JP3436731B2 - Ultrasonic sound velocity measuring method and apparatus - Google Patents

Ultrasonic sound velocity measuring method and apparatus

Info

Publication number
JP3436731B2
JP3436731B2 JP2000169369A JP2000169369A JP3436731B2 JP 3436731 B2 JP3436731 B2 JP 3436731B2 JP 2000169369 A JP2000169369 A JP 2000169369A JP 2000169369 A JP2000169369 A JP 2000169369A JP 3436731 B2 JP3436731 B2 JP 3436731B2
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
circuit
received
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000169369A
Other languages
Japanese (ja)
Other versions
JP2001056320A (en
Inventor
賢治 川口
正範 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2000169369A priority Critical patent/JP3436731B2/en
Publication of JP2001056320A publication Critical patent/JP2001056320A/en
Application granted granted Critical
Publication of JP3436731B2 publication Critical patent/JP3436731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波音速測定方
法及び装置に関し、特に、気泡が存在する試料中を伝播
する超音波の音速を測定する方法及び装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring ultrasonic sound velocity, and more particularly to a method and apparatus for measuring the sound velocity of ultrasonic waves propagating in a sample containing bubbles.

【0002】[0002]

【従来の技術】図4は、超音波音速測定装置が備えた超
音波送受信装置を示す外観図である。超音波送受信部2
aより所定距離の位置に反射板2bが設けられており、
上記超音波送受信部2aと反射板2bとの間に試料が充
填されるようになっている。この構造で上記超音波送受
信部2aに設けられた発振素子(図示せず)より送出さ
れた超音波が、反射板2bで反射され上記超音波送受信
部2aに設けられた受信素子(図示せず)に受信されて
電気信号に変換されるようになっている。
2. Description of the Related Art FIG. 4 is an external view showing an ultrasonic wave transmitting / receiving apparatus included in an ultrasonic sound velocity measuring apparatus. Ultrasonic transceiver 2
A reflector 2b is provided at a position a predetermined distance from a,
The sample is filled between the ultrasonic wave transmitting / receiving section 2a and the reflection plate 2b. With this structure, an ultrasonic wave sent from an oscillating element (not shown) provided in the ultrasonic wave transmitting / receiving section 2a is reflected by a reflecting plate 2b and a receiving element (not shown) provided in the ultrasonic wave transmitting / receiving section 2a. ) Is received and converted into an electric signal.

【0003】上記超音波音速測定装置において試料中に
超音波を伝播させると、その伝播周期Tと伝播距離Lと
からc=L/Tとして音速を求めることができ、該音速
に基づいて試料の物理量、例えば密度を算出することが
できるようになっている。
When an ultrasonic wave is propagated through a sample in the above ultrasonic sonic velocity measuring device, the sound velocity can be obtained from the propagation period T and the propagation distance L as c = L / T. A physical quantity, for example, density can be calculated.

【0004】この伝播周期Tを精度よく求めるための方
法として、オーバラップ法やシングアラウンド法が広く
知られている。
The overlap method and the sing-around method are widely known as methods for accurately obtaining the propagation period T.

【0005】オーバラップ法は図5、図6に示すように
なっている。すなわち、矩形波発振器101より出力さ
れる矩形波Wsを分周器107で分周した分周波Dsを
パルサ102に入力し、該パルサ102で駆動パルスP
dを形成し、該駆動パルスPdを超音波送受信部103
に入力する。更に、ここで得られた、受信波をアンプ1
04を介してオシロスコープ105に入力するようにな
ている。
The overlap method is as shown in FIGS. That is, the divided frequency Ds obtained by dividing the rectangular wave Ws output from the rectangular wave oscillator 101 by the frequency divider 107 is input to the pulsar 102, and the pulsar 102 drives the drive pulse P.
d, and the drive pulse Pd is applied to the ultrasonic wave transmitting / receiving unit 103.
To enter. Furthermore, the received wave obtained here is amplified by the amplifier 1
It is adapted to be input to the oscilloscope 105 via 04.

【0006】一方オシロスコープは上記矩形波発振器1
01の出力によって駆動されており、従って、当該オシ
ロスコープを駆動する矩形波Wsの周期と超音波送受信
部103より得られる反射波Srの周期とが一致したと
きに、オシロスコープの画面が静止し、その時の周期
が、上記周期Tとなる。
On the other hand, the oscilloscope is the rectangular wave oscillator 1 described above.
When the cycle of the rectangular wave Ws that drives the oscilloscope and the cycle of the reflected wave Sr obtained from the ultrasonic transmission / reception unit 103 match, the screen of the oscilloscope stands still. Is the cycle T.

【0007】この方法は、上記矩形波発振器101の発
振周波数を手動で調整することによって、オシロスコー
プの表示状態を静止状態に保つようになっているので、
自動測定ができない難点がある。
In this method, the display state of the oscilloscope is kept stationary by manually adjusting the oscillation frequency of the rectangular wave oscillator 101.
There is a problem that automatic measurement is not possible.

【0008】更に、シングアラウンド法は図7に示すよ
うになっている。すなわち、起動トリガの入力でパルサ
201より駆動パルスを発振させて超音波送受信部10
3に入力し、該超音波送受信部103より得られる受信
波に基づいてパルス成形器203で新たなトリガを形成
して、該トリガを上記パルサ201に入力するようにな
っている。この場合は上記パルス成形器203の生成す
るパルスを周波数カウンタ204に入力し、該周波数カ
ウンタ204で所定時間に得られる計数値に基づいての
周期Tを算出することができるようになっている。
Further, the sing-around method is as shown in FIG. That is, the pulse generator 201 oscillates a drive pulse by the input of the activation trigger, and the ultrasonic transmitter / receiver 10
3, the pulse shaper 203 forms a new trigger on the basis of the received wave obtained from the ultrasonic transmission / reception unit 103, and the trigger is input to the pulsar 201. In this case, the pulse generated by the pulse shaper 203 can be input to the frequency counter 204, and the cycle T can be calculated based on the count value obtained by the frequency counter 204 in a predetermined time.

【0009】この方法は、上記外部回路の構成等の影響
を受けやすく、得られた周期Tは真の周期τ0 と回路上
の遅れ時間τe の加算値で現れることになる。
This method is easily affected by the configuration of the external circuit, etc., and the obtained period T appears as the sum of the true period τ 0 and the delay time τ e on the circuit.

【0010】そこで、特開平6−235721号に開示
される超音波音速測定装置では、図8に示すように、伝
播周期Tを,連続波を発振するようにした局部発振器を
用いることによって、精度よく自動測定できるようにし
ている。
Therefore, in the ultrasonic sound velocity measuring device disclosed in Japanese Patent Application Laid-Open No. 6-235721, as shown in FIG. 8, by using a local oscillator whose propagation period T oscillates a continuous wave, accuracy is improved. It is designed so that it can be automatically measured well.

【0011】まず、駆動パルス発振回路301より発振
されたある時点での駆動パルスに基づいて、超音波送受
信部103よりより少なくとも2回の受信波を得る。そ
して、1回目の受信波と2回目の受信波を分離手段30
2で分離して、1回目の受信波に基づいて、次の駆動
パルスを駆動パルス発振回路301で発生するように
し、2回目の受信波に基づいて局部発振器304で伝搬
周期Tに対応するパルスを発振するようにしている。こ
のパルスに基づいて時間計測回路305で伝搬周期Tを
測定するようになっている。更に。上記局部発振器30
4の出力より1回目の受信波に対応するパルスを抽出
して局部発振器304の基準パルスとし、2回目の受信
波に対応するパルスを抽出して駆動パルス発振回路3
01の基準パルスとしている。
First, based on the drive pulse oscillated by the drive pulse oscillating circuit 301 at a certain time point, the ultrasonic wave transmitting / receiving section 103 obtains a received wave at least twice. The separating means 30 separates the first received wave and the second received wave.
The drive pulse oscillating circuit 301 generates the next drive pulse based on the first received wave and the pulse corresponding to the propagation cycle T in the local oscillator 304 based on the second received wave. To oscillate. The time measurement circuit 305 measures the propagation cycle T based on this pulse. Furthermore. The local oscillator 30
The pulse corresponding to the first received wave is extracted from the output of FIG. 4 as a reference pulse of the local oscillator 304, and the pulse corresponding to the second received wave is extracted to drive pulse oscillation circuit 3
01 reference pulse.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、特開平
6−235721号に開示される超音波音速測定装置で
は、1つの送信波(駆動パルス)毎に最低2つの受信波
が必要であるため、試料中に気泡が存在する場合、満足
な測定結果が得られないという問題があった。すなわ
ち、上記超音波音速測定装置によれば、気泡の影響を受
けて超音波が減衰し1つの送信波毎に2つ以上の受信波
が得られない場合、連続発振が大きく乱れ、測定値に大
きなばらつきが生じる。
However, the ultrasonic sound velocity measuring device disclosed in Japanese Patent Laid-Open No. 6-235721 requires at least two received waves for each transmitted wave (driving pulse). When air bubbles are present, there is a problem that a satisfactory measurement result cannot be obtained. That is, according to the ultrasonic sound velocity measuring device, when the ultrasonic waves are attenuated due to the influence of bubbles and two or more received waves cannot be obtained for each one transmitted wave, continuous oscillation is greatly disturbed and the measured value is Large variations occur.

【0013】本発明は上記従来の事情に基づいて提案さ
れたものであって、試料中に気泡が存在する場合であっ
ても高精度に超音波の音速を測定できるようにした超音
波音速測定方法及び装置を提供することを目的とするも
のである。
The present invention has been proposed based on the above-mentioned conventional circumstances, and ultrasonic sound velocity measurement capable of measuring ultrasonic sound velocity with high accuracy even when bubbles are present in a sample. It is an object to provide a method and a device.

【0014】[0014]

【課題を解決するための手段】本発明は上記目的を達成
するために以下の手段を採用している。すなわち図1に
示すように、超音波送信部より超音波を送信し、該超音
波送信部と超音波受信部との間を伝播する超音波の伝播
時間に基づいて試料中の音速を求める超音波音速測定方
法を前提としている。
The present invention employs the following means in order to achieve the above object. That is, as shown in FIG. 1, the ultrasonic wave is transmitted from the ultrasonic wave transmitting unit, and the ultrasonic velocity in the sample is calculated based on the propagation time of the ultrasonic wave propagating between the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit. It is premised on the method of measuring sound velocity.

【0015】上記超音波音速測定方法において、複数回
の送信における上記超音波受信部が受信した少なくとも
1つの受信波の受信タイミングにのみ位相が同期する連
続波を発振するようにし、且つ、その連続発振波から送
信タイミングを生成する機構を有した局部発振器の周期
を計測する。具体的には、上記超音波受信部が受信した
波を所定量遅延させた後、遅延受信波の受信タイミング
にのみ位相が同期する連続波を発振するようにし、且
つ、その連続発振波から送信タイミングを生成する機構
を有した局部発振器の周期を計測する。そして、このよ
うに計測した周期に基づいた上記伝播時間より超音波の
音速を求める。
In the ultrasonic sound velocity measuring method, a continuous wave whose phase is synchronized only with the reception timing of at least one received wave received by the ultrasonic receiver in a plurality of transmissions is generated, and the continuous wave is generated. The period of a local oscillator having a mechanism for generating transmission timing from an oscillating wave is measured. Specifically, after delaying the wave received by the ultrasonic wave receiving unit by a predetermined amount, a continuous wave whose phase is synchronized only with the reception timing of the delayed reception wave is oscillated, and the continuous wave is transmitted. A period of a local oscillator having a mechanism for generating timing is measured. Then, the sound velocity of the ultrasonic wave is obtained from the propagation time based on the cycle thus measured.

【0016】このようにすれば、受信された信号にのみ
位相同期をかけることができるため、気泡の影響を殆ど
受けない安定した測定が可能となる。
In this way, since the phase synchronization can be applied only to the received signal, it is possible to carry out a stable measurement which is hardly influenced by bubbles.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態を図面
に従って詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0018】図1は、本発明を適用した超音波音速測定
装置のブロック図であり、図2はそのタイミングチャー
トである。
FIG. 1 is a block diagram of an ultrasonic sound velocity measuring apparatus to which the present invention is applied, and FIG. 2 is its timing chart.

【0019】超音波の送信部と受信ぶより構成される送
受信部2aと反射板2bの間に試料が充填された状態
で、送信回路1による駆動に基づいて、送受信部2aよ
り図2(a) に示すように超音波S0,S10… が発振され
る。この超音波(以下「送信波」という)S0,S10…
は、試料中に超音波送受信部2aと所定距離をおいて設
置した反射板2bで反射して超音波送受信部2aに返
り、再び超音波送受信部2aで反射して超音波送受信部
2a・反射板2b間で図2(a) に示すように多重反射波
(R0,R1…),(R10,R11…) …を起こす。
2 (a) from the transmitter / receiver 2a based on the driving by the transmitter circuit 1 with the sample filled between the transmitter / receiver 2a composed of the transmitter and receiver of the ultrasonic wave and the reflector 2b. ), Ultrasonic waves S0, S10 ... Are oscillated. This ultrasonic wave (hereinafter referred to as "transmitted wave") S0, S10 ...
Is reflected by the reflecting plate 2b installed at a predetermined distance from the ultrasonic wave transmitting / receiving section 2a in the sample and returned to the ultrasonic wave transmitting / receiving section 2a, and is reflected by the ultrasonic wave transmitting / receiving section 2a again and reflected by the ultrasonic wave transmitting / receiving section 2a. As shown in Fig. 2 (a), multiple reflected waves are generated between the plates 2b.
(R0, R1 ...), (R10, R11 ...) ...

【0020】この多重反射波を、超音波送受信部2aで
受信し、受信回路3で増幅した後、検出回路4で整形す
ると、図2(b) に示す受信検出波Srが得られる。な
お、検出回路4では、所定レベル以上の強度で検出した
反射波のみを受信波として採用するようにし、例えば、
図2に示す1回目の発振波S0に対して、第1回目の反射
波R0と2回目の反射波R1が、また、2回目の発振波S10
に対して、1回目の反射波R10 に対応する受信検出波S
0 Sr1 Sr10が所定レベル以上であったので採用さ
れている。3回目の発振波S20 に対応する全部の反射波
が所定レベル以下であったので、全く反射波が受信され
ていない。
When the multiple reflected wave is received by the ultrasonic wave transmitting / receiving section 2a, amplified by the receiving circuit 3, and then shaped by the detecting circuit 4, a received detected wave Sr shown in FIG. 2 (b) is obtained. In the detection circuit 4, only the reflected wave detected with the intensity of a predetermined level or higher is adopted as the received wave.
With respect to the first oscillation wave S0 shown in FIG. 2, a first reflection wave R0 and a second reflection wave R1 are generated, and a second reflection wave S10 is generated.
On the other hand, the received detection wave S corresponding to the first reflected wave R10
It is adopted because r 0 Sr 1 Sr 10 is above a predetermined level. Since all the reflected waves corresponding to the third oscillation wave S20 were below the predetermined level, no reflected wave was received.

【0021】ところで、上記のように反射波が所定レベ
ル以下となる原因は、例えば、試料液中に泡等の障害物
が発生する場合が考えられる。このように受信波が検出
されない状態で以下に説明するPLL回路が作動すると
誤った測定値を得ることになる。そこで、本発明では、
上記所定レベル以上の強度で検出した反射波のみを受信
波として採用する構成が採用されている。
By the way, the cause of the reflected wave being below a predetermined level as described above may be, for example, that an obstacle such as a bubble is generated in the sample liquid. If the PLL circuit described below operates in such a state that the received wave is not detected, an incorrect measured value will be obtained. Therefore, in the present invention,
A configuration is adopted in which only the reflected wave detected with the intensity above the predetermined level is adopted as the received wave.

【0022】すなわち、上記受信検出波Srを所定時間
τだけ受信波遅延回路5(第1の遅延回路)で遅延させ
ることによって、図2(c) に示す遅延受信波LSrを
得、該遅延受信波LSrは、PLL16の位相比較器8
の比較信号として入力される。一方、PLL16の局部
発振器10の出力である発振波(送信タイミング用連続
発振波)P0 は遅延回路6でτe 遅延され更に、遅延回
路7(第2の遅延回路=遅延回路6+遅延回路7)で所
定時間τ遅延され遅延連続発振波P20となって、上記位
相比較器8の基準波として入力される。これによって、
遅延受信波LSrの立ち上がりと、遅延連続発振波P20
の立ち上がりの位相を比較した結果が位相比較器8から
出力されるようになっている。
That is, the reception detection wave Sr is delayed by the reception wave delay circuit 5 (first delay circuit) for a predetermined time τ to obtain the delay reception wave LSr shown in FIG. The wave LSr is the phase comparator 8 of the PLL 16.
Is input as a comparison signal of. On the other hand, the oscillating wave (transmission timing continuous oscillating wave) P 0 output from the local oscillator 10 of the PLL 16 is delayed by τ e by the delay circuit 6 and further delayed by the delay circuit 7 (second delay circuit = delay circuit 6 + delay circuit 7). ), A delayed continuous oscillation wave P 20 is delayed by a predetermined time τ and is input as a reference wave of the phase comparator 8. by this,
The rising of the delayed reception wave LSr and the delayed continuous wave P 20
The result of the comparison of the rising phases of is output from the phase comparator 8.

【0023】また、上記検出回路4の出力はPLL16
のゲート回路9に制御信号として入力され、これによっ
て、受信検出波Srのでているタイミングのみでの位相
比較器8での比較結果(すなわち遅延受信波の立ち上が
りと、遅延連続発振波P20の立ち上がりの位相差)が、
ゲート回路9を通過し局部発振器10での発振周波数に
反映されるようになっている。すなわち、泡等の影響で
受信検出波Srが得られていないときにはゲート回路9
は閉じた状態となっているので、位相比較器8での比較
結果は反映されないことになる。
The output of the detection circuit 4 is the PLL 16
Is inputted as a control signal to the gate circuit 9 of the above, whereby the comparison result in the phase comparator 8 (that is, the rising edge of the delayed reception wave and the rising edge of the delayed continuous wave P 20) is obtained only at the timing of the detection wave Sr. Phase difference of
It passes through the gate circuit 9 and is reflected in the oscillation frequency of the local oscillator 10. That is, when the reception detection wave Sr is not obtained due to the influence of bubbles or the like, the gate circuit 9
Is closed, the comparison result of the phase comparator 8 is not reflected.

【0024】以上の構成で、所定の間隔で発振される複
数の発振波S0,S10…に対応して少なくとも1回の反射波
があれば、上記多重反射の時間間隔に同期した連続発振
波P0 を得ることができ、この連続発振波P0 の周期を
カウンタ11で計測し、この周期と、上記温度測定回路
13より得られる温度とに基づいて演算回路14は音速
を算出して、プリンタ、あるいは表示画面等の出力手段
15にその結果を出力する。図2の例では、発振波S0に
対して反射波R0,R1 、発振波S10に対して反射波R10 が
受信されているが、発振波S20 に対しては全く反射波が
受信されていない様子を示している。
With the above configuration, if there is at least one reflected wave corresponding to the plurality of oscillating waves S0, S10 ... Oscillated at a predetermined interval, the continuous oscillating wave P synchronized with the time interval of the multiple reflection. 0 can be obtained, the cycle of this continuous wave P 0 is measured by the counter 11, and the arithmetic circuit 14 calculates the sound velocity based on this cycle and the temperature obtained from the temperature measuring circuit 13, and the printer , Or output the result to the output means 15 such as a display screen. In the example of FIG. 2, the reflected waves R0 and R1 are received for the oscillating wave S0 and the reflected wave R10 is received for the oscillating wave S10, but no reflected wave is received for the oscillating wave S20. Is shown.

【0025】試料液中の泡等の障害物によって受信波が
検出されないときに遅延連続発振波P20と発生していな
い遅延受信波LSrとの比較結果を局部発振器10の発
振周波数に反映すると、目的とする周波数を得ることが
できない。ところが、上記のように検出波を所定時間τ
だけ遅延させると、検出回路4(遅延させる前のタイミ
ングを持った信号)よりゲート回路9に受信波の有無に
基づいた制御信号が入力され、ゲート回路9の開閉が制
御されるようになっている。しかも、反射波が検出され
ない状態では上記ゲート回路9は閉じた状態を維持して
いるので、遅延連続発振波P20と発生していない遅延受
信波LSrとの比較結果が局部発振器10の発振周波数
に反映されることはない。
When the comparison result of the delayed continuous wave P 20 and the delayed received wave LSr which is not generated when the received wave is not detected by an obstacle such as bubbles in the sample liquid is reflected in the oscillation frequency of the local oscillator 10, The desired frequency cannot be obtained. However, as described above, the detected wave is kept for a predetermined time τ
When only delayed, a control signal based on the presence or absence of a received wave is input to the gate circuit 9 from the detection circuit 4 (a signal having a timing before the delay), so that the opening / closing of the gate circuit 9 is controlled. There is. Moreover, since the gate circuit 9 remains closed in the state where the reflected wave is not detected, the comparison result of the delayed continuous oscillation wave P 20 and the delayed reception wave LSr not generated is the oscillation frequency of the local oscillator 10. Will not be reflected in.

【0026】また、物理的、電気的な条件で、上記超音
波の発振から第1回目の反射波R0,R10…が得られるまで
の時間間隔と、第1回目の反射波R0,R10…を受信してか
ら第2回目以降の反射波を受信するまでの時間間隔とで
は、前者の方が若干(τe )大きくなっている。そこ
で、上記連続発振波遅延回路6での遅延量は上記τe
対応させている。分周回路12ではτe 時間遅らせる以
前の連続発振波P0 の立ち上がりを利用して駆動信号S
dが形成されるようになっている。すなわち、駆動信号
のタイミングは遅延されていない受信検出波Srに同期
した連続発振波P10よりもτe だけ早くなっている。
Further, under physical and electrical conditions, the time interval from the oscillation of the ultrasonic wave until the first reflected wave R0, R10 ... Is obtained and the first reflected wave R0, R10. The time interval from the reception to the reception of the second and subsequent reflected waves is slightly (τ e ) larger in the former case. Therefore, the amount of delay in the continuous wave delay circuit 6 is made to correspond to the above τ e . The frequency divider circuit 12 uses the rising edge of the continuous wave P 0 before delaying τ e time to drive the drive signal S.
d is formed. That is, the timing of the drive signal is advanced by τ e with respect to the continuous oscillation wave P 10 synchronized with the undetected reception detection wave Sr.

【0027】この、τe は、試料の種類に依存するので
はなく超音波発振に必要な素子等の電気的、物理的な要
因に起因するので、装置に特有の値となる。そこで、装
置毎に連続発振波が最も安定に発振するようにτe を調
整するのが好ましい。尚、上記分周回路12での分周比
は試料に応じて変更可能であり、多重反射が次の受信波
に影響を及ぼさない程度の値とする。
This τ e has a value peculiar to the apparatus because it does not depend on the type of sample but is due to electrical and physical factors such as elements necessary for ultrasonic oscillation. Therefore, it is preferable to adjust τ e so that the continuous wave oscillates most stably for each device. The frequency dividing ratio in the frequency dividing circuit 12 can be changed according to the sample, and is set to a value such that multiple reflection does not affect the next received wave.

【0028】図3は、5分毎に気泡流量を変化させた2
0℃のイオン交換水中を伝播する超音波の音速を本発明
と従来法(シングアラウンド法)とによって測定した結
果を示す図である。気泡は、φ6のチューブノズルにて
空気をバブリングし通気した。本発明に基づく測定結果
Aは気泡の多少に係わらず安定した結果を示しているの
に対して、従来法に基づく測定結果Bは気泡の影響を受
け、気泡の数が多い程真値より大きくずれた値が得られ
ることが理解できる。
In FIG. 3, the bubble flow rate was changed every 5 minutes.
It is a figure which shows the result of having measured the sound velocity of the ultrasonic wave which propagates in 0 degreeC ion-exchange water by this invention and the conventional method (sing-around method). The bubbles were aerated by bubbling air through a φ6 tube nozzle. The measurement result A based on the present invention shows a stable result regardless of the number of bubbles, whereas the measurement result B based on the conventional method is influenced by the bubbles and the larger the number of bubbles, the larger the true value. It can be seen that offset values are obtained.

【0029】なお、ここでは、試料中に所定距離をおい
て超音波送受信部2aと反射板2bとを設置した構成を
例示しているが、本発明はこれに限定されるものではな
い。すなわち、超音波送信部と超音波受信部とを設置し
た構成では、c=L/Tとして音速を求めることができ
る。
Although the ultrasonic wave transmitting / receiving section 2a and the reflecting plate 2b are installed at a predetermined distance in the sample here, the present invention is not limited to this. That is, in the configuration in which the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit are installed, the sound velocity can be calculated as c = L / T.

【0030】以上のように本発明によれば、送信波毎に
生じる多重受信波が気泡の存在により不規則に、また、
たまにしか受信されないような状況であっても、受信波
の有無を位相同期回路への入力以前に判定し、受信され
た信号にのみ位相同期をかけることによって、気泡の影
響を殆ど受けない安定した測定が可能となる。
As described above, according to the present invention, multiple reception waves generated for each transmission wave are irregular due to the presence of bubbles, and
Even if it is received only occasionally, the presence or absence of a received wave is judged before inputting to the phase-locked loop, and only the received signal is phase-locked, so that it is hardly affected by bubbles and is stable. It becomes possible to measure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した超音波音速測定装置のブロッ
ク図である。
FIG. 1 is a block diagram of an ultrasonic sound velocity measuring device to which the present invention is applied.

【図2】本発明におけるタイミングチャートである。FIG. 2 is a timing chart in the present invention.

【図3】本発明と従来法とによる測定結果を示す図であ
る。
FIG. 3 is a diagram showing measurement results according to the present invention and a conventional method.

【図4】超音波音速測定装置が備えた超音波送受信装置
を示す外観図である。
FIG. 4 is an external view showing an ultrasonic transmission / reception device included in the ultrasonic sound velocity measurement device.

【図5】従来技術のオーバラップ法の概念図である。FIG. 5 is a conceptual diagram of a conventional overlap method.

【図6】従来技術のオーバラップ法のタイムチャートで
ある。
FIG. 6 is a time chart of a conventional overlap method.

【図7】従来技術のシングアラウンド法の概念図であ
る。
FIG. 7 is a conceptual diagram of a conventional sing-around method.

【図8】他の従来技術の概念図である。FIG. 8 is a conceptual diagram of another conventional technique.

【符号の説明】[Explanation of symbols]

1 送信回路 2a 超音波送受信部 2b 反射板 2c 測温体 3 受信回路 4 検出回路 5 受信波遅延回路 6 連続発振波遅延回路(遅延時間τe ) 7 連続発振波遅延回路(遅延時間τ) 8 位相比較器 9 ゲート回路 10 局部発振器 11 カウンタ 12 分周回路 13 温度測定回路 14 演算回路 15 出力手段 16 PLLDESCRIPTION OF SYMBOLS 1 transmitter circuit 2a ultrasonic wave transmitter / receiver section 2b reflector 2c thermometer 3 receiver circuit 4 detector circuit 5 receiver wave delay circuit 6 continuous wave delay circuit (delay time τ e ) 7 continuous wave delay circuit (delay time τ) 8 Phase comparator 9 Gate circuit 10 Local oscillator 11 Counter 12 Frequency divider circuit 13 Temperature measuring circuit 14 Arithmetic circuit 15 Output means 16 PLL

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 G01B 17/00 - 17/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 29/00-29/28 G01B 17/00-17/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超音波送信部より超音波を送信し、該超
音波送信部と超音波受信部との間を伝播する超音波の伝
播時間に基づいて試料中の音速を求める超音波音速測定
方法において、超音波受信部が受信した受信波を所定時間遅延させるス
テップと、 上記遅延前の受信波に基づいてPLL回路の位相同期動
作を作動状態にするステップと、 上記作動状態のPLL回路において発振する連続波と遅
延させた受信波との位相を同期させるステップと、 上記連続波から上記超音波の送信タイミングを生成する
ステップと、 上記超音波の伝播時間に基づいて試料中の音速を演算す
るステップと、 を備えたこと を特徴とする超音波音速測
定方法。
1. An ultrasonic sonic velocity measurement for transmitting an ultrasonic wave from an ultrasonic wave transmitting unit, and obtaining the speed of sound in a sample based on the propagation time of the ultrasonic wave propagating between the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit. In the method, a step of delaying the received wave received by the ultrasonic receiving unit for a predetermined time.
And the phase synchronization operation of the PLL circuit based on the received wave before the delay.
The method comprising the work in operation, a continuous wave oscillation in the PLL circuit of the operating state and the slow
Synchronizing the phase with the extended received wave and generating the transmission timing of the ultrasonic wave from the continuous wave
Calculate the speed of sound in the sample based on the step and the propagation time of the ultrasonic wave.
Ultrasonic sound velocity measuring method characterized by comprising the steps that, the.
【請求項2】 超音波送信部より超音波を送信し、該超
音波送信部と超音波受信部との間を伝播する超音波の伝
播時間に基づいて試料中の音速を求める超音波音速測定
装置において、超音波受信部が受信した受信波を所定時間遅延させる第
1の遅延回路と、上記遅延前の受信波に基づいて位相同
期動作が作動状態になるとともに、上記第1の遅延回路
より得られた遅延波と位相を同期させた連続波を発振す
るPLL回路と、 上記PLL回路の発振する連続波に基づくタイミングで
超音波を送信する送信回路と、 上記超音波の伝播時間に基づいて試料中の音速を演算す
る演算手段と、 を備えたことを特徴とする超音波音速測
定装置。
2. An ultrasonic sonic velocity measurement for transmitting an ultrasonic wave from an ultrasonic wave transmitting unit and determining a sound velocity in a sample based on a propagation time of the ultrasonic wave propagating between the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit. In the device, the ultrasonic wave receiving section delays the received wave for a predetermined time.
1 delay circuit and the same phase based on the received wave before the delay.
And the first delay circuit is activated.
Oscillate a continuous wave whose phase is synchronized with the delay wave obtained by
And the timing based on the continuous wave oscillated by the PLL circuit.
A transmission circuit that transmits ultrasonic waves and calculates the speed of sound in the sample based on the propagation time of the ultrasonic waves.
An ultrasonic sound velocity measuring device, comprising:
【請求項3】 上記PLL回路が、該PLL回路を構成
する位相比較器と局部発振器の間に、受信波の検出があ
ったときに、上記位相比較器の出力を局部発振器に入力
するゲート回路を備えた請求項2に記載の超音波音速測
定装置。
3. The PLL circuit constitutes the PLL circuit.
The received wave is detected between the phase comparator and the local oscillator.
Input the output of the above phase comparator to the local oscillator.
The ultrasonic sound velocity measurement according to claim 2, further comprising:
Stationary device.
【請求項4】 上記PLL回路が、上記局部発振器の出
力を上記所定時間遅延させて、上記位相比較器の基準信
号とする第2の遅延回路を備え上記局部発振器の出力のタイミングで超音波を発振する
上記送信回路を備えた 請求項3に記載の超音波音速測定
装置。
4. The PLL circuit is an output of the local oscillator.
Force is delayed for the specified time and the reference signal of the phase comparator is
And a second delay circuit, which oscillates ultrasonic waves at the output timing of the local oscillator.
The ultrasonic sound velocity measurement according to claim 3, further comprising the transmission circuit.
apparatus.
【請求項5】 更に、上記第2の遅延回路が上記局部発
振器の出力を上記所定時間遅延させるとともに、回路構
成上必要な別の所定時間遅延させる請求項に記載の超
音波音速測定装置。
5. The ultrasonic sound velocity measuring device according to claim 4 , wherein the second delay circuit further delays the output of the local oscillator by the predetermined time and another predetermined time necessary for the circuit configuration.
JP2000169369A 1999-06-07 2000-06-06 Ultrasonic sound velocity measuring method and apparatus Expired - Lifetime JP3436731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169369A JP3436731B2 (en) 1999-06-07 2000-06-06 Ultrasonic sound velocity measuring method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-159595 1999-06-07
JP15959599 1999-06-07
JP2000169369A JP3436731B2 (en) 1999-06-07 2000-06-06 Ultrasonic sound velocity measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2001056320A JP2001056320A (en) 2001-02-27
JP3436731B2 true JP3436731B2 (en) 2003-08-18

Family

ID=26486342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169369A Expired - Lifetime JP3436731B2 (en) 1999-06-07 2000-06-06 Ultrasonic sound velocity measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP3436731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286701A (en) * 2001-03-22 2002-10-03 Kyoto Electron Mfg Co Ltd Measuring value correcting method in ultrasonic sound speed measurement and ultrasonic measuring device
JP4092400B2 (en) 2003-07-23 2008-05-28 大学共同利用機関法人 高エネルギー加速器研究機構 Gas detection method and gas detector
CN113504307B (en) * 2021-09-10 2021-12-21 西南石油大学 Multi-frequency core sound velocity measuring device

Also Published As

Publication number Publication date
JP2001056320A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
US5796009A (en) Method for measuring in a fluid with the aid of sing-around technique
JP3436731B2 (en) Ultrasonic sound velocity measuring method and apparatus
US6422081B1 (en) Ultrasonic sound velocity measuring method and its apparatus
JP4319778B2 (en) Ultrasonic absolute sound velocity measuring method and apparatus
JP3689973B2 (en) Flow measuring device
JP3427762B2 (en) Ultrasonic flow meter
JP3419341B2 (en) Flow measurement device
JP4368521B2 (en) Ultrasonic sound velocity measuring device and calibration method thereof
JP2002286701A (en) Measuring value correcting method in ultrasonic sound speed measurement and ultrasonic measuring device
JP3251378B2 (en) Ultrasonic flow meter for gas
JP2001281032A (en) Apparatus for ultrasonically measuring flow rate
JP4552285B2 (en) Flowmeter
JPS6042405B2 (en) Pulsed ultrasonic Doppler current meter
SU1415170A2 (en) Device for determining concentration of free gas in liquid
JPS62153782A (en) Ultrasonic range finder
JP3465100B2 (en) Vortex flow meter
SU1465715A2 (en) Hydraulic meter of sound velocity
JPH0421807B2 (en)
RU1812446C (en) Method for measurement of speed increment of ultrasound waves
JP2003302270A (en) Method and device for measuring ultrasonic flow velocity
JPS5946511A (en) Ultrasonic wave flowmeter
JPH08128874A (en) Ultrasonic flowmeter
JP2001264136A (en) Ultrasonic flowmeter
JP2020180811A (en) Ultrasonic flowmeter
JPS618621A (en) Received wave detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3436731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term