アガロ−スゲル
を内蔵する中空糸の素材はポリエチレン(三菱レ−ヨン
製)で、内径は270μm、膜厚は52μm、ポアサイ
ズは0.2μmであり、内径が8mmのハウジングの中
に、有効長が10cmの前記中空糸を208本束ねてミ
ニモジュ−ルを作製した。このミニモジュ−ルの膜面積
は180cmである。前記の肝細胞懸濁液を注射器
に吸い取り、ミニモジュ−ルの中空糸内部に注入した。
モジュ−ル内に封入した細胞数は3〜4.8×10
個である。懸濁液注入後、ミニモジュ−ルを4℃で5分
間放置し、アガロ−ス溶液をゲル化させた。内容液がゲ
ル化したミニモジュ−ルを灌流培養装置に接続し、灌流
培養を行った。灌流培地はWilliamsE培地に10%FC
Sと、100Unitペニシリン/ml、100μgストレ
プトマイシン/ml,1μgファンギゾン/ml、1×
10−8Mデキサメサゾン、1×10−8Mインスリ
ン、5Unitアプロチニン/mlを添加したものを使用し
た。灌流速度は3〜4ml/min、灌流培地量は50
mlである。
Example 1 Hepatocytes from 7-week-old male Wistar rats were subjected to collagenase.
It was released by the Zeperfusion method. Next, washing with ice-cold Hanks solution and low speed centrifugation were repeated several times to purify and isolate hepatocytes. The survival rate of the isolated hepatocytes measured by erythrosin staining was 80 to 90%. 350 r of the obtained hepatocytes
Centrifuge at pm for 2 minutes and collect at the bottom of the centrifuge tube, about 0.6 ml
This hepatocyte pellet was thoroughly mixed with about 0.8 ml of a 1% agarose / PBS (-) aqueous solution which had been sterilized by high pressure steam and heated to 37 ° C in advance to obtain a hepatocyte suspension. It was As the agarose, a low-temperature gelled agarose (manufactured by Shimizu Foods) having a gelling point temperature of 29 ° C. was used. On the other hand, the material of the hollow fiber containing the agarose gel is polyethylene (made by Mitsubishi Rayon), the inner diameter is 270 μm, the film thickness is 52 μm, the pore size is 0.2 μm, and it is effective in the housing with the inner diameter of 8 mm. A mini module was prepared by bundling 208 hollow fibers having a length of 10 cm. The membrane area of this mini-module is 180 cm 2 . The above-mentioned hepatocyte suspension was sucked up by a syringe and injected inside the hollow fiber of the mini module.
The number of cells enclosed in the module is 3 to 4.8 × 10 7.
It is an individual. After injecting the suspension, the mini module was allowed to stand at 4 ° C. for 5 minutes to gel the agarose solution. The mini-module in which the content liquid gelled was connected to a perfusion culture device, and perfusion culture was performed. Perfusion medium is Williams E medium with 10% FC
S, 100 Unit penicillin / ml, 100 μg streptomycin / ml, 1 μg fungizone / ml, 1 ×
The one to which 10 −8 M dexamethasone, 1 × 10 −8 M insulin, and 5 Unit aprotinin / ml were added was used. Perfusion rate is 3-4 ml / min, perfusion medium volume is 50
ml.

【0012】モジュ−ルの機能評価として、灌流培地を
5mM塩化アンモニウム添加Hanks液に変えて1hr灌
流したときの溶液中に産生された尿素量を測定した。尿
素の産生速度は、培養を開始してから6hr後で約70
μg/hr・10 cells、120hr後で約30μ
g/hr・10 cellsであり、長期間にわたって尿
素合成能を保持していた。
As a functional evaluation of the module, the amount of urea produced in the solution was measured when the perfusion medium was changed to Hanks solution containing 5 mM ammonium chloride and perfused for 1 hr. The production rate of urea is about 70 after 6 hours from the start of culture.
μg / hr · 10 7 cells, about 30μ after 120hr
It was g / hr · 10 7 cells and retained the urea synthesizing ability for a long period of time.

【0013】[0013]

【発明の効果】「発明が解決しようとする課題」の項で
既述したように、本発明による中空糸型人工肝臓は、血
液−ゲル間の物質移動が容易で且つ安定しており、且つ
該人工肝臓を使用しても肝細胞や腫瘍肝細胞が血液中に
混入する等の使用時の危険性が少ない。また、上記以外
にも以下のような基本的な種々の効果を得ることができ
る。 肝細胞等を装置内に包含して生存させることで、生体
肝の有する様々な機能を長期間、安定して代行すること
が可能となる。 効率を低下させずに、脆弱な高含水率のゲルを補強で
きる。 中空糸外部で血球成分と血漿成分を分離するため、全
血灌流の回路内に該装置を組み込むことが可能である。
そのため、体外循環回路全体が簡略化できる。 孔径の大きい中空糸膜を使用することにより、大
(高)分子量領域の毒物或いは血中アルブミンと結合し
た毒物の除去が可能である。
As described above in the section "Problems to be solved by the invention", the hollow fiber type artificial liver according to the present invention has easy and stable mass transfer between blood and gel, and Even if the artificial liver is used, there is little risk of use such as contamination of hepatocytes or tumor hepatocytes in blood. In addition to the above, the following various basic effects can be obtained. By including the hepatocytes and the like in the device and allowing them to survive, various functions of the living liver can be stably substituted for a long period of time. It can reinforce brittle high water content gels without compromising efficiency. Since the blood cell component and the plasma component are separated outside the hollow fiber, it is possible to incorporate the device in the circuit of whole blood perfusion.
Therefore, the whole extracorporeal circuit can be simplified. By using a hollow fiber membrane having a large pore size, it is possible to remove a poison in a large (high) molecular weight region or a poison bound to blood albumin.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の中空糸型人工肝臓の一実施例を示す正
面図である。
FIG. 1 is a front view showing an embodiment of the hollow fiber type artificial liver of the present invention.

【図2】本発明の肝細胞を包含したアガロ−スゲル及び
アガロ−スゲルを内臓した中空糸を示す拡大部分の断面
図である。
FIG. 2 is a sectional view of an enlarged portion showing an agarose gel containing hepatocytes of the present invention and a hollow fiber containing the agarose gel.

【符号の説明】[Explanation of symbols]

1.中空糸型人工肝臓 2.血液流入口 3.血液流出口 4.培養液流入口 5.培養液流出口 6.中空糸 7.肝細胞(腫瘍肝細胞) 8.アガロ−スゲル 9.多孔質膜(中空糸の) 10.ハウジング 1. Hollow fiber type artificial liver 2. Blood inlet 3. Blood outlet 4. Culture fluid inlet 5. Culture fluid outlet 6. Hollow fiber 7. Hepatocytes (tumor hepatocytes) 8. Agarose gel 9. Porous membrane (of hollow fiber) 10. housing

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−18179(JP,A) 特開 昭59−67965(JP,A) 特開 昭58−97366(JP,A) 特開 昭54−147697(JP,A) 特開 平5−168707(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61M 1/02 - 1/36 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-60-18179 (JP, A) JP-A-59-67965 (JP, A) JP-A-58-97366 (JP, A) JP-A-54- 147697 (JP, A) JP-A-5-168707 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A61M 1/02-1/36

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質の中空糸内腔に肝細胞或いは肝腫
瘍由来の培養細胞の包含したアガロ−スゲルを内蔵した
人工肝臓であって、該中空糸の外部に血液を灌流し、前
記細胞が前記アガロ−スゲルを内蔵した中空糸の膜を介
して血液と接触することを特徴とする中空糸型人工肝
臓。
1. An artificial liver in which agarose gel containing hepatocytes or cultured cells derived from liver tumor is contained in a porous hollow fiber lumen, and blood is perfused outside the hollow fiber to obtain the cells. Is in contact with blood through the hollow fiber membrane containing the agarose gel.
【請求項2】 前記中空糸の膜素材がポリエチレンであ
る請求項1に記載の中空糸型人工肝臓。
2. The hollow fiber type artificial liver according to claim 1, wherein the membrane material of the hollow fiber is polyethylene.
【請求項3】 前記中空糸の内径が200〜1000μ
mの範囲である請求項1または2に記載の中空糸型人工
肝臓。
3. The inner diameter of the hollow fiber is 200 to 1000 μm.
The hollow fiber type artificial liver according to claim 1 or 2, which has a m range.
【請求項4】 前記中空糸の内径が200〜400μm
の範囲である請求項1または2に記載の中空糸型人工肝
臓。
4. The hollow fiber has an inner diameter of 200 to 400 μm.
The hollow fiber type artificial liver according to claim 1 or 2, which is within the range.
【請求項5】 前記中空糸の膜厚が15〜100μmで
ある請求項1〜4に記載の中空糸型人工肝臓。
5. The hollow fiber type artificial liver according to claim 1, wherein the hollow fiber has a film thickness of 15 to 100 μm.
【請求項6】 前記中空糸の膜厚が25〜70μmであ
る請求項1〜4に記載の中空糸型人工肝臓。
6. The hollow fiber type artificial liver according to claim 1, wherein the hollow fiber has a film thickness of 25 to 70 μm.
【請求項7】 前記中空糸の多孔質膜の孔径が0.1〜
0.5μmである請求項1〜6に記載の中空糸型人工肝
臓。
7. The pore diameter of the porous membrane of the hollow fiber is 0.1-0.1.
The hollow fiber type artificial liver according to claim 1, which has a diameter of 0.5 μm.
【請求項8】 前記中空糸膜のアルブミンふるい係数が
1である請求項1〜7に記載の中空糸型人工肝臓。
8. The hollow fiber type artificial liver according to claim 1, wherein the hollow fiber membrane has an albumin sieving coefficient of 1.
【請求項9】 前記中空糸の血液接触有効表面積が2.
0〜6.0mである請求項1〜8に記載の中空糸型
人工肝臓。
9. The effective blood contact surface area of the hollow fiber is 2.
It is 0-6.0 m < 2 >, The hollow fiber type artificial liver of Claims 1-8.
【請求項10】 前記肝細胞が異種或いは同種の動物の
肝臓由来のものである請求項1〜9に記載の中空糸型人
工肝臓。
10. The hollow fiber type artificial liver according to claim 1, wherein the hepatocytes are derived from livers of animals of different species or the same species.
【請求項11】 前記アガロ−スゲル内における前記細
胞の包含密度が1×10〜1×10個/cm
である請求項1〜10に記載の中空糸型人工肝臓。
11. The inclusion density of the cells in the agarose gel is 1 × 10 7 to 1 × 10 8 cells / cm 2.
The hollow fiber type artificial liver according to claim 1, which is 3 .
【請求項12】 前記アガロ−スゲルが低温ゲル化アガ
ロ−スである請求項1〜11に記載の中空糸型人工肝
臓。
12. The hollow fiber type artificial liver according to claim 1, wherein the agarose gel is low temperature gelled agarose.
【請求項13】 前記アガロ−スゲルの含水率が90%
以上である請求項1〜12に記載の中空糸型人工肝臓。
13. The water content of the agarose gel is 90%.
It is the above, The hollow fiber type artificial liver of Claims 1-12.
JP23917595A 1995-08-24 1995-08-24 Hollow fiber artificial liver Expired - Fee Related JP3452161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23917595A JP3452161B2 (en) 1995-08-24 1995-08-24 Hollow fiber artificial liver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23917595A JP3452161B2 (en) 1995-08-24 1995-08-24 Hollow fiber artificial liver

Publications (2)

Publication Number Publication Date
JPH0956814A JPH0956814A (en) 1997-03-04
JP3452161B2 true JP3452161B2 (en) 2003-09-29

Family

ID=17040845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23917595A Expired - Fee Related JP3452161B2 (en) 1995-08-24 1995-08-24 Hollow fiber artificial liver

Country Status (1)

Country Link
JP (1) JP3452161B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553858B2 (en) 1999-08-25 2004-08-11 東洋紡績株式会社 Cell culture module having a vascular network-like structure
WO2013047639A1 (en) 2011-09-27 2013-04-04 公立大学法人横浜市立大学 Method for producing tissue and organ
EP3009506B1 (en) 2013-06-10 2020-02-19 Corning Incorporated Tissue structure and manufacturing method therefor
JP6560199B2 (en) 2014-05-30 2019-08-14 コーニング インコーポレイテッド Culture method and cell mass

Also Published As

Publication number Publication date
JPH0956814A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
Dixit et al. Restoration of liver function in Gunn rats without immunosuppression using transplanted microencapsulated hepatocytes
Stamatialis et al. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering
US5116494A (en) Artificial pancreatic perfusion device with temperature sensitive matrix
US3725113A (en) Blood compatible microencapsulated detoxicants and method for making
Dixit Development of a bioartificial liver using isolated hepatocytes
JP2000509979A (en) Diffusion gradient bioreactor and extracorporeal liver device
JPH08504615A (en) Implantable and refillable biohybrid artificial pancreas and refilling method thereof
Flendrig et al. Semipermeable hollow fiber membranes in hepatocyte bioreactors: a prerequisite for a successful bioartificial liver?
JPH10506806A (en) Artificial liver device and method
US20170245976A1 (en) Implantable bioreactor for delivery of paracrine factors
JPS61353A (en) Drug administration apparatus
Dixit et al. Artificial liver support: state of the art
WO2007092735A2 (en) An extracorporeal cell-based therapeutic device and delivery system
Gerlach et al. Hybrid liver support system in a short term application on hepatectomized pigs
Rozga et al. Artificial liver evolution and future perspectives
JP3452161B2 (en) Hollow fiber artificial liver
Mito Hepatic assist: present and future
JP3089299B2 (en) Neovascular bed forming tool used to create capillary-rich tissue in vivo
Chamuleau Bioartificial liver support anno 2001
JPH06510035A (en) Method of manufacturing biocompatible capsules containing cells
Dixit et al. Repeated transplantation of microencapsulated hepatocytes for sustained correction of hyperbilirubinemia in Gunn rats
WO2003013588A1 (en) Kidney regeneration material comprising cells and cell growth factor
JPS621731B2 (en)
JP2001087381A (en) New extracorporeal circulation system and artificial internal organ assisting system using the same
JP4195354B2 (en) Bioartificial pancreas module and bioartificial pancreas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees