JP3445916B2 - Water treatment equipment - Google Patents

Water treatment equipment

Info

Publication number
JP3445916B2
JP3445916B2 JP08803197A JP8803197A JP3445916B2 JP 3445916 B2 JP3445916 B2 JP 3445916B2 JP 08803197 A JP08803197 A JP 08803197A JP 8803197 A JP8803197 A JP 8803197A JP 3445916 B2 JP3445916 B2 JP 3445916B2
Authority
JP
Japan
Prior art keywords
water
flow rate
filtration membrane
filtered
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08803197A
Other languages
Japanese (ja)
Other versions
JPH10277549A (en
Inventor
治雄 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP08803197A priority Critical patent/JP3445916B2/en
Publication of JPH10277549A publication Critical patent/JPH10277549A/en
Application granted granted Critical
Publication of JP3445916B2 publication Critical patent/JP3445916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、濾過膜モジュール
で被処理水を濾過して濾過水貯槽に貯え、該濾過水貯槽
内の濾過水を必要箇所に配水する水処理装置に関し、特
に、濾過水貯槽内の水位に応じて濾過水の濾過水貯槽内
への流入量を制御することにより、濾過膜モジュールの
長期安定運転を可能にした水処理装置に関する。 【0002】 【従来の技術】濾過膜モジュールを備えた水処理装置
は、工業用水処理やダム水の浄化等に利用されており、
例えば、濾過膜モジュールで処理された濾過水を一旦濾
過水貯槽に貯え、該貯槽から必要箇所に配水する。 【0003】濾過膜モジュールを透過して貯槽内に流入
する濾過水量の制御は、一般に、ポンプのオン・オフ運
転によって行われ、濾過膜モジュールを通過する濾過水
の流量は、濾過水を利用する設備の利用水量に従って、
設備設計時に計画流量として定められ一定値に維持され
る。一般に濾過膜モジュールを有する水処理設備では、
濾過水貯槽の水位が上昇して所定水位に達した時点で濾
過膜モジュールの運転を停止するが、運転中は常に上記
計画流量で濾過を行う。そして、所定時間濾過を行って
差圧が所定値に上昇した場合は、濾過水を濾過膜モジュ
ールの下流側から上流側に逆流させて濾過膜モジュール
を洗浄する、いわゆる逆洗が行われる。逆洗により、濾
過膜モジュールに付着した懸濁物質等の不純物が除去さ
れて、再び濾過膜モジュールの運転が開始される。 【0004】しかし、濾過膜に付着した懸濁物質等の不
純物は、上述のような通常の逆洗によってはこれを完全
に除去することができず、濾過膜モジュールを長期間使
用するうちに徐々に膜面に蓄積して濾過膜が目詰まりを
起こす。このような状態に至った場合、濾過膜を取り外
し、特別な化学薬品を用いて洗浄処理を行う。 【0005】 【発明が解決しようとする課題】しかしながら、上述の
ような化学薬品洗浄を繰り返すと、膜の化学劣化が徐々
に進行して遂には使用不可能となり、膜を交換せざるを
得なくなる。 【0006】したがって、濾過膜モジュールを備えた水
処理装置においては、薬品洗浄を要するような膜の目詰
まりを極力防止して濾過膜モジュールの薬品洗浄に至る
までの間隔をなるべく長くし、薬品洗浄頻度を少なくす
ることが重要である。 【0007】上述のような背景のもとに、本発明者等は
濾過膜の目詰まりを抑制する方法について鋭意研究を重
ねた結果、濾過膜の目詰まりの程度は濾過膜を透過する
濾過水の流束(単位膜面積、単位時間当たりの流量)に
よって影響され、同一容量の濾過水を製造する場合に、
流束が低い方が目詰まりしにくいことを見出した。 【0008】本発明は上記知見に基づいてなされたもの
であり、濾過膜モジュールの運転に際して、濾過膜を透
過する濾過水の流束を低く抑えることにより濾過膜の目
詰まりを極力抑制して、薬品洗浄の頻度及び膜交換の頻
度を低減することができ、延いては薬品コスト、膜交換
コスト等の運転コストやメンテナンス頻度を低減するこ
とができる水処理装置を提供することを目的とする。 【0009】 【課題を解決するための手段】上記目的を達成するた
め、本発明に係る水処理装置は、被処理水を濾過処理し
濾過水として供給する濾過膜モジュールと、前記濾過水
を貯留する濾過水貯槽と、該濾過水貯槽から必要箇所に
濾過水を配水する配水装置とを備える水処理装置におい
て、前記濾過水貯槽内の水位を検出する水位検出手段
と、前記濾過水貯槽に流入する濾過水に対して、前記水
位検出手段で検出された水位が第1の水位以下のときに
第1の流量を設定し、水位が前記第1の水位よりも高く
第2の水位よりも低いときに前記第1の流量よりも低い
第2の流量を設定し、水位が前記第2の水位よりも高い
ときに零流量を設定する濾過水流量制御手段とを備える
ことを特徴とする。 【0010】本発明の水処理装置は、濾過水流量制御手
段によって、濾過水貯槽の水位が第1の水位よりも低下
した場合には、濾過水貯槽に流入する濾過水流量を予め
設定された大きな第1の流量に設定し、濾過水貯槽の水
位が第1の水位よりも高いときに濾過水流量を第1の流
量よりも低い第2の流量に設定する構成を採用したこと
により、第1の流量が設定されるときには、必要な濾過
水の流量を充分に確保すると共に、第2の流量の設定に
よって、濾過膜モジュールの平均濾過水量を従来より低
くし、濾過膜への不純物の付着を抑制することができ
る。 【0011】以下、これについて詳しく説明すると、例
えば濾過膜モジュールを備えた浄水処理設備において
は、一般に、一日最大配水量(年間の一日配水量のうち
最大のもの。一日最大給水量とも言う)、あるいはこれ
より幾分大きな水量を計画処理水量とし、これを基準と
して濾過膜モジュールの設備容量が決定されるが、実際
には上記計画処理水量で使用先に配水されるのは年間の
うちの極く少ない日数であり、大部分の期間は上記計画
処理水量より少ない水量で配水される。 【0012】したがって、通常は濾過膜モジュールの濾
過能力にかなりの余裕があるが、このような場合であっ
ても、濾過膜モジュールは計画処理水量に見合った流量
(以下、これを計画流量という)で運転され、実配水量
が計画処理水量より少くなった分については、濾過水を
一時貯留する濾過水貯槽の水位に応じて濾過膜モジュー
ルをオン・オフ運転することによって調節していた。す
なわち、濾過水貯槽が所定の水位まで上昇するまでは濾
過膜モジュールは上記計画流量の一定流量で運転され、
濾過水貯槽が所定の水位に達すると濾過膜モジュールの
運転を停止するという運転方法で運転されていた。 【0013】ところで、上記計画流量は、通常、濾過膜
モジュールの定格流量を基準として設定されるが、この
定格流量時において濾過膜を透過する透過水の流束は、
膜にとっては比較的大きな流束であるということができ
る。 【0014】そのため、濾過水貯槽が所定の水位に達す
るまでは濾過膜モジュールを常に計画流量の一定流量で
運転する従来装置においては、透過水流束が大きいため
に被処理水中の懸濁物質等の不純物が濾過膜の表層ある
いは微細孔内に付着し易くなり、そのため膜の目詰まり
が起こり易くなると推定される。 【0015】これに対して、本発明装置の場合には、第
1の流量を例えば上記濾過膜モジュールの計画流量に設
定し、第2の流量をこれより低い流量に設定するという
ように流量を少なくとも2段階に設定するので、1日の
配水量が計画処理水量より少なくてよい通常時には濾過
膜モジュールの1日当たりの運転時間は従来より長くな
るが、濾過膜を透過する濾過水の平均流束を従来より低
くすることができ、これにより、濾過膜への不純物の付
着を抑制して濾過膜の目詰まりを従来より少なくするこ
とができるものと推定される。 【0016】なお、計画処理水量に等しい配水量を必要
とする場合には、第1の流量によってこれに対処するこ
とができる。 【0017】 【発明の実施の形態】以下、図面を参照し、本発明に係
る水処理装置をその実施形態例に基づいて説明する。図
1は、本発明の一実施形態例の水処理装置の系統図であ
る。本実施形態例では、ダム水を浄化して一般家庭等に
配水する水処理装置を例として挙げている。水処理装置
は、ダム1のダム水を取水する取水ポンプ2を備え、取
水ポンプで揚水されたダム水は一旦着水槽3に貯蔵され
る。 【0018】着水槽3からのダム水は、ストレーナ4を
通過して粗濾過された後に、原水として原水槽5に貯留
される。原水槽5の原水は、給水ポンプ6によって、給
水管11を経由して濾過膜を有する濾過膜モジュール7
に供給される。原水は、濾過膜モジュール7を透過する
ことによって浄化され濾過水となる。膜を透過しなかっ
た原水は、濃縮水となって給水循環管14を経由して再
び給水管11に戻され、給水ポンプ6により再び濾過膜
モジュール7に達する。 【0019】濾過膜モジュール7の濾過膜7Aを透過し
た濾過水は、採水管12a、流量設定弁8、採水管12
bを経由して濾過水貯槽9に流入しそこに貯留される。
濾過水貯槽9内の濾過水は、配水装置を構成する図示し
ないポンプ及び配水管13を経由して、一般家庭等に配
水される。濾過水貯槽9には、水位検出のために5電極
棒を有する電極装置10が挿入してあり、濾過水貯槽9
内の水位が検出される。濾過水貯槽9の水位は、制御盤
15内の水位監視装置において、レベルA、B、C及び
Dの4段階として監視される。流量設定弁8の開度は、
制御盤15において自動的に第1の開度又は第2の開度
に設定でき、これにより、濾過水流量が大きな第1の流
量又は小さな第2の流量の何れかに設定される。 【0020】濾過水貯槽9には、逆洗ポンプ16が接続
された逆洗水供給管17a、17bが接続してあり、濾
過水貯槽9内の濾過水は、逆洗水供給管17a、17b
及び採水管12aを経由して濾過膜モジュール7に、そ
の透過水側から逆洗水として供給される。逆洗水供給管
17bには薬剤注入管20bが接続してあり、次亜塩素
酸ナトリウム等の殺菌剤が、薬剤貯槽18から薬剤注入
ポンプ19によって供給される。逆洗水は、濾過膜モジ
ュール7の透過水側から原水側に濾過膜7Aを透過し、
濾過膜7A表面の付着物質を除去すると共に殺菌を行
う。除去された付着物質を含む逆洗排水は、給水管11
に分岐接続した洗浄排水排出管21から濾過膜モジュー
ル7外に排出される。 【0021】取水ポンプ2、給水ポンプ6、逆洗ポンプ
16、薬剤注入ポンプ19、及び、流量設定弁8は、制
御盤15によって所定の手順で自動制御される。濾過水
貯槽9内の水位がレベルD以下であると、水処理装置の
故障等が発生した異常事態であると認識され、警報が発
せられる。水位がレベルC以下のときは、給水ポンプ6
が作動しており、濾過水貯槽9への濾過水の給水が行わ
れる。このとき、流量設定弁8の開度は、第1の流量を
流すための第1の開度に設定してあり、濾過水は大きな
流速で濾過水貯槽9に給水される。ここで、着水槽3内
の原水の水位が低下すれば、自動的に取水ポンプが運転
され、着水槽3への揚水が行われる。第1の流量は、前
述した一日最大配水量よりも幾分大きな、水処理装置の
計画処理水量に見合った流量に設定してあり、濾過膜モ
ジュール7の定格流量でもある。 【0022】濾過水貯槽9の水位が上昇してレベルC以
上になると、流量設定弁8の開度は、第2の流量を流す
ための小さな第2の開度に設定される。第2の流量は、
平均的な配水量に対応して設定してあり、この構成によ
り、通常時の濾過水貯槽9の水位はレベルC附近に維持
され、給水ポンプ6の停止頻度が低い安定な運転が可能
になる。濾過水貯槽9の水位が更に上昇し、レベルBを
越えてレベルAに達すると、給水ポンプ6の運転が停止
される。その後、濾過水貯槽9の水位が低下してレベル
B以下になると、給水ポンプ6の運転が再開され、流量
設定弁8の開度を第2の開度に維持したままで、濾過水
貯槽9への給水が行われる。配水量が増加し、濾過水貯
槽の水位が低下してC以下になれば、流量設定弁8の開
度が再び大きな第1の開度に設定され、大きな第1の流
量による給水が行われる。 【0023】なお、濾過膜モジュール7における逆洗
は、通常、濾過膜モジュールへの原水の通水時間が所定
の時間に達するごとに行う。本水処理装置においては、
(濾過水量−逆洗水量)/原水使用量として定義される
水の回収率をできるだけ一定に保つために、逆洗頻度又
は逆洗時間を、給水流量に合わせて変更する。即ち、濾
過膜モジュール7が第1の流量で運転されている場合に
は比較的短い通水時間の経過後に逆洗を実施し、第2の
流量で運転されている場合にはこれより長い通水時間の
経過後に逆洗を実施する。また、濾過水生産量(積算濾
過水量)が一定値に達する毎に逆洗を実施する方法を採
用してもよい。 【0024】給水流量制御手段を構成する流量設定弁8
には、例えば開度調節が可能な電磁弁が用いられる。或
いは、給水ポンプ6をインバータで運転して、給水ポン
プの出力を可変にすることで、給水流量を制御すること
もできる。この場合、給水ポンプの出力制御により、給
水流量を第1の流量又は第2の流量とするように制御す
る。更には、給水流量を2段階でなく3段階以上の多段
階に設定して制御してもよく、またこのような給水流量
の段階的制御に代えて、連続的な制御を行ってもよく、
例えば濾過水貯槽内の貯水量又は水位高さに逆比例して
ポンプの出力を変えることが出来る。 【0025】水位検出手段としては、電極の他に、フロ
ート式、超音波液面計、或いは、水圧検出で水位を計る
もの等種々のものを利用することができる。濾過膜モジ
ュールとしては、限外濾過膜、精密濾過膜、逆浸透膜等
を用いることができる。 【0026】 【実施例】図2は、本発明の一実施例及び比較例の水処
理装置の運転実績を示すグラフであり、横軸に運転日数
を、縦軸に膜間差圧を夫々とっている。濾過膜としては
夫々、ダイセン・メンブレン・システムズ社製の内圧型
中空糸限外濾過膜(FE−10)を採用した。この濾過
膜の材質は酢酸セルロース、濾過膜の分画分子量は15
万、膜面積は5m2である。実施例及び比較例の計画処
理水量を、何れも6750L(リットル)/日と設定し
た。これから、水の回収率を90%(すなわち、得られ
た濾過水のうち、10%を逆洗水として使用して系外に
排出する)とすると、1.5m3/m2・d(=m/d)
の濾過流束が得られる。なお、実際の濾過水流量はこの
濾過流束に膜面積を乗じた値、すなわち1.5×5=
7.5m3/d(≒313L/h)である。比較例では
この流束を採用し、実施例では、高濾過流束をこの1.
5m/dに設定し、低濾過流束をこれよりも低い1.0
m/d(実際の濾過水流量は208L/h)に設定し
た。 【0027】一日の配水量が計画処理水量の約67.3
%に相当する4544L/日となるように、濾過水放出
量(配水量)を0時〜24時(1日)の時間帯毎に以下
のように設定した。 0時〜6時、9時〜12時、14時〜18時、20時〜
24時:168L/h、 6時〜9時、12時〜14時:225L/h、 18時〜20時:281L/h。 ここで、18〜20時の時間当たりの配水量は、計画流
量に等しくしてある。 【0028】比較例では、原水の濾過を行う通水工程を
32分間、それに続く逆洗工程を50秒間として、これ
を交互に繰り返しながら濾過運転を行った。この場合、
通水工程中に濾過水貯槽の水位がレベルAに達したとき
には、ポンプを停止し、水位がレベルBに達した時にポ
ンプの運転を再開するように制御した。実施例では、濾
過流速が1.5m/dのときには比較例と同様の条件で
逆洗を行い、濾過流速が1.0m/dでは、通水工程を
48分間、それに続く逆洗工程を50秒間として、これ
を交互に繰り返す濾過運転を行った。図3に、この時の
配水量および濾過水流量の推移を示す。なお、濾過水流
量は逆洗に使用した分を差し引いた値として示してあ
る。 【0029】上記条件で濾過を行うと、比較例及び実施
例の何れの場合にも、通水工程において膜面に付着する
懸濁物質等の不純物によって膜間差圧が一時的に上昇す
るが、濾過膜があまり汚染されていない初期の段階で
は、逆洗によって元の差圧に回復し、使用が継続でき
る。図2に示すフラットなグラフの期間がこれに該当す
る。しかし、濾過運転を長期にわたって行うと、濾過膜
の汚染が徐々に進行し、逆洗を行っても膜間差圧が充分
に回復せず、膜間差圧が次第に上昇する。これが図2に
示されたグラフの立ち上がり部分である。 【0030】図2に示すように、比較例では、約60日
を経過すると、膜間差圧が顕著に上昇し、濾過膜は、約
90日後に濾過膜の最大許容差圧に達して使用不可能に
なった。しかし、実施例では、270日を過ぎてやっと
膜間差圧が上昇したことが確認され、最大許容差圧に達
して使用不可能に至るまでの日数は約300日であり、
本発明の顕著な効果が確認できた。 【0031】上記のように、逆洗を行っても膜間差圧が
回復しないで、膜間差圧が所定値以上に上昇すると、特
別な薬品を使用した膜洗浄が必要になる。しかし、薬品
洗浄は、濾過膜の取外しを必要とするなど、煩雑な作業
を必要とすると共に、濾過膜の化学劣化を引き起こし、
また、薬品コストも掛かる。本発明によると、膜間差圧
が上昇するまでの期間が顕著に延びるため、濾過膜の薬
品洗浄間隔が長くなり、その結果、運転コストの削減及
びメンテナンス頻度の減少が可能になる。 【0032】以上、本発明をその好適な実施形態例に基
づいて説明したが、本発明の水処理装置は、上記実施形
態例の構成にのみ限定されるものではなく、上記実施形
態例の構成から種々の修正及び変更を施したものも、本
発明の範囲に含まれる。 【0033】 【発明の効果】以上説明したように、本発明によると、
必要な濾過水の流量を充分に確保すると共に、濾過モジ
ュールを通過する平均濾過水流量を低く抑えることがで
き、これにより、濾過膜表面または間隙への懸濁物質等
の付着、蓄積を抑制することができ、延いては膜の目詰
りを抑制することが出来る。従って、この目詰りを除去
するための薬品洗浄回数が減るため、洗浄に必要な薬品
の使用量を減らすことができると共に、薬品洗浄の頻度
が減少することによって濾過膜の化学劣化を抑制するこ
とができ、濾過膜を長期間使用することができて膜の交
換頻度を少なくすることができ、運転コストの削減、メ
ンテナンス頻度の減少が達成できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter membrane module for filtering water to be treated and storing the filtered water in a filtered water storage tank. The present invention relates to a water treatment apparatus for distributing water, and more particularly to a water treatment apparatus that enables long-term stable operation of a filtration membrane module by controlling the amount of filtered water flowing into a filtered water storage tank according to the water level in the filtered water storage tank. . [0002] A water treatment apparatus provided with a filtration membrane module is used for industrial water treatment, dam water purification, and the like.
For example, the filtered water treated by the filtration membrane module is temporarily stored in a filtered water storage tank, and water is distributed from the storage tank to a required location. [0003] The control of the amount of filtered water flowing through the filtration membrane module into the storage tank is generally performed by turning on and off a pump, and the flow rate of the filtered water passing through the filtration membrane module utilizes the filtered water. According to the water usage of the equipment,
It is set as a planned flow rate during facility design and is maintained at a constant value. Generally, in a water treatment facility having a filtration membrane module,
The operation of the filtration membrane module is stopped when the water level in the filtered water storage tank rises and reaches a predetermined water level. During operation, filtration is always performed at the above-mentioned planned flow rate. When filtration is performed for a predetermined time and the differential pressure rises to a predetermined value, so-called backwashing is performed, in which filtered water is flowed back from the downstream side to the upstream side of the filtration membrane module to wash the filtration membrane module. By the backwashing, impurities such as suspended substances adhered to the filtration membrane module are removed, and the operation of the filtration membrane module is started again. However, impurities such as suspended substances adhering to the filtration membrane cannot be completely removed by the usual back washing as described above, and gradually become longer as the filtration membrane module is used for a long time. The filter membrane accumulates on the membrane surface and causes clogging of the membrane. When such a state is reached, the filtration membrane is removed and a cleaning treatment is performed using a special chemical. [0005] However, when the above-mentioned chemical cleaning is repeated, the chemical deterioration of the film gradually progresses and finally becomes unusable, and the film must be replaced. . Therefore, in a water treatment apparatus provided with a filtration membrane module, the clogging of the membrane which requires chemical cleaning is prevented as much as possible, and the interval until the chemical cleaning of the filtration membrane module is made as long as possible. It is important to reduce the frequency. Under the above-mentioned background, the present inventors have conducted intensive studies on a method of suppressing clogging of a filtration membrane, and as a result, the degree of clogging of the filtration membrane is determined by the degree of filtration water passing through the filtration membrane. (Unit membrane area, flow rate per unit time), when producing the same volume of filtered water,
It was found that the lower the flux, the more difficult it was to clog. [0008] The present invention has been made based on the above-described findings, and in operation of a filtration membrane module, clogging of the filtration membrane is suppressed as much as possible by suppressing the flux of filtered water passing through the filtration membrane to a minimum. It is an object of the present invention to provide a water treatment apparatus that can reduce the frequency of chemical cleaning and the frequency of membrane replacement, and can further reduce the operating costs such as chemical cost and membrane replacement cost and maintenance frequency. In order to achieve the above object, a water treatment apparatus according to the present invention comprises a filtration membrane module for filtering water to be treated and supplying the filtered water as filtered water, and storing the filtered water. In a water treatment apparatus comprising a filtered water storage tank to be filtered and a water distribution device for distributing filtered water from the filtered water storage tank to a required portion, a water level detecting means for detecting a water level in the filtered water storage tank, and a water flowing into the filtered water storage tank. The first flow rate is set when the water level detected by the water level detecting means is equal to or lower than the first water level, and the water level is higher than the first water level and lower than the second water level. A filtered water flow rate control means for setting a second flow rate which is lower than the first flow rate, and setting a zero flow rate when the water level is higher than the second water level. In the water treatment apparatus of the present invention, when the water level of the filtered water storage tank is lower than the first water level, the flow rate of the filtered water flowing into the filtered water storage tank is preset by the filtered water flow rate control means. The first flow rate is set to a large value, and the filtered water flow rate is set to a second flow rate lower than the first flow rate when the water level of the filtered water storage tank is higher than the first water level. When the flow rate of 1 is set, the required flow rate of the filtered water is sufficiently ensured, and by setting the second flow rate, the average filtered water quantity of the filtration membrane module is made lower than in the past, and the adhesion of impurities to the filtration membrane is reduced. Can be suppressed. In the following, this will be described in detail. For example, in a water purification system equipped with a filtration membrane module, generally, the maximum daily water supply (the largest daily water supply per year. ) Or a somewhat larger amount of water as the planned treated water volume, and the installed capacity of the filtration membrane module is determined on the basis of this. This is a very small number of days, and for most of the period, water is distributed with a smaller volume than the planned volume. Therefore, the filtration capacity of the filtration membrane module usually has a considerable margin. However, even in such a case, the filtration membrane module is required to have a flow rate corresponding to the planned treated water amount (hereinafter, referred to as a planned flow rate). In the case where the actual distribution amount was smaller than the planned treated water amount, the operation was controlled by turning on and off the filtration membrane module according to the water level of the filtration water storage tank for temporarily storing the filtration water. That is, until the filtered water storage tank rises to a predetermined water level, the filtration membrane module is operated at a constant flow rate of the planned flow rate,
When the filtered water storage tank reaches a predetermined water level, the operation of the filtration membrane module is stopped. [0013] The planned flow rate is usually set based on the rated flow rate of the filtration membrane module. At this rated flow rate, the flux of the permeated water passing through the filtration membrane is:
It can be said that the flux is relatively large for the membrane. Therefore, in a conventional apparatus in which the filtration membrane module is always operated at a predetermined flow rate until the filtration water storage tank reaches a predetermined water level, a large amount of permeated water flux causes a large amount of suspended solids or the like in the water to be treated. It is presumed that impurities easily adhere to the surface layer or the fine pores of the filtration membrane, and thus clogging of the membrane easily occurs. On the other hand, in the case of the apparatus of the present invention, the flow rate is set such that the first flow rate is set to, for example, the planned flow rate of the filtration membrane module, and the second flow rate is set to a lower flow rate. Since at least two stages are set, the daily water distribution amount may be smaller than the planned treated water amount. Usually, the operation time per day of the filtration membrane module is longer than before, but the average flux of the filtration water permeating the filtration membrane is increased. Is lower than before, and it is estimated that this makes it possible to suppress the adhesion of impurities to the filtration membrane and to reduce the clogging of the filtration membrane as compared with the conventional case. When a water distribution amount equal to the planned treated water amount is required, this can be dealt with by the first flow rate. Hereinafter, a water treatment apparatus according to the present invention will be described with reference to the drawings based on an embodiment. FIG. 1 is a system diagram of a water treatment apparatus according to an embodiment of the present invention. In the present embodiment, a water treatment apparatus for purifying dam water and distributing it to general households and the like is described as an example. The water treatment apparatus includes an intake pump 2 that takes in dam water from a dam 1, and dam water pumped by the intake pump is temporarily stored in a landing tank 3. The dam water from the landing tank 3 passes through the strainer 4 and is roughly filtered, and then stored in the raw water tank 5 as raw water. The raw water in the raw water tank 5 is supplied by a water supply pump 6 through a water supply pipe 11 to a filtration membrane module 7 having a filtration membrane.
Supplied to Raw water is purified by permeating the filtration membrane module 7 to become filtered water. The raw water that has not passed through the membrane becomes concentrated water, is returned to the water supply pipe 11 again via the water supply circulation pipe 14, and reaches the filtration membrane module 7 again by the water supply pump 6. The filtered water that has passed through the filtration membrane 7A of the filtration membrane module 7 is supplied to a water sampling pipe 12a, a flow rate setting valve 8, and a water sampling pipe 12a.
b flows into the filtered water storage tank 9 and is stored there.
The filtered water in the filtered water storage tank 9 is distributed to general households and the like via a pump and a water distribution pipe 13 (not shown) constituting a water distribution device. An electrode device 10 having five electrode rods for detecting a water level is inserted into the filtered water storage tank 9.
The water level inside is detected. The water level in the filtered water storage tank 9 is monitored as four levels A, B, C and D by a water level monitoring device in the control panel 15. The opening of the flow setting valve 8 is
The control panel 15 can automatically set the first opening degree or the second opening degree, whereby the filtered water flow rate is set to either the large first flow rate or the small second flow rate. The filtered water storage tank 9 is connected to backwash water supply pipes 17a and 17b to which a backwash pump 16 is connected. The filtered water in the filtered water storage tank 9 is supplied to the backwash water supply pipes 17a and 17b.
The water is supplied to the filtration membrane module 7 via the water sampling pipe 12a as backwash water from the permeated water side. A chemical injection pipe 20b is connected to the backwash water supply pipe 17b, and a sterilizing agent such as sodium hypochlorite is supplied from a chemical storage tank 18 by a chemical injection pump 19. The backwash water permeates the filtration membrane 7A from the permeated water side of the filtration membrane module 7 to the raw water side,
The attached substances on the surface of the filtration membrane 7A are removed and sterilization is performed. The backwash wastewater containing the removed adhering substances is supplied to the water supply pipe 11.
The water is discharged out of the filtration membrane module 7 from the washing / draining discharge pipe 21 branched and connected. The water intake pump 2, the water supply pump 6, the backwash pump 16, the chemical injection pump 19, and the flow rate setting valve 8 are automatically controlled by a control panel 15 in a predetermined procedure. When the water level in the filtered water storage tank 9 is equal to or lower than the level D, it is recognized that an abnormal situation has occurred such as a failure of the water treatment device, and an alarm is issued. When the water level is below level C, feed water pump 6
Is operated, and the filtered water is supplied to the filtered water storage tank 9. At this time, the opening of the flow rate setting valve 8 is set to the first opening for flowing the first flow rate, and the filtered water is supplied to the filtered water storage tank 9 at a large flow rate. Here, when the level of the raw water in the landing tank 3 decreases, the water intake pump is automatically operated to pump water to the landing tank 3. The first flow rate is set to a flow rate that is somewhat larger than the above-mentioned maximum daily water distribution amount and that is appropriate for the planned water treatment amount of the water treatment apparatus, and is also the rated flow amount of the filtration membrane module 7. When the water level in the filtered water storage tank 9 rises and becomes equal to or higher than the level C, the opening of the flow rate setting valve 8 is set to a small second opening for flowing the second flow rate. The second flow rate is
It is set corresponding to the average water distribution amount, and with this configuration, the water level of the filtered water storage tank 9 at the normal time is maintained near the level C, and the stable operation with the stop frequency of the water supply pump 6 is enabled. . When the water level of the filtered water storage tank 9 further rises and exceeds the level B and reaches the level A, the operation of the water supply pump 6 is stopped. Thereafter, when the water level in the filtered water storage tank 9 falls to level B or lower, the operation of the water supply pump 6 is restarted, and the filtered water storage tank 9 is maintained while the opening of the flow rate setting valve 8 is maintained at the second opening. Water is supplied to When the water distribution amount increases and the water level in the filtered water storage tank decreases and becomes equal to or lower than C, the opening of the flow rate setting valve 8 is set to the large first opening again, and water is supplied at the large first flow rate. . The backwashing in the filtration membrane module 7 is usually performed every time the flow time of the raw water to the filtration membrane module reaches a predetermined time. In this water treatment device,
In order to keep the water recovery rate defined as (filtered water amount-backwash water amount) / raw water usage as constant as possible, the backwash frequency or backwash time is changed according to the feedwater flow rate. That is, when the filtration membrane module 7 is operated at the first flow rate, backwashing is performed after a relatively short water passage time, and when the filtration membrane module 7 is operated at the second flow rate, the backflow is performed longer. After the water time elapses, a backwash is performed. Further, a method of performing backwashing every time the filtrate production amount (integrated filtrate water amount) reaches a certain value may be adopted. A flow rate setting valve 8 constituting a feed water flow rate control means
For example, a solenoid valve whose opening degree can be adjusted is used. Alternatively, the feedwater flow rate can be controlled by operating the feedwater pump 6 with an inverter to vary the output of the feedwater pump. In this case, the output of the feedwater pump is controlled so that the feedwater flow rate becomes the first flow rate or the second flow rate. Further, the water supply flow rate may be controlled by setting the water supply flow rate not in two steps but in multiple steps of three or more steps, and instead of such stepwise control of the water supply flow rate, continuous control may be performed,
For example, the output of the pump can be changed in inverse proportion to the amount of water stored in the filtered water storage tank or the water level height. As the water level detecting means, various means such as a float type, an ultrasonic liquid level gauge, and a means for measuring the water level by detecting the water pressure can be used in addition to the electrodes. As the filtration membrane module, an ultrafiltration membrane, a microfiltration membrane, a reverse osmosis membrane, or the like can be used. FIG. 2 is a graph showing the operation results of water treatment apparatuses according to one embodiment of the present invention and a comparative example. The horizontal axis indicates the number of operating days, and the vertical axis indicates the transmembrane pressure. ing. An internal pressure type hollow fiber ultrafiltration membrane (FE-10) manufactured by Daisen Membrane Systems Co., Ltd. was used as each of the filtration membranes. The material of this filtration membrane is cellulose acetate, and the molecular weight cut off of the filtration membrane is 15
The membrane area is 5 m 2 . The planned treated water volumes of the example and the comparative example were both set to 6750 L (liter) / day. From this, assuming that the water recovery rate is 90% (that is, 10% of the obtained filtered water is used as backwash water and discharged to the outside of the system), 1.5 m 3 / m 2 · d (= m / d)
Is obtained. The actual filtered water flow rate is a value obtained by multiplying the filtered flux by the membrane area, that is, 1.5 × 5 =
7.5 m 3 / d (≒ 313 L / h). In the comparative example, this flux was adopted.
5 m / d and lower low filtration flux of 1.0
m / d (actual filtered water flow rate was 208 L / h). The daily water distribution is about 67.3 of the planned treated water volume.
% Was set as follows for each time zone from 0:00 to 24:00 (one day) so as to obtain 4544 L / day corresponding to%. 0:00 to 6:00, 9:00 to 12:00, 14:00 to 18:00, 20:00 to
24:00: 168 L / h, 6:00 to 9:00, 12:00 to 14:00: 225 L / h, 18:00 to 20:00: 281 L / h. Here, the amount of water distribution per hour from 18:00 to 20:00 is equal to the planned flow rate. In the comparative example, the filtration operation was performed while alternately repeating the flow of the raw water for filtration for 32 minutes and the subsequent backwashing for 50 seconds. in this case,
When the water level in the filtered water storage tank reached the level A during the water passing step, the pump was stopped, and when the water level reached the level B, the operation of the pump was restarted. In the example, when the filtration flow rate is 1.5 m / d, backwashing is performed under the same conditions as in the comparative example. When the filtration flow rate is 1.0 m / d, the water washing step is performed for 48 minutes, and the subsequent backwashing step is performed for 50 minutes. For a second, a filtering operation in which this was repeated alternately was performed. FIG. 3 shows changes in the water distribution amount and the filtered water flow rate at this time. The flow rate of the filtered water is shown as a value obtained by subtracting the amount used for the backwash. When filtration is performed under the above conditions, in any of the comparative example and the example, the transmembrane pressure is temporarily increased due to impurities such as suspended substances adhering to the membrane surface in the water passing step. In the early stage when the filtration membrane is not so contaminated, the pressure difference is restored to the original pressure by backwashing, and the use can be continued. This corresponds to the period of the flat graph shown in FIG. However, if the filtration operation is performed for a long period of time, the contamination of the filtration membrane gradually progresses, and the transmembrane pressure difference does not sufficiently recover even when backwashing is performed, and the transmembrane pressure difference gradually increases. This is the rising portion of the graph shown in FIG. As shown in FIG. 2, in the comparative example, the transmembrane pressure increased remarkably after about 60 days, and the filtration membrane reached the maximum permissible differential pressure of the filtration membrane after about 90 days. It became impossible. However, in the examples, it was confirmed that the transmembrane pressure increased only after 270 days, and the number of days until reaching the maximum allowable differential pressure and becoming unusable was about 300 days,
The remarkable effect of the present invention was confirmed. As described above, if the transmembrane pressure does not recover even if the backwashing is performed and the transmembrane pressure rises to a predetermined value or more, the membrane needs to be cleaned using a special chemical. However, chemical cleaning requires complicated operations such as removal of the filtration membrane, and causes chemical deterioration of the filtration membrane,
In addition, chemical costs are also incurred. According to the present invention, the period until the transmembrane pressure rises is significantly increased, so that the chemical cleaning interval of the filtration membrane is lengthened, and as a result, the operation cost can be reduced and the maintenance frequency can be reduced. Although the present invention has been described based on the preferred embodiment, the water treatment apparatus of the present invention is not limited to the configuration of the above-described embodiment, but rather the configuration of the above-described embodiment. Various modifications and changes made from are also included in the scope of the present invention. As described above, according to the present invention,
The required flow rate of the filtered water can be sufficiently ensured, and the average flow rate of the filtered water passing through the filtration module can be suppressed to be low, thereby suppressing the adhesion and accumulation of suspended substances and the like on the surface or the gap of the filtration membrane. Thus, clogging of the film can be suppressed. Therefore, since the number of times of chemical cleaning for removing the clogging is reduced, the amount of chemicals required for cleaning can be reduced, and the frequency of chemical cleaning is reduced, thereby suppressing the chemical deterioration of the filtration membrane. Thus, the filtration membrane can be used for a long period of time, and the frequency of replacing the membrane can be reduced, so that the operation cost and the maintenance frequency can be reduced.

【図面の簡単な説明】 【図1】本発明の一実施形態例に係る水処理装置の系統
図。 【図2】本発明の実施例及び比較例の水処理装置の運転
結果を示すグラフ。 【図3】本発明の実施例及び比較例の一日の配水量及び
濾過水流量の推移を示すグラフ。 【符号の説明】 1 ダム 2 取水ポンプ 3 着水槽 4 ストレーナ 5 原水槽 6 給水ポンプ 7 濾過膜モジュール 7A 濾過膜 8 流量設定弁 9 濾過水貯槽 10 電極装置 11 給水管 12a、12b 採水管 13 配水管 14 給水循環管 15 制御盤 16 逆洗ポンプ 17a、17b 逆洗水供給管 18 薬剤貯槽 19 薬剤注入ポンプ 20a、20b 薬剤注入管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of a water treatment apparatus according to an embodiment of the present invention. FIG. 2 is a graph showing the operation results of the water treatment apparatuses according to Examples and Comparative Examples of the present invention. FIG. 3 is a graph showing changes in daily water distribution and filtered water flow rate in Examples and Comparative Examples of the present invention. [Description of Signs] 1 Dam 2 Intake pump 3 Water landing tank 4 Strainer 5 Raw water tank 6 Water supply pump 7 Filtration membrane module 7A Filtration membrane 8 Flow rate setting valve 9 Filtration water storage tank 10 Electrode device 11 Water supply pipes 12a, 12b Water supply pipe 13 Water supply pipe 14 water supply circulation pipe 15 control panel 16 backwash pump 17a, 17b backwash water supply pipe 18 drug storage tank 19 drug injection pump 20a, 20b drug injection pipe

Claims (1)

(57)【特許請求の範囲】 【請求項1】 被処理水を濾過し濾過水として供給する
濾過膜モジュールと、前記濾過水を貯留する濾過水貯槽
と、該濾過水貯槽から必要箇所に濾過水を配水する配水
装置とを備える水処理装置において、 前記濾過水貯槽内の水位を検出する水位検出手段と、 前記濾過水貯槽に流入する濾過水に対して、前記水位検
出手段で検出された水位が第1の水位以下のときに第1
の流量を設定し、水位が前記第1の水位よりも高く第2
の水位以下のときに前記第1の流量よりも低い第2の流
量を設定し、水位が前記第2の水位よりも高いときに零
流量を設定する濾過水流量制御手段とを備えることを特
徴とする水処理装置。
(1) A filtration membrane module for filtering water to be treated and supplying it as filtered water, a filtered water storage tank for storing the filtered water, and filtering from the filtered water storage tank to a required portion. In a water treatment apparatus provided with a water distribution device that distributes water, a water level detection unit that detects a water level in the filtered water storage tank, and a filtered water flowing into the filtered water storage tank is detected by the water level detection unit. When the water level is below the first water level, the first
And the water level is higher than the first water level and
And a filtered water flow rate control means for setting a second flow rate lower than the first flow rate when the water level is equal to or lower than the first water level and setting a zero flow rate when the water level is higher than the second water level. And water treatment equipment.
JP08803197A 1997-04-07 1997-04-07 Water treatment equipment Expired - Fee Related JP3445916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08803197A JP3445916B2 (en) 1997-04-07 1997-04-07 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08803197A JP3445916B2 (en) 1997-04-07 1997-04-07 Water treatment equipment

Publications (2)

Publication Number Publication Date
JPH10277549A JPH10277549A (en) 1998-10-20
JP3445916B2 true JP3445916B2 (en) 2003-09-16

Family

ID=13931464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08803197A Expired - Fee Related JP3445916B2 (en) 1997-04-07 1997-04-07 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3445916B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817768B1 (en) * 2000-12-13 2003-08-29 Lyonnaise Eaux Eclairage METHOD FOR REGULATING A MEMBRANE FILTRATION SYSTEM
KR200447886Y1 (en) 2007-07-03 2010-02-25 웅진코웨이주식회사 Water Purifying System By Supplying a Water Pail
CN110596200B (en) * 2019-08-07 2022-08-05 中国地质调查局水文地质环境地质调查中心 Underground water stratified sampling detection device and detection method
JP7243571B2 (en) * 2019-10-29 2023-03-22 トヨタ紡織株式会社 Industrial water circulation system
KR102361906B1 (en) * 2021-05-11 2022-02-15 청정테크주식회사 Reuse System of Wastewater

Also Published As

Publication number Publication date
JPH10277549A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
JP6607319B2 (en) Computer-readable recording medium recording a clogging site identification program for a separation membrane module, fresh water generation system, and fresh water generation method
JP3924919B2 (en) Water filtration equipment
JPH11156166A (en) Cleaning method for hollow fiber membrane module
JP5151009B2 (en) Membrane separation device and membrane separation method
JP3445916B2 (en) Water treatment equipment
JP5588099B2 (en) Membrane filtration treatment method and membrane filtration treatment equipment
KR100235682B1 (en) Reverse osmosis filtering type pure water system
JP5105036B2 (en) Dual water distribution system
JP3514825B2 (en) Operation method of water purification system and water purification device
JPH05317660A (en) Membrane separator
JP2001029751A (en) Separation apparatus and solid-liquid separation method
JP3601015B2 (en) Filtration method using membrane
JPH11169851A (en) Water filter and its operation
JP2003154360A (en) Method and apparatus for membrane-filtering bacteria in seawater
JP3838689B2 (en) Water treatment system
JP3395846B2 (en) Water membrane purification method and method of operating the same
JPH07204476A (en) Water purifying apparatus and operation thereof
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP3089702B2 (en) Membrane separation device
JP4156984B2 (en) Cleaning method for separation membrane module
JP3514821B2 (en) Operating method of water purification system
JP2585879Y2 (en) Membrane separation device
JP4943662B2 (en) Operation method of membrane separator
JP3218077B2 (en) Surface water purification method and apparatus
JP2004130307A (en) Method for filtration of hollow fiber membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees