JP3442751B2 - Deoxygenation method - Google Patents

Deoxygenation method

Info

Publication number
JP3442751B2
JP3442751B2 JP2001190302A JP2001190302A JP3442751B2 JP 3442751 B2 JP3442751 B2 JP 3442751B2 JP 2001190302 A JP2001190302 A JP 2001190302A JP 2001190302 A JP2001190302 A JP 2001190302A JP 3442751 B2 JP3442751 B2 JP 3442751B2
Authority
JP
Japan
Prior art keywords
oxygen
solution
sample solution
deoxygenation
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001190302A
Other languages
Japanese (ja)
Other versions
JP2003001257A (en
Inventor
英俊 土田
真司 武岡
宇彬 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001190302A priority Critical patent/JP3442751B2/en
Publication of JP2003001257A publication Critical patent/JP2003001257A/en
Application granted granted Critical
Publication of JP3442751B2 publication Critical patent/JP3442751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、酸素を含
有する試料溶液から酸素を除去する方法に関するもので
ある。さらに詳しくは、この出願の発明は、試料溶液を
汚染することなく、電気化学的に酸素を除去する方法に
関するものである。
TECHNICAL FIELD The invention of this application relates to a method for removing oxygen from a sample solution containing oxygen. More specifically, the invention of this application relates to a method for electrochemically removing oxygen without contaminating a sample solution.

【0002】[0002]

【従来の技術とその課題】酸素は多くの物質を酸化劣化
させる。身近なものでは、金属や油脂等の食品類が上げ
られる。また酸素ラジカルは、化学反応を停止させた
り、副生成物を発生させたり、さらには蛋白質や細胞を
変性、損傷させる。したがって、多くの化学反応系や生
物反応系、あるいは試薬、溶媒、蛋白質等の保存におい
て、酸素を完全に除去することは重要な課題であり、と
くに溶液中に溶存した酸素を除去する方法としては、こ
れまで、多くの方法が提案、実施されている。
2. Description of the Related Art Oxygen causes oxidative deterioration of many substances. Foods such as metals and fats and oils are given as familiar items. Oxygen radicals stop chemical reactions, generate by-products, and denature and damage proteins and cells. Therefore, in the storage of many chemical reaction systems and biological reaction systems, or reagents, solvents, proteins, etc., complete removal of oxygen is an important issue, and especially as a method for removing oxygen dissolved in a solution. So far, many methods have been proposed and implemented.

【0003】一般的には、窒素等の不活性ガスを溶液中
に通気させ、泡立てる方法や超音波等により攪拌しなが
ら減圧下で除去する方法が知られている。また、ガス交
換膜の利用、亜二チオン酸塩やチオール系化合物、鉄等
の脱酸素化剤との接触、電極反応を用いた方法等も検討
され、一部が実用されている。
In general, there are known a method of bubbling an inert gas such as nitrogen into a solution and bubbling it, or a method of removing under a reduced pressure while stirring by ultrasonic waves. Further, utilization of a gas exchange membrane, contact with a dithionite salt, a thiol-based compound, a deoxidizing agent such as iron, a method using an electrode reaction, and the like have been studied, and some of them have been put into practical use.

【0004】しかし、これらの方法は、いずれも試料溶
液を汚染する、酸素除去が不完全である等の問題を有す
るものであった。例えば、不活性ガスにより泡立てる方
法では、粘性の高い溶液や分散液では消泡しにくくな
り、溶液が系外に溢れ出る恐れがあるため、脱酸素処理
のために容器の容量を大きくする必要があるという問題
があった。また、蛋白質溶液や細胞培養液などは、泡立
てることにより変性等が起こる場合があった。このよう
な泡の発生や蛋白質変性、細胞劣化等の問題は、減圧除
去する方法でも同様に見られた。
However, all of these methods have problems such as contamination of the sample solution and incomplete removal of oxygen. For example, in the method of bubbling with an inert gas, it becomes difficult to defoam a highly viscous solution or dispersion, and the solution may overflow to the outside of the system.Therefore, it is necessary to increase the capacity of the container for deoxygenation. There was a problem. Moreover, denaturation and the like may occur in a protein solution, a cell culture solution, or the like by bubbling. Problems such as generation of bubbles, protein denaturation, and cell deterioration were also found in the method of removing under reduced pressure.

【0005】一方、試料溶液とガス交換膜を接触させる
方法は、ある程度まで酸素濃度を低下させるには有効な
方法であったが、長時間を有し、1Torr以下の低濃度に
まで脱酸素化することは困難であった。とくに、酸素運
搬体のような酸素と化学的に結合・脱離しうる試料物質
の溶液では、酸素分圧10Torr程度までは、容易に低下
させられるものの、1Torr以下にすることはほとんど不
可能だったのが実情である。
On the other hand, the method of bringing the sample solution into contact with the gas exchange membrane was an effective method for reducing the oxygen concentration to some extent, but it took a long time and deoxidized to a low concentration of 1 Torr or less. It was difficult to do. In particular, with a solution of a sample substance that can be chemically bound to and desorbed from oxygen, such as an oxygen carrier, the oxygen partial pressure can be easily reduced to about 10 Torr, but it was almost impossible to reduce it to 1 Torr or less. Is the reality.

【0006】脱酸素化剤の利用は、酸素を除去する有効
な手段であり、鉄粉や活性化マグネシウム等の金属粉、
亜硫酸塩、亜硫酸水素塩、亜二チオン酸塩、チオ硫酸塩
などの還元性無機物質、アスコルビン酸塩、エルソルビ
ン酸やそれらの塩類、グルコースなどの還元性糖類、カ
テコール、ピロガロール等の還元性多価フェノール類、
システインや他のチオール類などの還元性有機物質、金
属錯体など、多種が知られている。これらの物質は、一
般的に酸素吸収反応の主剤として、活性炭等の吸着剤と
組み合わせて用いられる。しかし、これらの物質は、試
料溶液や反応系を汚染するため、試料の劣化や反応の阻
害につながる場合があった。また、直接的な影響の少な
いものでも、試料や生成物の純度が要求される場合には
完全に除去することが必要であり、精製に手間がかかる
だけでなく、不可能な場合も多かった。とくに生体投与
を目的とした試料溶液では、これらの脱酸素化剤の毒性
が大きな問題となるため、使用できなかったのが実情で
ある。具体的には、亜硫酸塩は毒性を有し、還元性有機
物質は酸素と結合することにより、毒性の強い過酸化水
素や過酸化物が発生し、金属粉や金属化合物では、金属
イオンの溶出により毒性が現れるという問題があった。
Utilization of a deoxidizing agent is an effective means for removing oxygen, and metal powders such as iron powder and activated magnesium,
Reducing inorganic substances such as sulfite, bisulfite, dithionite and thiosulfate, ascorbate, ersorbic acid and their salts, reducing sugars such as glucose, catechol and reducing polyvalents such as pyrogallol Phenols,
Various types of reducing organic substances such as cysteine and other thiols and metal complexes are known. These substances are generally used as a main agent of the oxygen absorption reaction in combination with an adsorbent such as activated carbon. However, these substances contaminate the sample solution and the reaction system, which may lead to deterioration of the sample and inhibition of the reaction. In addition, even if it had little direct influence, it was necessary to completely remove it when the purity of the sample or product was required, and not only was it time-consuming to purify, but it was often impossible. . In particular, in the case of a sample solution intended for biological administration, the toxicity of these deoxygenating agents poses a serious problem, and thus it cannot be used. Specifically, sulfite is toxic, and reducing organic substances combine with oxygen to generate highly toxic hydrogen peroxide and peroxides. Metal powder and metal compounds elute metal ions. There was a problem that toxicity appeared due to.

【0007】そこで、これらの脱酸素化剤を直接添加す
ることなく、脱酸素化する方法として、脱酸素化剤を配
合した酸素吸着性樹脂シートや包装用多層フィルム、あ
るいは、脱酸素化剤を内包する袋等が提供されている。
これらのシート、フィルム、袋等では、脱酸素化剤は酸
素透過性樹脂に被覆されており、試料溶液と直接接触し
ない。しかし、試薬等の長期保存では、脱酸素化剤成分
が溶出する場合があるという問題があった。また、これ
らのシート、フィルム、袋等を、容器の蓋裏などに設置
し、液体との直接接触を回避する工夫もなされている
が、溶液中、とくに酸素運搬体等の酸素と結合しうる物
質の溶液中から酸素を除去するには、長時間と大量の脱
酸素化剤を要するという問題があった。
Therefore, as a method for deoxygenating without directly adding these deoxidizing agents, an oxygen-absorbing resin sheet containing a deoxidizing agent, a multilayer film for packaging, or a deoxidizing agent is used. Bags for inclusion are provided.
In these sheets, films, bags, etc., the deoxidizing agent is covered with the oxygen permeable resin and does not come into direct contact with the sample solution. However, there has been a problem that the deoxidizing agent component may be eluted during long-term storage of reagents and the like. In addition, these sheets, films, bags, etc. are installed on the back of the lid of the container, etc. to avoid direct contact with liquids, but they can bind to oxygen in solution, especially oxygen carrier. There is a problem that a long time and a large amount of a deoxidizing agent are required to remove oxygen from a solution of a substance.

【0008】さらに、電気化学的に酸素を除去する方法
としては、酸素よりも卑な金属を陽極、貴な金属を陰極
として接続し、陰極表面で溶存酸素を還元し、OHイオ
ンとして除去する方法が知られている。しかし、このよ
うな方法では、陽極側の金属が溶出するため、試料溶液
の汚染が起こり、生体投与用等の高い純度を要する系に
は適用できないという問題があった。また、酸素濃度が
低くなるほど反応が進行しなくなるため、1Torr以下の
低濃度を目的とする場合には、除去効率が極めて悪いと
いう問題があった。
Further, as a method for electrochemically removing oxygen, a method in which a metal baser than oxygen is connected as an anode and a noble metal is connected as a cathode, dissolved oxygen is reduced on the surface of the cathode and removed as OH ions It has been known. However, in such a method, since the metal on the anode side is eluted, the sample solution is contaminated, and there is a problem that it cannot be applied to a system such as for biological administration that requires high purity. Further, since the reaction does not proceed as the oxygen concentration becomes lower, there is a problem that the removal efficiency is extremely poor when a low concentration of 1 Torr or less is intended.

【0009】この出願の発明は、以上のとおりの事情に
鑑みてなされたものであり、従来技術の問題点を解消
し、試料溶液を汚染することなく、簡便かつ高効率に、
溶液中の溶存酸素を除去する脱酸素化方法を提供するこ
とを課題としている。
The invention of this application has been made in view of the above circumstances, and solves the problems of the prior art, does not contaminate the sample solution, and is simple and highly efficient.
It is an object to provide a deoxygenation method for removing dissolved oxygen in a solution.

【0010】[0010]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、まず第1には、酸素を含
有する試料溶液から酸素を除去する方法であって、イオ
ン透過性多孔質隔膜を隔てて、陰極側に少なくとも電解
質を含有する酸素含有試料溶液を導入し、陽極側に電解
質溶液を導入し、陽極側の電解質溶液に水素/窒素混合
ガスを通気しながら通電することを特徴とする酸素含有
試料溶液からの脱酸素化方法を提供する。
Means for Solving the Problems The invention of the present application is to solve the above-mentioned problems. First, there is provided a method for removing oxygen from a sample solution containing oxygen. The oxygen-containing sample solution containing at least the electrolyte is introduced to the cathode side across the membrane diaphragm, the electrolyte solution is introduced to the anode side, and the electrolyte solution on the anode side is energized while passing a hydrogen / nitrogen mixed gas. Provided is a method for deoxygenation from a characteristic oxygen-containing sample solution.

【0011】この出願の発明は、第2には、酸素含有試
料溶液が水溶液または水分散液のいずれかである前記の
脱酸素化方法を提供する。また、この出願の発明は、第
3には、該酸素含有試料溶液が、酸素運搬体を含有する
脱酸素化方法を、第4には、酸素運搬体がヘモグロビン
である脱酸素化方法を、第5には、酸素運搬体が金属ポ
ルフィリン誘導体である脱酸素化方法を、さらに第6に
は、金属ポルフィリン誘導体が、鉄ポルフィリンである
脱酸素化方法を提供する。
Secondly, the invention of this application provides the above deoxygenation method, wherein the oxygen-containing sample solution is either an aqueous solution or an aqueous dispersion. The invention of this application is, thirdly, a deoxygenation method in which the oxygen-containing sample solution contains an oxygen carrier, and fourth, a deoxygenation method in which the oxygen carrier is hemoglobin, Fifthly, a deoxygenation method in which the oxygen carrier is a metalloporphyrin derivative, and sixthly, a deoxygenation method in which the metalloporphyrin derivative is iron porphyrin is provided.

【0012】第7には、この出願の発明は、酸素含有試
料溶液の初期酸素分圧を20Torr以下とした後、通電す
る前記のいずれかの脱酸素化方法を提供する。そして、
この出願の発明は、第8には、水素/窒素混合ガスは、
水素濃度が4vol%未満である前記のいずれかの脱酸
素化方法をも提供する。
Seventh, the invention of this application provides any one of the aforementioned deoxygenation methods in which the initial oxygen partial pressure of the oxygen-containing sample solution is set to 20 Torr or less and then current is supplied. And
In the eighth aspect of the invention of this application, the hydrogen / nitrogen mixed gas is
Also provided is any of the foregoing deoxygenation methods wherein the hydrogen concentration is less than 4 vol%.

【0013】[0013]

【発明の実施の形態】この出願の発明の脱酸素化方法で
は、陰極側と陽極側が、イオンは透過するが試料(溶
質)は透過しない多孔性隔膜を介して別室に分離されて
いる容器において、電解質を含む脱酸素化したい酸素含
有試料溶液を陰極側に導入し、陽極側に電解質溶液を導
入し、水素/窒素混合しながら、通電する。このとき、
陰極では試料溶液中の酸素が還元され、OH-となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the deoxygenation method of the invention of this application, in a container in which the cathode side and the anode side are separated into separate chambers through a porous membrane through which ions permeate but sample (solute) does not permeate. An oxygen-containing sample solution containing an electrolyte, which is desired to be deoxygenated, is introduced to the cathode side, the electrolyte solution is introduced to the anode side, and electricity is supplied while mixing hydrogen / nitrogen. At this time,
At the cathode, oxygen in the sample solution is reduced to OH .

【0014】 O2 + 2H2O + 4e- → 4OH- (I) 一方、陽極では水素がH+に酸化される。 H2 → 4H+ + 4e- (II) そして、これらのイオンは多孔性隔膜を透過して中和水
に変換される。
O 2 + 2H 2 O + 4e → 4OH (I) On the other hand, hydrogen is oxidized to H + at the anode. H 2 → 4H + + 4e (II) Then, these ions permeate the porous membrane and are converted into neutralized water.

【0015】すなわち、この出願の発明の脱酸素化方法
では、微量の水素の添加のみで簡便かつ効率的に酸素を
除去することができ、しかも、生成されるものは、水の
みであることから、試料溶液の汚染が起こらず、高い純
度を要する試料溶液からの酸素除去にとくに有効な方法
である。
That is, according to the deoxygenation method of the invention of this application, oxygen can be simply and efficiently removed by adding only a trace amount of hydrogen, and moreover, only water is produced. This is a particularly effective method for removing oxygen from a sample solution that requires high purity without causing contamination of the sample solution.

【0016】この出願の発明の脱酸素化方法は、各種の
溶液に適用されるものである。具体的には、試薬の前処
理、反応開始前の反応系からの酸素除去、細胞培養液、
薬剤や蛋白質、あるいは種々の栄養素等を含有する生体
投与溶液からの酸素除去等に適用できるものである。溶
液は、電解質を含有していれば、有機系、水溶液系のい
ずれであってもよいが、前記のとおり中和水が生成する
ことから、水溶液や水分散液の脱酸素化に用いられるこ
とが好ましい。また、脱酸素化したい試料溶液中の溶質
も、前記の酸素還元において印加される電位で分解しな
いものであればどのようなものであってもよい。この出
願の発明の脱酸素化方法では、とくに、酸素と化学的に
結合できる酸素運搬体を溶質とする水溶液や水分散系に
とくに好ましく適用される。具体的には、ヘム鉄を含む
ヘモグロビンやその修飾体の水溶液、ヘモグロビンをカ
プセル化させたヘモグロビン小胞体分散液、金属ポルフ
ィリン誘導体を二分子膜中に包埋させたリピドヘム小胞
体、鉄ポルフィリン誘導体をアルブミンに担持させたア
ルブミン−ヘム等が酸素運搬体として例示される。電解
質としては、種々の塩が例示される。具体的には、KO
H、NaOH、NH 3等の無機塩基類、HCl、HCl
4、HNO3、H3PO3、H2CO3等の無機酸類、Na
Cl、KCl、AgClO4、NH4Cl、Na2CO3
NaHCO3等の無機塩類から適当なものを選択でき
る。生体投与を目的とした溶液では、生理食塩水に緩衝
溶液等を加えてpH調整し、溶媒と電解質の役割を持た
せても良い。
The deoxidation method of the invention of this application is
It applies to solutions. Specifically, the pretreatment of the reagent
Oxygen removal from the reaction system before starting the reaction, cell culture medium,
Living organisms that contain drugs, proteins, or various nutrients
It is applicable to removal of oxygen from the administration solution. Melting
The liquid may be organic or aqueous if it contains an electrolyte.
Although it may be offset, neutralized water is generated as described above.
Therefore, it can be used for deoxygenation of aqueous solutions and dispersions.
And are preferred. Also, the solute in the sample solution to be deoxygenated
Also does not decompose at the potential applied in the oxygen reduction described above.
It may be anything as long as it is good. This out
In the deoxygenation method of the invention of the invention, in particular, chemically with oxygen.
For aqueous solutions and water dispersion systems that use oxygen carriers that can bind as solutes
Particularly preferably applied. Specifically, including heme iron
An aqueous solution of hemoglobin or its modified product, hemoglobin
Pelletized hemoglobin endoplasmic reticulum dispersion, metal porph
Lipid heme vesicles embedded with bilin derivatives in bilayers
Body, an iron porphyrin derivative supported on albumin
Lubumin-heme and the like are exemplified as the oxygen carrier. electrolytic
Examples of the quality include various salts. Specifically, KO
H, NaOH, NH 3Inorganic bases such as HCl, HCl, HCl
OFour, HNO3, H3PO3, H2CO3Inorganic acids such as Na
Cl, KCl, AgClOFour, NHFourCl, Na2CO3,
NaHCO3Appropriate ones can be selected from inorganic salts such as
It For solutions intended for biological administration, buffer with physiological saline.
Has a role of solvent and electrolyte by adding a solution to adjust pH
You can let me.

【0017】この出願の発明の脱酸素化方法では、前記
のとおり、電極反応により最終的には水が生成するが、
陰極側が塩基性、陽極側が酸性となるため、電極近傍を
局所的に見ればpH6〜12の変化がある。したがっ
て、溶媒、溶質、電解質等は、このpH範囲において安
定なものとすることが好ましい。
In the deoxygenation method of the invention of this application, as described above, water is finally produced by the electrode reaction,
Since the cathode side is basic and the anode side is acidic, there is a change of pH 6 to 12 when the vicinity of the electrode is viewed locally. Therefore, it is preferable that the solvent, solute, electrolyte, etc. be stable in this pH range.

【0018】試料溶液中の溶存酸素の初期酸素分圧は、
その溶液の酸素溶解度に応じて異なるものであり、とく
に限定されない。この出願の発明の脱酸素化方法では、
試料溶液中に溶存した酸素を1Torr以下の酸素分圧まで
短時間に除去することができる。とくに、前記のとおり
の酸素運搬体等の酸素と結合しうる物質を含有する溶液
では、溶存酸素量が多いことから、この出願の発明の脱
酸素化方法は、有効な手段といえる。ヘモグロビン(H
b)を酸素運搬体として利用する場合には、殺菌、精製
方法として加熱処理が最も好適とされているが、ヘモグ
ロビンは酸素化状態(OxyHb)では熱に対して不安
定であり、加熱により徐々に不可逆酸化状態(metH
b)になり、最終的には沈殿するという問題がある。し
たがって、ヘモグロビンの殺菌や共存ウィルスの不活化
処理等には、予め脱酸素化処理を施すことが望ましく、
このとき、溶液(または分散液)中の酸素分圧は1Torr
以下とすることが望ましい。酸素運搬体の溶液における
溶存酸素分圧は、通常、大気中で150〜160Torrで
あるが、溶存酸素量は37℃、1気圧の大気下では1d
Lに16〜24mLである(例えば、水では同条件にお
いて0.55mLしか溶解しない)。この出願の発明の
脱酸素化方法は、このような酸素溶解量の高い試料溶液
でも15〜30分程度で1Torr以下まで酸素分圧を下げ
ることができる。しかし、人工肺やガス交換膜、あるい
は窒素ガスの通気等、従来公知の方法などにより予め酸
素分圧を20Torr以下、好ましくは10Torr以下にまで
低下させた後に本願発明の方法で脱酸素することによ
り、処理時間がより短縮され、5分以内に1Torr以下に
まで低下することが可能となり、好ましい。
The initial oxygen partial pressure of dissolved oxygen in the sample solution is
It depends on the oxygen solubility of the solution and is not particularly limited. In the deoxygenation method of the invention of this application,
Oxygen dissolved in the sample solution can be removed in a short time up to an oxygen partial pressure of 1 Torr or less. In particular, since the solution containing a substance capable of binding oxygen such as the oxygen carrier as described above has a large amount of dissolved oxygen, the deoxygenation method of the invention of this application can be said to be an effective means. Hemoglobin (H
When b) is used as an oxygen carrier, heat treatment is most suitable as a sterilization and purification method, but hemoglobin is unstable to heat in an oxygenated state (OxyHb), and is gradually heated by heating. Irreversible oxidation state (metH
There is a problem that it becomes b) and finally precipitates. Therefore, for sterilization of hemoglobin and inactivation treatment of coexisting viruses, it is desirable to perform deoxygenation treatment in advance,
At this time, the oxygen partial pressure in the solution (or dispersion) is 1 Torr.
The following is desirable. The dissolved oxygen partial pressure in the solution of the oxygen carrier is usually 150 to 160 Torr in the atmosphere, but the dissolved oxygen amount is 1 d under the atmosphere of 37 ° C. and 1 atm.
It is 16 to 24 mL in L (for example, only 0.55 mL is dissolved in water under the same conditions). The deoxygenation method of the invention of this application can reduce the oxygen partial pressure to 1 Torr or less in about 15 to 30 minutes even with such a sample solution having a high oxygen dissolution amount. However, by deoxygenating by the method of the present invention after reducing the oxygen partial pressure to 20 Torr or less, preferably 10 Torr or less in advance by a conventionally known method such as artificial lung, gas exchange membrane, or aeration of nitrogen gas. The processing time is further shortened, and it can be reduced to 1 Torr or less within 5 minutes, which is preferable.

【0019】この出願の発明の脱酸素化方法では、電解
槽では、陰極室と陽極室がイオン透過性隔膜を隔てて隣
接していればよく、その形状、室数、材質等はとくに限
定されない。例えば、イオン性透過性隔膜を挟んで陰極
室と陽極室が隣接した二室型電解槽、陰極室と陽極室が
各々イオン性透過性隔膜を介して交互に複数連結した多
層型、円筒状の陰極室中に隔膜を介して円筒状の陽極室
があるような構造のもの、薄い二室型電解槽を巻いてロ
ール状としたロール型などが例示される。さらには、図
1に例示される交互型電解槽が好ましく例示される。こ
のような交互型電解槽は、イオン透過性多孔質隔膜
(1)を隔てて、陰極室(2)と陽極室(3)を有し、
陰極室(2)の陰極(4)と陽極室(3)の陽極(5)
が交互に入り組んでいる。また、陰極室(2)には、試
料溶液(21)、陽極室(3)には、電解質溶液(3
1)を有し、この電解質溶液(31)には、水素/窒素
混合ガス(6)を通気すればよい。このとき、試料溶液
(21)および電解質溶液(31)は、予め陰極室
(2)および陽極室(3)に導入してあってもよいし、
それぞれリザーバータンクA(22)およびリザーバー
タンクB(32)から、ポンプ等を用いて送液されても
よい。もちろん、電解槽は、図1に例示されるものに限
定されず、同様の電極反応を行えるものであれば、どの
ようなものであってもよい。
In the deoxidizing method of the invention of this application, in the electrolytic cell, the cathode chamber and the anode chamber may be adjacent to each other with the ion-permeable diaphragm interposed therebetween, and the shape, number of chambers, material, etc. are not particularly limited. . For example, a two-chamber type electrolytic cell in which a cathode chamber and an anode chamber are adjacent to each other with an ionic permeable membrane sandwiched between them, a multilayer type in which the cathode chamber and the anode chamber are alternately connected through an ionic permeable membrane, and a cylindrical shape Examples thereof include a structure in which a cylindrical anode chamber is provided in the cathode chamber via a diaphragm, and a roll type in which a thin two-chamber type electrolytic cell is wound to form a roll. Furthermore, the alternating type electrolytic cell illustrated in FIG. 1 is preferably exemplified. Such an alternating type electrolytic cell has a cathode chamber (2) and an anode chamber (3) separated by an ion-permeable porous diaphragm (1),
The cathode (4) of the cathode chamber (2) and the anode (5) of the anode chamber (3)
Are intertwined with each other. The cathode chamber (2) has a sample solution (21), and the anode chamber (3) has an electrolyte solution (3).
1) and the hydrogen / nitrogen mixed gas (6) may be passed through the electrolyte solution (31). At this time, the sample solution (21) and the electrolyte solution (31) may be introduced into the cathode chamber (2) and the anode chamber (3) in advance,
Liquid may be sent from the reservoir tank A (22) and the reservoir tank B (32) using a pump or the like. Of course, the electrolytic cell is not limited to the one illustrated in FIG. 1, and may be any type as long as it can perform the same electrode reaction.

【0020】この出願の発明の脱酸素化方法は、前記の
とおり、陰極が酸化せず、金属の溶出がない点で従来の
電気化学的脱酸素化方法とは異なり汚染がない。したが
って、電極材料は、非溶出性のものとすることが好まし
い。非溶出性とは、すなわち、電極が電気化学的に安定
で、酸化によりイオンとして溶出しない性質を有するこ
とである。幅広い導電体が挙げられるが、陰極材料とし
ては、具体的に、金属単体、合金、炭素など、各種のも
のが適用できる。特に前記(I)の還元反応によって生
成するOH-により劣化しないもの(塩基性下で安定な
もの)とすることが好ましい。形状は平板状でよいが、
試料溶液との接触面積を上げるために、網目状、ロール
状、プリーツ状、多孔質状、微粒子焼結体、不織布状等
としてもよい。
As described above, the deoxygenation method of the invention of this application is free from contamination unlike the conventional electrochemical deoxygenation method in that the cathode is not oxidized and the metal is not eluted. Therefore, the electrode material is preferably non-eluting. The non-eluting property means that the electrode is electrochemically stable and does not elute as an ion due to oxidation. Although a wide variety of conductors can be mentioned, various materials such as simple metals, alloys, and carbon can be specifically applied as the cathode material. In particular, it is preferable to use one that is not deteriorated by OH generated by the reduction reaction of the above (I) (stable under basic conditions). The shape may be flat,
In order to increase the contact area with the sample solution, a mesh shape, a roll shape, a pleated shape, a porous shape, a fine particle sintered body, a non-woven cloth shape or the like may be used.

【0021】一方、陽極は、陰極同様に非溶出性の電極
であればよく、さまざまな材質のものが適用される。具
体的には、金、白金等の貴金属、活性炭やグラファイト
等の炭素、ポリピロールやポリアニリン当の導電性高分
子が例示される。形状や大きさはとくに限定されず、陰
極と同様に板状や、酸素含有溶液との接触面積が大きく
なる網目状、ロール状、プリーツ状、多孔質状、微粒子
焼結体、不織布状等の形状を有する電極から適宜選択さ
れる。また、陽極では前記(II)の反応によりH+が発
生するため、耐酸性を有することが好ましい。
On the other hand, the anode may be a non-eluting electrode like the cathode, and various materials may be applied. Specific examples thereof include noble metals such as gold and platinum, carbon such as activated carbon and graphite, and conductive polymers such as polypyrrole and polyaniline. The shape and size are not particularly limited, and like a cathode, a plate shape, a mesh shape that increases the contact area with an oxygen-containing solution, a roll shape, a pleated shape, a porous shape, a fine particle sintered body, a nonwoven fabric shape, etc. The shape is appropriately selected from the electrodes. Further, at the anode, since H + is generated by the reaction of the above (II), it is preferable to have acid resistance.

【0022】この出願の発明の脱酸素化方法で用いられ
る隔膜は、OH-およびH+、あるいは陰極側に導入した
試料溶液から電解質成分が自由に透過できるものであれ
ばよく、とくに限定されない。OH-およびH+の透過性
が高いものほど各室におけるpHの変化を小さくするこ
とができ、好ましい。従来より知られる巣焼き粘土、セ
ラミックス、紙、織布、不織布、中でもポリプロピレ
ン、ポリエチレン、ポリエーテルスルホン、ポリアクリ
ロニトリル、酢酸セルロース、フッ素樹脂等の各種プラ
スチックの繊維や織布、不織布あるいは多孔質膜から、
試料溶液中の溶質は透過せず、前記のイオンや電解質の
みが透過できる限外分子量(または分画分子量)のもの
を適宜選択すればよい。
The diaphragm used in the deoxygenation method of the invention of this application is not particularly limited as long as it is OH and H + or the electrolyte solution can freely permeate from the sample solution introduced on the cathode side. The higher the permeability of OH and H +, the smaller the change in pH in each chamber, which is preferable. From traditionally known nesting clay, ceramics, paper, woven fabrics, non-woven fabrics, especially fibers, woven fabrics, non-woven fabrics or porous membranes of various plastics such as polypropylene, polyethylene, polyether sulfone, polyacrylonitrile, cellulose acetate, fluororesin ,
A solute in the sample solution that does not permeate but only the above-mentioned ion or electrolyte can permeate has an ultramolecular weight (or fractional molecular weight) to be appropriately selected.

【0023】以上のとおりの電解槽では、陰極と陽極の
間隔、あるいは陰極室と陽極室の大きさはとくに限定さ
れないが、好ましくは、0.1〜10mmとすることが
好ましい。陰極室と陽極室には、試料溶液および電解液
が各々導入されるが、これらは予め一定量導入し、通電
して脱酸素化を行ってもよいし、タンクに連結してポン
プ等の送液手段により、送液、循環させ、脱酸素化を行
ってもよい。このとき、陰極室と陽極室はそれぞれ気相
部を有していてもよいが、両室の気相部は完全に隔離さ
れていなければならない。すなわち、陰極室には酸素が
存在し、陽極室には水素/窒素混合ガス置換により、ほ
とんど酸素が存在しない状態(好ましくは1Torr以下)
となっており、両室間での気体の交換がない状態として
おく必要がある。この出願の発明の脱酸素化方法におい
ては、陽極側に通気される水素/窒素混合ガスの組成は
とくに限定されないが、水素の爆発限界(4〜76vo
l%)を考慮して4vol%未満とすることが好まし
い。
In the electrolytic cell as described above, the distance between the cathode and the anode or the size of the cathode chamber and the anode chamber is not particularly limited, but preferably 0.1 to 10 mm. A sample solution and an electrolytic solution are introduced into the cathode chamber and the anode chamber, respectively, but a predetermined amount of these may be introduced in advance to deoxidize by energizing, or by connecting to a tank and sending by a pump or the like. The liquid may be fed and circulated to perform deoxygenation by a liquid means. At this time, the cathode chamber and the anode chamber may each have a vapor phase portion, but the vapor phase portions of both chambers must be completely isolated. That is, oxygen is present in the cathode chamber and almost no oxygen is present in the anode chamber due to replacement of hydrogen / nitrogen mixed gas (preferably 1 Torr or less).
Therefore, it is necessary to keep the gas exchange between both chambers. In the deoxygenation method of the invention of this application, the composition of the hydrogen / nitrogen mixed gas ventilated to the anode side is not particularly limited, but the hydrogen explosion limit (4 to 76 vo
1%) is taken into consideration, and it is preferably less than 4 vol%.

【0024】そして、以上のとおりのこの出願の発明の
脱酸素化方法では、陰極、陽極間に脱酸素に必要な電力
を通電することにより、前記(I)および(II)の電極
反応が起こり、試料溶液からの脱酸素化が起こる。この
とき、電力の供給は適当な電源装置からすればよく、例
えば一般的な電気化学測定に用いられるポテンシオスタ
ットが適用される。印加する電圧は、溶存酸素をOH-
に還元する電位(例えば0.401V(vs.SHE)
または0.181V(vs.Ag/AgCl))であ
り、かつ、水の電気分解が生じない電位(例えば1.7
5V)であればよく、使用される電極材料、電解質、試
料(溶質)、溶液pH等に応じて適宜選択すればよい。
具体的には、後述の実施例に示されるように、電極反応
のNernst式から好適な電圧を計算できる。また、電圧
は、直流とすることが好ましいが、脈流やパルスとして
もよい。
In the deoxidizing method of the invention of the present application as described above, the electrode reactions (I) and (II) described above occur by supplying the electric power required for deoxidizing between the cathode and the anode. , Deoxidation from the sample solution occurs. At this time, power may be supplied from an appropriate power supply device, for example, a potentiostat used for general electrochemical measurement is applied. The applied voltage, the dissolved oxygen OH -
Potential (eg 0.401 V (vs. SHE))
Or 0.181 V (vs. Ag / AgCl)) and a potential at which electrolysis of water does not occur (eg 1.7.
5 V), and may be appropriately selected depending on the electrode material, electrolyte, sample (solute), solution pH, etc. used.
Specifically, as shown in Examples described later, a suitable voltage can be calculated from the Nernst equation of the electrode reaction. The voltage is preferably direct current, but may be pulsating current or pulse.

【0025】以下、実施例を示し、この発明の実施の形
態についてさらに詳しく説明する。もちろん、この発明
は以下の例に限定されるものではなく、細部については
様々な態様が可能であることは言うまでもない。
The embodiments of the present invention will be described in more detail below with reference to examples. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in details.

【0026】[0026]

【実施例】<実施例1>陰極室および陽極室の内容積が
100cm3の二室型電解槽の陰極室・陽極室の仕切り
部に、限外分子量30000の限外ろ過膜(Millipore
社製、Biomax-30)を張った。25g/dLのアルブミ
ン(ウエルファイド社製、25%アルブミン溶液)を生
理食塩水にて希釈して5g/dLとした試料溶液80m
Lを陰極室に導入し、クラーク型酸素電極(インターメ
ディカル株式会社製)を用いて、この試料溶液の初期酸
素分圧を確認した(158Torr)。陽極室に80mLの
生理食塩水を導入し、陰極としてステンレス電極(電極
面積=20cm2)、陽極としてカーボンシート(電極
面積=20cm2)を各室に設置した。
[Examples] <Example 1> An ultrafiltration membrane (Millipore) having an ultramolecular weight of 30,000 was placed in the partition between the cathode chamber and the anode chamber of a two-chamber type electrolytic cell having an inner volume of 100 cm 3 in the cathode chamber and the anode chamber.
Made by Biomax-30). Sample solution 80m in which 25 g / dL of albumin (manufactured by Welfide, 25% albumin solution) was diluted with physiological saline to 5 g / dL
L was introduced into the cathode chamber, and the initial oxygen partial pressure of this sample solution was confirmed using a Clark-type oxygen electrode (manufactured by Intermedical Co., Ltd.) (158 Torr). 80 mL of physiological saline was introduced into the anode chamber, and a stainless steel electrode (electrode area = 20 cm 2 ) as a cathode and a carbon sheet (electrode area = 20 cm 2 ) as an anode were installed in each chamber.

【0027】このような系について、印加電圧はNernst
式より求めた。すなわち、 2H2 → 4H+ + 4e-H 0=0V O2 + 4H+ + 4e- → 2H2O EO 0=1.23V の電極反応について次の式(i)および(ii): EH=EH 0+(RT/2F)ln(1/pH2)−(RT/F)pH (i) EO=EO 0+(RT/4F)ln(1/pO2)−(RT/F)pH (ii) から、T=286K、pH=7.86、pH2=0.0
2atm(15.2Torr)、pO2=0.013atm
(10Torr)としてEH、EOを計算した。
For such a system, the applied voltage is Nernst
Calculated from the formula. That is, for the electrode reaction of 2H 2 → 4H + + 4e E H 0 = 0V O 2 + 4H + + 4e → 2H 2 O E O 0 = 1.23V, the following formulas (i) and (ii): E H = E H 0 + (RT / 2F) ln (1 / pH 2 ) − (RT / F) pH (i) E O = E O 0 + (RT / 4F) ln (1 / pO 2 ) − (RT / F) from pH (ii), T = 286K , pH = 7.86, pH 2 = 0.0
2 atm (15.2 Torr), pO 2 = 0.013 atm
E H and E O were calculated as (10 Torr).

【0028】EHは、−0.59V(vs. Ag/AgCl)、E
Oは、0.56V(vs. Ag/AgCl)となった。Tafel Plot
による過電圧は、0.52Vであるから、 EO − EH +0.52 = 1.67V となり、印加電圧は、1.67Vとした。
E H is -0.59 V (vs. Ag / AgCl), E
O became 0.56 V (vs. Ag / AgCl). Tafel Plot
Overvoltage by is because it is 0.52V, E O - E H +0.52 = 1.67V , and the applied voltage was set to 1.67 V.

【0029】スターラーで陰極室の試料溶液を攪拌しな
がら、水素/窒素=2/98の混合ガスを100mL/
minの流量でカーボンシート近傍の生理食塩水に通気
し、電圧1.67Vの定電圧電解(扶桑製作所、モデル
1110ポテンシオスタット)を行った。
While stirring the sample solution in the cathode chamber with a stirrer, a mixed gas of hydrogen / nitrogen = 2/98 was mixed with 100 mL /
Aerated with physiological saline near the carbon sheet at a flow rate of min, constant voltage electrolysis with a voltage of 1.67 V (Fuso Seisakusho, model)
1110 potentiostat).

【0030】試料溶液中の酸素分圧を、酸素電極を用い
て測定したところ、約20分後に0Torrとなった。 <実施例2>実施例1と同様に二室電解槽の陰極室に試
料溶液、陽極室に生理食塩水を導入し、クラーク型酸素
電極を用いて試料溶液の初期酸素分圧を確認した(15
8Torr)後、試料溶液に窒素を泡立たない程度の流量で
通気し、酸素分圧約20Torrとした。
When the oxygen partial pressure in the sample solution was measured using an oxygen electrode, it became 0 Torr after about 20 minutes. <Example 2> In the same manner as in Example 1, a sample solution was introduced into the cathode chamber of the two-chamber electrolytic cell, and physiological saline was introduced into the anode chamber, and the initial oxygen partial pressure of the sample solution was confirmed using a Clark-type oxygen electrode ( 15
After 8 Torr), nitrogen was bubbled through the sample solution at such a flow rate that bubbles were not generated, and the oxygen partial pressure was adjusted to about 20 Torr.

【0031】次に実施例1と同様の方法で電圧1.67
Vの定電圧電解を行い、試料溶液中の酸素分圧を、酸素
電極を用いて測定したところ、約3分後に0Torrとなっ
た。 <実施例3> (1)ヘモグロビン溶液の調製 ウシ赤血球(東京芝浦臓器株式会社)を生理食塩水で2
回洗浄し、等量の純水を添加した。分離されたヘモグロ
ビンをBiomaxフィルター(Millipore社)で精製し、ス
トローマフリーのヘモグロビン濃厚液を得た。 (2)ヘモグロビン溶液の脱酸素化 40g/dLのヘモグロビン濃厚液を生理食塩水で希釈
して5g/dLとした試料溶液2Lをリザーバータンク
Aに入れ、泡立たない程度の流量で窒素ガスを30分間
通気し、クラーク型酸素電極で酸素分圧が158Torrか
ら20Torrとなることを確認した。
Then, a voltage of 1.67 is applied in the same manner as in the first embodiment.
When constant voltage electrolysis of V was performed and the oxygen partial pressure in the sample solution was measured using an oxygen electrode, it was 0 Torr after about 3 minutes. <Example 3> (1) Preparation of hemoglobin solution Bovine erythrocytes (Tokyo Shibaura Organ Co., Ltd.) were diluted with physiological saline 2
After washing twice, an equal amount of pure water was added. The separated hemoglobin was purified with a Biomax filter (Millipore) to obtain a stroma-free concentrated hemoglobin solution. (2) Deoxygenation of hemoglobin solution Dilute 40 g / dL hemoglobin concentrated solution with physiological saline to 5 g / dL, put 2 L of sample solution in the reservoir tank A, and nitrogen gas for 30 minutes at a flow rate that does not cause foaming. It was vented and it was confirmed that the oxygen partial pressure was changed from 158 Torr to 20 Torr using a Clark oxygen electrode.

【0032】また、pH7.4のリン酸緩衝生理食塩水
500mLをリザーバータンクBに導入し、水素/窒素
=2/98の混合ガスを200mL/minの流量で通
気した。
Further, 500 mL of phosphate buffered saline having a pH of 7.4 was introduced into the reservoir tank B, and a mixed gas of hydrogen / nitrogen = 2/98 was aerated at a flow rate of 200 mL / min.

【0033】イオン交換膜Nafion(R)(デュポン株式会
社)で仕切られた内容積50cm3の陰極室と陽極室
が、交互に複数連結してなる電解槽において、陰極室に
はリザーバータンクAから試料溶液を、陽極室にはリザ
ーバータンクBから生理食塩水を、それぞれポンプにて
送液した。このとき、各室には気相を設けないように溶
液を循環させた。
In an electrolytic cell in which a plurality of cathode chambers and anode chambers each having an internal volume of 50 cm 3 and partitioned by an ion exchange membrane Nafion (R) (DuPont Co., Ltd.) are alternately connected, the cathode chambers from the reservoir tank A The sample solution and physiological saline from the reservoir tank B were pumped into the anode chamber. At this time, the solution was circulated so that a gas phase was not provided in each chamber.

【0034】陰極および陽極を波型のカーボンシート電
極(電極面積各400cm2)とし、電圧1.67Vの
定電圧電解を行い、試料溶液の酸素分圧を酸素電極で測
定したところ、約20分後に酸素分圧は0Torrとなるこ
とが確認された。 <実施例4> (1)ヘモグロビン小胞体分散液の調製 使用期限切れのヒト血液(北海道赤十字センター)を生
理食塩水で2回洗浄し、等量の純水を添加して溶血させ
た後、この溶血液を一酸化炭素で処理し、さらに、加熱
処理(60℃、2時間)してヘモグロビン以外の蛋白質
を変性沈殿させた。上澄み液をBiomaxフィルター(Mill
ipore社)を用いて精製・濃縮(限外分子量100万と
8万の間の分画を分取)し、ヘモグロビン濃厚液を得
た。
When the cathode and the anode were corrugated carbon sheet electrodes (each having an electrode area of 400 cm 2 ), constant voltage electrolysis with a voltage of 1.67 V was carried out, and the oxygen partial pressure of the sample solution was measured with the oxygen electrode. It was later confirmed that the oxygen partial pressure was 0 Torr. <Example 4> (1) Preparation of hemoglobin endoplasmic reticulum dispersion Human expired human blood (Hokkaido Red Cross Center) was washed twice with physiological saline, and an equal amount of pure water was added to hemolyze the blood. The hemolyzed blood was treated with carbon monoxide and further heat-treated (60 ° C., 2 hours) to denature and precipitate proteins other than hemoglobin. Use the Biomax filter (Mill
Purification / concentration (fractionation between ultra-molecular weights between 1,000,000 and 80,000) was performed using ipore) to obtain a concentrated hemoglobin solution.

【0035】このヘモグロビン濃厚液(40g/dL)
に、1,2−ジパルミトイル−sn−グリセロ−3−ホ
スファチジルコリン、コレステロール、および1,2−
ジパルミトイル−sn−グリセロ−3−ホスファチジル
グリセロール(日本ファインケミカル株式会社)の5/
5/1混合リン脂質粉末10g/dLを添加し、4℃で
12時間攪拌し、水和分散させた。
This concentrated hemoglobin solution (40 g / dL)
1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, cholesterol, and 1,2-
5 / of dipalmitoyl-sn-glycero-3-phosphatidylglycerol (Nippon Fine Chemical Co., Ltd.)
10 g / dL of 5/1 mixed phospholipid powder was added, and the mixture was stirred at 4 ° C. for 12 hours to disperse the hydrate.

【0036】これをメンブランフィルター(富士フィル
ム株式会社)を用いて押し出し、粒径250nmのヘモ
グロビン小胞体とした。小胞体に内包されなかったヘモ
グロビンは、超遠心分離(50000g、40分)にて
上澄みに除去し、沈殿した小胞体を生理食塩水に分散さ
せた後、酸素雰囲気下、可視光を照射し、ヘモグロビン
に配位している一酸化炭素を酸素に交換させてヘモグロ
ビン濃度5g/dLのヘモグロビン小胞体分散液を得
た。 (2)ヘモグロビン小胞体分散液の脱酸素化 実施例1と同様の二室型電解槽において、仕切りに限外
ろ過膜の替わりに人工肺(CAPIOX(R)II、テルモ株式会
社製)を設置し、人工肺のガスポートには窒素ガスを通
気した。リザーバータンクAに上記の試料分散液2Lを
導入し陰極室にポンプにより送液、循環させた。1回の
循環後に試料分散液中の酸素分圧を測定したところ、1
58Torrから10Torrまで低下した。一方リザーバータ
ンクBには、500mLのpH7.4のリン酸緩衝生理
食塩水を導入し、水素/窒素=2/98の混合ガスを2
00mL/minの流量で通気しながら陽極室に送液、
循環させた。
This was extruded using a membrane filter (Fuji Film Co., Ltd.) to obtain hemoglobin vesicles having a particle size of 250 nm. Hemoglobin that was not encapsulated in the endoplasmic reticulum was removed in the supernatant by ultracentrifugation (50000 g, 40 minutes), the precipitated endoplasmic reticulum was dispersed in physiological saline, and then exposed to visible light under an oxygen atmosphere, Carbon monoxide coordinated to hemoglobin was exchanged for oxygen to obtain a hemoglobin endoplasmic reticulum dispersion liquid having a hemoglobin concentration of 5 g / dL. (2) Deoxygenation of hemoglobin endoplasmic reticulum dispersion In the same two-chamber electrolytic cell as in Example 1, an artificial lung (CAPIOX (R) II, manufactured by Terumo Corp.) was installed in the partition instead of the ultrafiltration membrane. Then, nitrogen gas was ventilated through the gas port of the artificial lung. 2 L of the above sample dispersion liquid was introduced into the reservoir tank A, and the liquid was circulated through the cathode chamber by a pump. When the oxygen partial pressure in the sample dispersion liquid was measured after one circulation, it was 1
It dropped from 58 Torr to 10 Torr. On the other hand, to the reservoir tank B, 500 mL of phosphate buffered saline having a pH of 7.4 was introduced, and a mixed gas of hydrogen / nitrogen = 2/98 was added to 2 times.
Liquid is sent to the anode chamber while ventilating at a flow rate of 00 mL / min,
Circulated.

【0037】この状態で定電圧1.67Vの定電圧電解
を行い、試料溶液の酸素分圧を酸素電極で測定したとこ
ろ、約7分以内に酸素分圧が0Torrとなった。
In this state, constant voltage electrolysis with a constant voltage of 1.67 V was performed, and the oxygen partial pressure of the sample solution was measured with an oxygen electrode. The oxygen partial pressure became 0 Torr within about 7 minutes.

【0038】[0038]

【発明の効果】以上詳しく説明したとおり、この発明に
よって、試料溶液を汚染することなく、簡便かつ高効率
に、溶液中の溶存酸素を除去する脱酸素化方法が提供さ
れる。
As described in detail above, the present invention provides a deoxygenation method for removing dissolved oxygen in a solution simply and highly efficiently without contaminating the sample solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】この出願の発明の脱酸素化方法において用いら
れる電解槽を例示する概略模式図である。
FIG. 1 is a schematic diagram illustrating an electrolytic cell used in the deoxygenation method of the invention of this application.

【符号の説明】[Explanation of symbols]

1 イオン透過性多孔質隔膜 2 陰極室 21 試料溶液 22 リザーバータンクA 3 陽極室 31 電解質溶液 32 リザーバータンクB 4 陰極 5 陽極 6 水素/窒素混合ガス 1 Ion-permeable porous membrane 2 Cathode chamber 21 Sample solution 22 Reservoir tank A 3 Anode chamber 31 Electrolyte solution 32 Reservoir tank B 4 cathode 5 anode 6 Hydrogen / nitrogen mixed gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G01N 1/10 C02F 1/46 101C (56)参考文献 特開2001−62459(JP,A) 特開 平10−272474(JP,A) 特開 平6−320165(JP,A) 特開 昭63−242391(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/461 - 1/469 B01D 19/00 C02F 1/58 C02F 1/20 B01D 61/42 - 61/54 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI G01N 1/10 C02F 1/46 101C (56) References JP 2001-62459 (JP, A) JP 10-272474 (JP , A) JP-A-6-320165 (JP, A) JP-A-63-242391 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 1/461-1/469 B01D 19/00 C02F 1/58 C02F 1/20 B01D 61/42-61/54

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸素を含有する試料溶液から酸素を除去
する方法であって、イオン透過性多孔質隔膜を隔てて、
陰極側に少なくとも電解質を含有する酸素含有試料溶液
を導入し、陽極側に電解質溶液を導入し、陽極側の電解
質溶液に水素/窒素混合ガスを通気しながら通電するこ
とを特徴とする酸素含有試料溶液からの脱酸素化方法。
1. A method for removing oxygen from a sample solution containing oxygen, comprising separating an ion-permeable porous membrane,
An oxygen-containing sample characterized by introducing an oxygen-containing sample solution containing at least an electrolyte on the cathode side, introducing an electrolyte solution on the anode side, and energizing while passing a hydrogen / nitrogen mixed gas through the electrolyte solution on the anode side. Deoxygenation method from solution.
【請求項2】 酸素含有試料溶液は、水溶液または水分
散液のいずれかである請求項1の脱酸素化方法。
2. The deoxygenation method according to claim 1, wherein the oxygen-containing sample solution is either an aqueous solution or an aqueous dispersion.
【請求項3】 酸素含有試料溶液は、酸素運搬体を含有
する請求項1または2のいずれかの脱酸素化方法。
3. The deoxygenation method according to claim 1, wherein the oxygen-containing sample solution contains an oxygen carrier.
【請求項4】 酸素運搬体は、ヘモグロビンである請求
項3の脱酸素化方法。
4. The deoxygenation method according to claim 3, wherein the oxygen carrier is hemoglobin.
【請求項5】 酸素運搬体は、金属ポルフィリン誘導体
である請求項3の脱酸素化方法。
5. The deoxygenation method according to claim 3, wherein the oxygen carrier is a metalloporphyrin derivative.
【請求項6】 金属ポルフィリンは、鉄ポルフィリン誘
導体である請求項5の脱酸素化方法。
6. The deoxygenation method according to claim 5, wherein the metal porphyrin is an iron porphyrin derivative.
【請求項7】 酸素含有試料溶液は、初期酸素分圧を2
0Torr以下とした後通電する請求項1ないし6のいずれ
かの脱酸素化方法。
7. The oxygen-containing sample solution has an initial oxygen partial pressure of 2
The deoxidizing method according to claim 1, wherein the current is applied after the pressure is set to 0 Torr or less.
【請求項8】 水素/窒素混合ガスは、水素濃度が4%
未満である請求項1ないし7のいずれかの脱酸素化方
法。
8. The hydrogen / nitrogen mixed gas has a hydrogen concentration of 4%.
The method for deoxidation according to any one of claims 1 to 7, wherein the deoxidation method is less than 10.
JP2001190302A 2001-06-22 2001-06-22 Deoxygenation method Expired - Fee Related JP3442751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190302A JP3442751B2 (en) 2001-06-22 2001-06-22 Deoxygenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190302A JP3442751B2 (en) 2001-06-22 2001-06-22 Deoxygenation method

Publications (2)

Publication Number Publication Date
JP2003001257A JP2003001257A (en) 2003-01-07
JP3442751B2 true JP3442751B2 (en) 2003-09-02

Family

ID=19029095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190302A Expired - Fee Related JP3442751B2 (en) 2001-06-22 2001-06-22 Deoxygenation method

Country Status (1)

Country Link
JP (1) JP3442751B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066345A1 (en) * 2004-12-23 2006-06-29 The Australian National University Increased conductivity and enhanced electrolytic and electrochemical processes

Also Published As

Publication number Publication date
JP2003001257A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US4959135A (en) Polyalkylamine complexes for ligand extraction and generation
AU617964B2 (en) Macrocyclic amine complexes for ligand extraction and generation
JP4286661B2 (en) Photolytic cell for providing physiological gas exchange
JP3181795B2 (en) Electrolyzed water production equipment
US8518225B2 (en) Apparatus and method for producing hydrogen-dissolved drinking water
US7718144B2 (en) Photolytic cell for providing physiological gas exchange
US8562860B2 (en) Method for activating and stabilizing dissolved hydrogen in water
AU2018251789C1 (en) Gas delivery devices
US4629544A (en) Apparatus and method for reversibly removing ligands from carriers
JP4094634B2 (en) Method for adjusting the pH of a sample solution
US7909788B2 (en) Carbon dioxide removal from whole blood by photolytic activation
EP1913965A1 (en) Photolytic apparatus for oxygenating and removing carbon dioxide
CN105916532A (en) Redox controlled electrosorption and decomposition device for the purification of blood and other fluids
KR20070041639A (en) Method for antioxidation and antioxidative functional water
JP2003506120A (en) Synthesis of peracetic acid by electrolysis.
EP0511719B1 (en) System for the extraction and utilization of oxygen from fluids
JP3442751B2 (en) Deoxygenation method
US5410052A (en) Symmetrical and unsymmetrical polyalkylamine metal complexes for ligand extraction and generation
JPH1179708A (en) Active oxygen generating device
JP2002273433A (en) Method and device for generating active oxygen
EP0283751A2 (en) Polyalkylamine complexes for ligand extraction and generation
JP2003052275A (en) Method for culturing fish and shellfish and closed circulating culture system
KR101679175B1 (en) Microbial power generation method and microbial power generation device
Köster et al. Regeneration of hemofiltrate by anodic oxidation of urea
Huang et al. Complete deoxygenation from a hemoglobin solution by an electrochemical method and heat treatment for virus inactivation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees