JP3436419B2 - Method for producing high heat resistant nitrogen oxide purifying catalyst - Google Patents

Method for producing high heat resistant nitrogen oxide purifying catalyst

Info

Publication number
JP3436419B2
JP3436419B2 JP19010194A JP19010194A JP3436419B2 JP 3436419 B2 JP3436419 B2 JP 3436419B2 JP 19010194 A JP19010194 A JP 19010194A JP 19010194 A JP19010194 A JP 19010194A JP 3436419 B2 JP3436419 B2 JP 3436419B2
Authority
JP
Japan
Prior art keywords
ion
catalyst
ammonium
alkali metal
nitrogen oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19010194A
Other languages
Japanese (ja)
Other versions
JPH0824657A (en
Inventor
稔貴 田辺
明彦 小岩井
二郎 水野
幸治 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP19010194A priority Critical patent/JP3436419B2/en
Publication of JPH0824657A publication Critical patent/JPH0824657A/en
Application granted granted Critical
Publication of JP3436419B2 publication Critical patent/JP3436419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関か
ら排出される排ガス中の窒素酸化物(NOX)、一酸化
炭素(CO)および炭化水素(HC)を同時に浄化でき
る排ガス浄化用触媒の製造方法に関し、さらに詳しく
は、酸素過剰雰囲気下、高温での使用に際してもとくに
窒素酸化物の浄化性能が低下することのない高耐熱性窒
素酸化物浄化用触媒の製造方法に関する。
The present invention relates to a nitrogen oxide in an exhaust gas discharged from an internal combustion engine such as an automobile (NO X), carbon monoxide (CO) and exhaust gas-purifying hydrocarbons and (HC) can be simultaneously purified More specifically, the present invention relates to a method for producing a highly heat-resistant nitrogen oxide-purifying catalyst that does not deteriorate in nitrogen oxide purification performance even when used at high temperature in an oxygen-excess atmosphere.

【0002】[0002]

【従来の技術】従来、酸素過剰雰囲気下でも排ガス中の
窒素酸化物を浄化できる触媒として、遷移金属をイオン
交換したゼオライト触媒が開発されている。例えば、特
開昭63−283727号公報や特開平1−13073
5号公報には、未燃焼の一酸化炭素および炭化水素等の
還元剤が微量に含まれている酸素過剰な排ガス中でも窒
素酸化物を選択的に還元させることができるゼオライト
系触媒が提案されている。これらのゼオライト系触媒に
よれば、アンモニア等の還元剤を用いることなく酸素過
剰な排ガス中の窒素酸化物を浄化することができる。
2. Description of the Related Art Conventionally, a zeolite catalyst in which a transition metal is ion-exchanged has been developed as a catalyst capable of purifying nitrogen oxides in exhaust gas even in an oxygen excess atmosphere. For example, JP-A-63-283727 and JP-A-1-13073.
Japanese Unexamined Patent Publication (Kokai) No. 5 proposes a zeolite-based catalyst capable of selectively reducing nitrogen oxides even in an oxygen-excess exhaust gas containing a small amount of reducing agents such as unburned carbon monoxide and hydrocarbons. There is. With these zeolite-based catalysts, it is possible to purify nitrogen oxides in exhaust gas with excess oxygen without using a reducing agent such as ammonia.

【0003】さらに、特開平4−219141号公報で
は、ゼオライトに銀を含む触媒が提案されており、この
触媒によれば、酸素過剰雰囲気下、広い温度域において
窒素酸化物を浄化できることが記載されている。
Further, Japanese Patent Laid-Open No. 4-219141 proposes a catalyst containing silver in zeolite, and it is described that this catalyst can purify nitrogen oxides in a wide temperature range in an oxygen excess atmosphere. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来技術では排ガス中に水蒸気が含まれる場合、触媒が7
00℃程度の高温域にさらされると、窒素酸化物の浄化
性能が低下することが知られている。本発明者らは、こ
の浄化性能の低下原因について詳細に研究した。その結
果、この原因の一つはゼオライト系NOX 触媒の熱劣化
によるものであり、この熱劣化は、製造の過程でゼオラ
イト中に残存しているブレンステッド酸点によるもので
あることが推定された。
However, in the above-mentioned prior art, when the exhaust gas contains water vapor, the catalyst is
It is known that the nitrogen oxide purification performance deteriorates when exposed to a high temperature range of about 00 ° C. The present inventors have studied in detail the cause of this reduction in purification performance. As a result, one of the causes is due to the thermal deterioration of the zeolite-based NO x catalyst, and it is presumed that this thermal deterioration is due to the Bronsted acid sites remaining in the zeolite during the production process. It was

【0005】すなわち、水蒸気が含まれる高温雰囲気中
では、水分子と、ゼオライト格子を形成するアルミニウ
ム(Al)サイトが加水分解反応を起こし、ゼオライト
格子からアルミニウムが抜け出す脱アルミニウム現象が
起こる。この脱アルミニウム現象により触媒金属の担持
状態が変化して熱劣化に到るものと推定される。この脱
アルミニウム現象はブレンステッド酸点に起因し、促進
されるものであると推定される。
That is, in a high temperature atmosphere containing water vapor, a water molecule and an aluminum (Al) site forming a zeolite lattice undergo a hydrolysis reaction, and a dealumination phenomenon occurs in which aluminum escapes from the zeolite lattice. It is presumed that the dealumination phenomenon changes the supported state of the catalyst metal and causes thermal deterioration. It is presumed that this dealumination phenomenon is caused by the Bronsted acid point and is promoted.

【0006】このブレンステッド酸点は、通常のアンモ
ニウム型ゼオライトを触媒活性金属でイオン交換する
際、イオン交換されなかったアンモニウムイオンが残存
し、後の焼成工程においてこの残存するアンモニウムイ
オンからアンモニアが離脱して生成されるものであると
推定された。
[0006] The Bronsted acid sites are such that when ion exchange of a normal ammonium-type zeolite with a catalytically active metal is performed, ammonium ions that have not been ion-exchanged remain, and ammonia is desorbed from the remaining ammonium ions in the subsequent firing step. Was estimated to be generated by

【0007】そこで、本発明者らは、上記触媒劣化原因
であるブレンステッド酸点を減少させるゼオライト系触
媒の製造方法について鋭意研究し、各種の系統的実験を
行った結果、本発明を成すに至ったものである。
Therefore, the inventors of the present invention have earnestly studied a method for producing a zeolite-based catalyst that reduces the Bronsted acid sites, which is a cause of the above-mentioned catalyst deterioration, and conducted various systematic experiments. It has come.

【0008】本発明は、水を含む排ガスに対しても熱劣
化を抑制できる、高耐熱性窒素酸化物浄化用触媒の製造
方法の提供を目的とする。
An object of the present invention is to provide a method for producing a highly heat-resistant catalyst for purifying nitrogen oxides, which can suppress thermal deterioration even with exhaust gas containing water.

【0009】[0009]

【課題を解決するための手段】(第1発明)本第1発明
の高耐熱性窒素酸化物浄化用触媒の製造方法は、アンモ
ニウム型ゼオライトのアンモニウムイオンをアルカリ金
属陽イオンでイオン交換するイオン交換工程と、前記イ
オン交換したアルカリ金属陽イオンを銀イオンでさらに
イオン交換して銀をゼオライトに担持させる触媒金属担
持工程と、を含んで構成されることを特徴とする。
Means for Solving the Problems (First Invention) A method for producing a highly heat-resistant nitrogen oxide-purifying catalyst according to the first invention is an ion exchange in which ammonium ions of ammonium-type zeolite are ion-exchanged with alkali metal cations. And a catalytic metal supporting step of further carrying out ion exchange of the ion-exchanged alkali metal cations with silver ions to support silver on the zeolite.

【0010】(第2発明)本第2発明の高耐熱性窒素酸
化物浄化用触媒の製造方法は、アンモニウム型ゼオライ
トのアンモニウムイオンを銀イオンでイオン交換して
前記アンモニウム型ゼオライトに担持させる触媒金属
担持工程と、前記触媒金属担持工程を経た後アンモニウ
ム型ゼオライトに残存するアンモニウムイオンをアルカ
リ金属陽イオンでイオン交換するイオン交換工程と、を
含んで構成されることを特徴とする。
[0010] Production method of (second invention) high heat resistance nitrogen oxide purifying catalyst of the present second invention, by ion exchange of ammonium ion for the ammonium type zeolite with silver ion of silver
A catalyst metal supporting step of supporting the ammonium type zeolite, and include an ion exchange step of ion-exchange the catalytic metal supporting step the ammonium ions remaining in the ammonium form zeolite of alkali metal cations after undergoing It is characterized by

【0011】(第3発明)本第3発明の高耐熱性窒素酸
化物浄化用触媒の製造方法は、本第1発明または第2発
明において、アルカリ金属陽イオンはカリウムイオン、
ルビジウムイオン、およびセシウムイオンから選ばれる
少なくとも1種であることを特徴とする。
(Third invention) A method for producing a highly heat-resistant nitrogen oxide-purifying catalyst according to the third invention is the same as in the first or second invention, wherein the alkali metal cation is potassium ion,
It is characterized in that it is at least one selected from rubidium ions and cesium ions.

【0012】[0012]

【0013】[0013]

【0014】[0014]

【作用】本発明の作用は明確には明らかではないが、お
よそ次のようであると推定される。
The function of the present invention is not clear, but it is presumed to be as follows.

【0015】(第1発明の作用)まず、アンモニウム型
ゼオライトのアンモニウムイオンをアルカリ金属陽イオ
ンでイオン交換するとブレンステッド酸点の発生原因で
あるアンモニウムイオンがアルカリ金属陽イオンに置換
される。このとき、イオン交換されるアルカリ金属イオ
ンが一価のイオンであるために、アンモニウムイオンの
ほとんどが一価のアルカリ金属陽イオンに置換される。
次に、このイオン交換したアルカリ金属陽イオンを銀イ
オンでさらにイオン交換して銀をゼオライトに担持させ
る。このとき、従来の方法によれば、イオン交換されな
かったイオンとしてアンモニウムイオンが残るが、本発
明においては一価のアルカリ金属イオンが残る。
(Operation of the First Invention) First, when the ammonium ion of the ammonium-type zeolite is ion-exchanged with an alkali metal cation, the ammonium ion which causes the Bronsted acid sites is replaced with the alkali metal cation. At this time, most of the ammonium ions are replaced with monovalent alkali metal cations because the alkali metal ions that are ion-exchanged are monovalent ions.
Next, the ion-exchanged alkali metal cations are added to silver ion .
When it is on, ion exchange is further performed to support silver on the zeolite. At this time, according to the conventional method, ammonium ions remain as ions that have not been ion-exchanged, but monovalent alkali metal ions remain in the present invention.

【0016】この一価のアルカリ金属イオンは、続く焼
成工程においても加水分解反応を起こすことがないため
に、ブレンステッド酸点の発生を抑制することができ
る。
Since this monovalent alkali metal ion does not cause a hydrolysis reaction even in the subsequent firing step, the generation of Bronsted acid points can be suppressed.

【0017】(第2発明の作用)触媒金属担持工程を経
てなおアンモニウム型ゼオライトに残存する、ブテンス
テッド酸点の発生原因であるアンモニウムイオンは、続
くイオン交換工程によりアルカリ金属陽イオンに置換さ
れる。このため、ブレンステッド酸点の発生を抑制する
ことができる。
(Operation of the Second Invention) Ammonium ions, which remain in the ammonium-type zeolite after the catalytic metal supporting step and are responsible for the generation of buttensted acid sites, are replaced with alkali metal cations in the subsequent ion exchange step. . Therefore, the generation of Bronsted acid sites can be suppressed.

【0018】(第3発明の作用)水溶液中、アルカリ金
属陽イオンは水分子によって水和されており、見かけ
上、金属イオンそのものよりも大きなイオンとして存在
している。この水和された状態でのイオン半径(水和
圏)は原子番号の大きなイオンほど小さい。この水和圏
の小さな、原子番号の大きいイオンほどイオン交換され
やすいために、アルカリ金属陽イオンのうちでも原子番
号の大きい、カリウム、ルビジウム、セシウムの少なく
とも1種からなるアルカリ金属陽イオンを用いるのが効
果的である。
(Operation of the third invention) In the aqueous solution, the alkali metal cations are hydrated by water molecules and apparently exist as ions larger than the metal ions themselves. The ion radius (hydration sphere) in this hydrated state is smaller as the atomic number is larger. Since the smaller the hydration sphere and the larger the atomic number, the easier the ion exchange is, use an alkali metal cation consisting of at least one of potassium, rubidium and cesium, which has the largest atomic number among the alkali metal cations. Is effective.

【0019】触媒金属イオンが二価の陽イオンの場合、
水との加水分解反応によって高温でブレンステッド酸点
を生じやすくなるので、本発明では触媒金属イオンとし
て一価の陽イオンである銀イオンを用いている。銀イオ
ンは触媒活性に優れ、かつ安定であるために、最も好ま
しい。
When the catalytic metal ion is a divalent cation,
Since a Bronsted acid point is easily generated at a high temperature due to a hydrolysis reaction with water, in the present invention, a catalyst metal ion is used.
It uses silver ions, which are monovalent cations. Silver io
Is most preferred due to its excellent catalytic activity and stability.
Good

【0020】[0020]

【0021】[0021]

【発明の効果】(本第1発明、第2発明、第3発明の効
)以上述べたように、本発明によればゼオライト系触
媒の熱劣化の原因と考えられるブレンステッド酸点の発
生を抑制することができるので、水を含む排ガスに対し
ても熱劣化による性能低下を抑制した高耐熱性窒素酸化
物浄化用触媒を製造することができる。
EFFECTS OF THE INVENTION (Effects of the first, second and third inventions)
As described above, according to the present invention, since it is possible to suppress the generation of Bronsted acid points, which is considered to be the cause of the thermal deterioration of the zeolite-based catalyst, the performance of the exhaust gas containing water due to the thermal deterioration can be suppressed. It is possible to produce a highly heat-resistant nitrogen oxide-purifying catalyst whose decrease is suppressed.

【0022】[0022]

【実施例】【Example】

(実施例の触媒の調製)酢酸カリウム3.98gを30
0mlの蒸留水に溶解し、アンモニウム型のゼオライト
の一種であるNH4 −ZSM−5を10g加え、室温に
おいて24時間攪拌した。この溶液を濾過した後、再
び、酢酸カリウム3.98gを蒸留水300mlに溶解
した水溶液を加えて、室温において24時間攪拌した。
この溶液を再び濾過し、得られた固形物を蒸留水で洗浄
した後、100℃において乾燥させ、NH4 −ZSM−
5のアンモニウムイオンをカリウムイオンでイオン交換
したK−ZSM−5を調製した。
(Preparation of Catalyst of Examples) 30.98 g of potassium acetate
It was dissolved in 0 ml of distilled water, 10 g of NH 4 -ZSM-5, which is a type of ammonium type zeolite, was added, and the mixture was stirred at room temperature for 24 hours. After filtering this solution, an aqueous solution in which 3.98 g of potassium acetate was dissolved in 300 ml of distilled water was added again, and the mixture was stirred at room temperature for 24 hours.
The solution is filtered again, the solid obtained is washed with distilled water and then dried at 100 ° C. and NH 4 -ZSM-
K-ZSM-5 in which the ammonium ion of 5 was ion-exchanged with potassium ion was prepared.

【0023】5.23gの硝酸銀を300mlの蒸留水
に溶解させた水溶液に、調製した前記K−ZSM−5、
7.42gを加え、室温において24時間攪拌した。こ
の溶液を濾過した後、再び硝酸銀5.10gを蒸留水に
溶解した水溶液を加え、室温において再び24時間攪拌
した。この溶液を再び濾過し、得られた固形物を蒸留水
で洗浄した後、100℃において乾燥させ、500℃で
流量1リットル/分の空気流下で1時間焼成し、Ag−
ZSM−5からなる本実施例に係る触媒を調製した。
The prepared K-ZSM-5 was added to an aqueous solution prepared by dissolving 5.23 g of silver nitrate in 300 ml of distilled water.
7.42 g was added, and the mixture was stirred at room temperature for 24 hours. After filtering this solution, an aqueous solution in which 5.10 g of silver nitrate was dissolved in distilled water was added again, and the mixture was stirred again at room temperature for 24 hours. The solution was filtered again, the obtained solid was washed with distilled water, dried at 100 ° C., and calcined at 500 ° C. under an air flow of 1 liter / min for 1 hour to obtain Ag-
A catalyst according to this example made of ZSM-5 was prepared.

【0024】(比較例の触媒の調製)アンモニウム型の
ゼオライトの一種であるNH4 −ZSM−5、5.10
gに、硝酸銀4.408gを蒸留水300mlに溶解し
た水溶液を加え、室温において24時間攪拌した。この
溶液を濾過し、得られた固形物を蒸留水で洗浄した後、
100℃において乾燥させ、500℃において流量1リ
ットル/分の空気流下で1時間焼成し、比較例の触媒を
調製した。
(Preparation of Catalyst of Comparative Example) NH 4 -ZSM-5, 5.10.
To g, an aqueous solution of 4.408 g of silver nitrate dissolved in 300 ml of distilled water was added, and the mixture was stirred at room temperature for 24 hours. After filtering this solution and washing the resulting solid with distilled water,
The catalyst of Comparative Example was prepared by drying at 100 ° C. and calcining at 500 ° C. under an air flow of 1 liter / min for 1 hour.

【0025】(評価試験)前記本実施例の触媒と比較例
の触媒中のブレンステッド酸点の定量を、アンモニア吸
収量を赤外吸収スペクトルによって定量する方法により
実施した。結果を表2に示す。表2は、各触媒のイオン
交換サイトに占める陽イオンの割合を%で示す。この結
果より、本実施例に係る触媒は比較例の触媒に比べてブ
レンステッド酸点の量が減少していることがわかる。
(Evaluation Test) The Bronsted acid points in the catalyst of the present example and the catalyst of the comparative example were quantified by a method of quantifying the ammonia absorption amount by an infrared absorption spectrum. The results are shown in Table 2 . Table 2 shows the proportion of cations in the ion exchange sites of each catalyst in%. From these results, it can be seen that the catalyst according to this example has a smaller amount of Bronsted acid sites than the catalyst according to the comparative example.

【0026】[0026]

【表1】 [Table 1]

【0027】前記本実施例の触媒と比較例の触媒を所定
量アルミナ製のるつぼに入れ、水分を10%含む流量1
リットル/分の空気流通下、700℃で5時間熱処理す
ることにより耐久処理を行った。
A predetermined amount of the catalyst of the present example and the catalyst of the comparative example were placed in an alumina crucible, and the flow rate was 1 including 10% of water.
Durability treatment was performed by heat treatment at 700 ° C. for 5 hours under air flow of liter / min.

【0028】前記耐久処理前および耐久処理後の本実施
例に係る触媒および比較例の触媒それぞれをプレス後粉
砕して、粒径を300〜700μmに整粒した。整粒し
た前記各触媒を直径10mmの石英管につめ、常圧固定
床流通式反応装置を用いて前記それぞれの触媒の窒素酸
化物(NO)、一酸化炭素(CO)、および炭化水素
(HC)浄化率を測定した。反応には、表2に示す組成
のA/F(空燃比)=18相当の排気モデルガスを用
い、触媒重量は0.5g、反応ガス流量は3.3リット
ル/分とし、温度を700℃から100℃まで5秒/℃
の速度で降下させながら反応評価試験を行った。
The catalyst of the present example and the catalyst of the comparative example before and after the durability treatment were pressed and pulverized to have a particle size of 300 to 700 μm. Each of the sized catalysts was packed in a quartz tube having a diameter of 10 mm, and a nitrogen oxide (NO), carbon monoxide (CO), and hydrocarbon (HC ) The purification rate was measured. For the reaction, an exhaust model gas corresponding to A / F (air-fuel ratio) = 18 having the composition shown in Table 2 was used, the catalyst weight was 0.5 g, the reaction gas flow rate was 3.3 liters / minute, and the temperature was 700 ° C. To 100 ℃ for 5 seconds / ℃
The reaction evaluation test was performed while descending at the speed of.

【0029】[0029]

【表2】 [Table 2]

【0030】結果を図1、図2にそれぞれ示す。図1
は、本実施例に係る触媒の耐久処理前および耐久処理後
のNO浄化率を示し、図2は、比較例の触媒の耐久処理
前および耐久処理後のNO浄化率を示す。横軸は入りガ
ス温度、縦軸はNO浄化率をそれぞれ示す。同図に示す
結果より、本実施例に係る触媒は比較例の触媒に比べて
NO浄化率の低下がほとんどなく、熱処理による耐久処
理後の触媒活性低下が著しく抑制されていることがわか
る。
The results are shown in FIGS. 1 and 2, respectively. Figure 1
Shows the NO purification rate of the catalyst according to the present example before and after the durability treatment, and FIG. 2 shows the NO purification rate of the catalyst of the comparative example before and after the durability treatment. The horizontal axis represents the incoming gas temperature, and the vertical axis represents the NO purification rate. From the results shown in the figure, it can be seen that the catalyst according to this example has almost no decrease in the NO purification rate as compared with the catalyst of the comparative example, and the decrease in catalyst activity after the endurance treatment due to the heat treatment is significantly suppressed.

【0031】また、一酸化炭素、炭化水素に対しては、
耐久処理後も従来の触媒と同程度の浄化率を示した。
For carbon monoxide and hydrocarbons,
After the durability treatment, the purification rate was similar to that of the conventional catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る触媒のNO浄化率を示す図であ
る。
FIG. 1 is a diagram showing an NO purification rate of a catalyst according to the present invention.

【図2】比較例の触媒のNO浄化率を示す図である。FIG. 2 is a diagram showing an NO purification rate of a catalyst of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横田 幸治 愛知県愛知郡長久手町大字長湫字横道41 番地の1株式会社 豊田中央研究所内 (56)参考文献 特開 平4−78444(JP,A) 特開 平4−78443(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86,53/94 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Yokota, Nagachite-cho, Aichi-gun, Aichi, 1-chome, 41, Yokomichi, Nagakute, Toyota Central Research Institute Co., Ltd. (56) Reference JP-A-4-78444 (JP, A) JP-A-4-78443 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74 B01D 53 / 86,53 / 94

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アンモニウム型ゼオライトのアンモニウ
ムイオンをアルカリ金属陽イオンでイオン交換するイオ
ン交換工程と、 前記イオン交換したアルカリ金属陽イオンを銀イオンで
さらにイオン交換して銀をゼオライトに担持させる触媒
金属担持工程と、 を含んで構成されることを特徴とする高耐熱性窒素酸化
物浄化用触媒の製造方法。
1. An ion exchange step of ion-exchanging ammonium ions of an ammonium-type zeolite with an alkali metal cation, and the ion-exchanged alkali metal cation is further ion-exchanged with silver ion to convert silver into zeolite. A method for producing a highly heat-resistant catalyst for purifying nitrogen oxides, which comprises a step of supporting a catalytic metal to be supported.
【請求項2】 アンモニウム型ゼオライトのアンモニウ
ムイオンを銀イオンでイオン交換して銀を前記アンモニ
ウム型ゼオライトに担持させる触媒金属担持工程と、 前記触媒金属担持工程を経た後アンモニウム型ゼオライ
トに残存するアンモニウムイオンをアルカリ金属陽イオ
ンでイオン交換するイオン交換工程と、 を含んで構成されることを特徴とする高耐熱性窒素酸化
物浄化用触媒の製造方法。
2. A catalytic metal supporting step of carrying out ion exchange of ammonium ions of ammonium-type zeolite with silver ions to support silver on the ammonium-type zeolite, and ammonium ions remaining in the ammonium-type zeolite after the catalytic metal supporting step. A process for producing a highly heat-resistant nitrogen oxide-purifying catalyst, comprising: an ion exchange step of exchanging an ion with an alkali metal cation.
【請求項3】 請求項1または請求項2において、アル
カリ金属陽イオンはカリウムイオン、ルビジウムイオ
ン、およびセシウムイオンから選ばれる少なくとも1種
であることを特徴とする高耐熱性窒素酸化物浄化用触媒
の製造方法。
3. The highly heat-resistant nitrogen oxide-purifying catalyst according to claim 1 or 2, wherein the alkali metal cation is at least one selected from potassium ion, rubidium ion, and cesium ion. Manufacturing method.
JP19010194A 1994-07-19 1994-07-19 Method for producing high heat resistant nitrogen oxide purifying catalyst Expired - Fee Related JP3436419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19010194A JP3436419B2 (en) 1994-07-19 1994-07-19 Method for producing high heat resistant nitrogen oxide purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19010194A JP3436419B2 (en) 1994-07-19 1994-07-19 Method for producing high heat resistant nitrogen oxide purifying catalyst

Publications (2)

Publication Number Publication Date
JPH0824657A JPH0824657A (en) 1996-01-30
JP3436419B2 true JP3436419B2 (en) 2003-08-11

Family

ID=16252398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19010194A Expired - Fee Related JP3436419B2 (en) 1994-07-19 1994-07-19 Method for producing high heat resistant nitrogen oxide purifying catalyst

Country Status (1)

Country Link
JP (1) JP3436419B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352486B2 (en) * 1998-11-17 2009-10-28 東ソー株式会社 Exhaust gas purification catalyst and exhaust gas purification method
JP5810846B2 (en) * 2011-11-04 2015-11-11 東ソー株式会社 Method for producing chabazite-type zeolite having copper and alkali metal
US11344170B2 (en) 2016-08-25 2022-05-31 Lg Electronics Inc. Vacuum cleaner

Also Published As

Publication number Publication date
JPH0824657A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
JP2909553B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5185942B2 (en) Vanadium-free catalyst for selective catalytic reduction and process for producing the same
JPH0538452A (en) Catalyst for purifying exhaust gas
CN111960433A (en) CHA type molecular sieve synthesized by using bicyclic group-containing quaternary ammonium onium template agent, and preparation and application of catalyst
JP3436419B2 (en) Method for producing high heat resistant nitrogen oxide purifying catalyst
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
JP2910278B2 (en) Exhaust gas purification method
JP2605956B2 (en) Exhaust gas purification catalyst
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPH02293050A (en) Catalyst for purification of exhaust gas
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP2921130B2 (en) Exhaust gas purification catalyst
JPH08257407A (en) Catalyst for cleaning exhaust gas from internal combustion engine
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
CN114057208B (en) CHA type molecular sieve synthesized by double template agents and method for preparing SCR catalyst by using CHA type molecular sieve
CN114044524B (en) CHA molecular sieve prepared by composite template agent and method for preparing SCR catalyst by using CHA molecular sieve
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JPH057778A (en) Manufacture of exhaust gas purification catalyst
JP2601018B2 (en) Exhaust gas purification catalyst
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH04235743A (en) Preparation of catalyst for purifying exhaust gas
JP3291316B2 (en) Exhaust gas purification catalyst
JP2000024517A (en) Catalyst for cleaning exhaust gas and its production
JPH0326343A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees