JP3435180B2 - Metal purification method - Google Patents

Metal purification method

Info

Publication number
JP3435180B2
JP3435180B2 JP35657592A JP35657592A JP3435180B2 JP 3435180 B2 JP3435180 B2 JP 3435180B2 JP 35657592 A JP35657592 A JP 35657592A JP 35657592 A JP35657592 A JP 35657592A JP 3435180 B2 JP3435180 B2 JP 3435180B2
Authority
JP
Japan
Prior art keywords
reaction vessel
metal
flange
magnesium
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35657592A
Other languages
Japanese (ja)
Other versions
JPH06192754A (en
Inventor
正彦 有我
晋 小瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP35657592A priority Critical patent/JP3435180B2/en
Publication of JPH06192754A publication Critical patent/JPH06192754A/en
Application granted granted Critical
Publication of JP3435180B2 publication Critical patent/JP3435180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ハロゲン化金属の還元
反応により生成した金属から副生成物を真空分離する金
属の精製方法に関する。更に詳しくは、還元反応から真
空分離への移行時に、反応容器と副生成物を回収する容
器(以下、「コンデンサ」という。)とを接続する部分
の開口部の一部を、予め、マグネシウムの板で塞いで、
接続時に使用する不活性ガスの量を少なくする金属の生
成方法に関する。 【0002】 【従来技術】ハロゲン化金属の還元反応により製造され
る金属の代表的な例としては、金属チタンがある。ハロ
ゲン化チタンの還元反応により金属チタンを工業的に製
造する場合、反応容器内において、四塩化チタンをマグ
ネシウムで還元し、生成した金属チタン、塩化マグネシ
ウム及び未反応のマグネシウムの入っている反応容器
に、コンデンサを接続した上で、真空分離を行なうこと
により、金属チタンを精製する方法が主として採用され
ている。 【0003】斯かる方法においては、反応容器内に生成
した金属チタンは高温であり、空気と反応しやすく、空
気との反応は該金属チタンの汚染につながるので、反応
容器とコンデンサとの接続時には、反応容器のコンデン
サ接続用配管フランジ(以下、「接続フランジ」とい
う。)の開口部に反応容器内から不活性ガスを流した
り、接続フランジ部にバルブを取り付けたりして、反応
容器内への空気の混入を防止していた。 【0004】一方、予め、反応容器とコンデンサとを一
体化した装置を用意し、該装置において、反応容器とコ
ンデンサの間に薄い金属板または低融点の金属の板から
なる仕切板を配置し、還元反応中は両者を遮断してお
き、真空分離開始前に、これらの仕切板を打抜きまたは
加熱により排除する方法(特公昭55−16220号、
同55−36255号公報)も知られている。これによ
れば、反応容器とコンデンサとの接続を不要とし、かつ
反応容器内への空気の混入を防止出来るが、これらの方
法を用いる場合には、装置の複雑化が避けられなかっ
た。 【0005】 【発明が解決しようとしている課題】ところで、上記の
様に接続フランジの開口部に反応容器からアルゴン等の
不活性ガスを流しつつ、反応容器とコンデンサとを接続
する場合、多量の不活性ガスを必要とし、金属の製造コ
ストを高めていた。また、接続フランジ部にバルブを取
り付けた場合、装置の複雑化やバルブからのリークを避
けることが出来ないという課題を残していた。 【0006】 【課題を解決するための手段】本発明者等は、上記課題
を解決するため鋭意研究を重ねた結果、反応容器の接続
フランジの開口面の一部を、予め、還元剤として使用さ
れる金属と同じで、かつ低融点の金属であるマグネシウ
ムの板で塞ぎ、接続時のフランジ部の開口面積を少なく
すると、反応容器内から少量の不活性ガスを流出すれ
ば、反応容器内への空気の巻き込みを防ぐことが出来、
更に、このマグネシウムの板は、真空分離の開始と共
に、高温のマグネシウム蒸気や塩化マグネシウム蒸気が
接続フランジの開口部を通過する際に、それらの熱によ
り容易に融解し、真空分離の妨げにならないことを知見
し、本発明を完成するに至った。 【0007】すなわち、本発明の金属の精製方法は、
ロゲン化金属のマグネシウム還元反応により反応容器内
で金属を精製した後、該反応容器に設けた接続用配管と
コンデンサとを接続して、反応容器内を加熱しその内部
に存在する副生成物を蒸発させて真空分離を行う金属の
精製方法において、接続用配管に設けたフランジの開口
部の15〜99%を、マグネシウムの板で予め閉塞して
おき、フランジの全体にカバーフランジを取り付けて前
記反応容器を密閉して還元反応を行った後、反応容器と
コンデンサとを接続する際に、不活性ガスを反応容器か
フランジの開口部を通して吹き出させつつ該カバーフ
ランジを取り外して、接続用配管にコンデンサを接続
し、副生成物の蒸発ガスが前記フランジの開口部を通過
する際の熱によってマグネシウムの板を溶融することを
特徴としている。 【0008】更に具体的には、還元反応を開始する前
に、反応容器の接続フランジにマグネシウムの板を取り
付けることにより、接続フランジの開口部の一部を
ランジ開口部面積の15〜99%の範囲で覆い、還元反
応中は、このマグネシウムの板の上からカバーフランジ
を取り付けている。接続フランジへのマグネシウムの板
の取り付けは、接続フランジに予め金具を溶接してお
き、これにマグネシウム板を差し込む方法やボルト締め
等の方法により行なう。このマグネシウムの板の厚さ
は、分離開始時に容易に融解可能にするために、10mm
以下のものが好ましく、その断面形状は、接続フランジ
の開口面を覆うことが出来る形状であれば、いずれの形
状でも良く、四角形もしくは円形又はこれらの一部を切
り欠いたものもしくは孔を開けたものも使用できる。 【0009】 【作用】反応容器の接続フランジに予め取り付けられた
マグネシウムの板は、反応容器とコンデンサとの接続時
において、反応容器側の接続部の開口面積を少なくし、
接続フランジの開口部に少量の不活性ガスを流すだけ
で、反応容器内への空気の混入を防ぐことが出来る。 【0010】また、真空分離開始時に、マグネシウムの
板で塞がれていない部分を高温のマグネシウムの蒸気や
塩化マグネシウムの蒸気が通過するので、このマグネシ
ウムの板は、これらの蒸気の熱で容易に融解、気化し
て、反応容器からの塩化マグネシウムや未反応のマグネ
シウムとともにコンデンサに捕集される。コンデンサに
捕集した金属マグネシウムは、再び還元反応に使用され
るが、このマグネシウムの板は、還元反応により生成さ
れる金属に対する不純物とはならない。 【0011】 【実施例】本発明の実施例を、金属チタンの製造につい
て説明する。 実施例 図1に示す反応装置において、反応容器1の上部にある
接続フランジ9の一部に、図2、図3に示すように、接
続フランジの開口面の約70%を覆うように、厚さ約2
mmのマグネシウムの板6を止め金具10を用いて取り付
け、その上をカバーフランジ11で覆う。反応容器内に
溶融マグネシウムをフランジ8から注入する。次に四塩
化チタン滴下パイプ3から四塩化チタンを滴下すると、
反応容器内に、金属チタンと塩化マグネシウムが生成す
る。塩化マグネシウムは、適時、塩化マグネシウム抜き
出しパイプ2から系外に除去され、還元反応終了後には
反応容器内に未反応のマグネシウム及び塩化マグネシウ
ムを含む金属チタン塊5が得られる。 【0012】この反応容器にアルゴンガス挿入バルブ4
から少量のアルゴンガスの流出を開始すると同時に、反
応容器からカバーフランジ11を外し、コンデンサ12
と接続する。この時のアルゴンガスの使用量は約1.7
Nm3であり、従来のマグネシウムの板を使用せずにアル
ゴンガスを流した場合の使用量が約5.6Nm3であるこ
とから大幅に減少している。 【0013】接続後、加熱炉7により、反応容器1を加
熱するとともに、コンデンサ12に接続した排気系統
(図示せず)を用いて系内を減圧することにより、反応
容器内に生成した金属チタン塊中に含まれる未反応のマ
グネシウムや塩化マグネシウムの真空分離を行なう。 【0014】また、本発明の方法で得られた金属チタン
は、従来の方法で得られたものと品質上の差が見られな
かった。 【0015】 【発明の効果】本発明の金属の精製方法を用いると、従
来方法と比較して、装置を複雑化することなしに、不活
性ガスの使用量を大幅に削減出来、金属の製造コストを
削減することが出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a metal by vacuum-separating a by-product from a metal produced by a reduction reaction of a metal halide. More specifically, at the time of the transition from the reduction reaction to the vacuum separation, a part of the opening for connecting the reaction vessel and a vessel for collecting by-products (hereinafter referred to as a “condenser”) is made of magnesium in advance. Cover with a board,
The present invention relates to a method for producing a metal for reducing the amount of an inert gas used at the time of connection. A typical example of a metal produced by a reduction reaction of a metal halide is titanium metal. In the case where titanium metal is industrially produced by a reduction reaction of titanium halide, titanium tetrachloride is reduced with magnesium in a reaction vessel, and the resulting metal titanium, magnesium chloride and unreacted magnesium are placed in a reaction vessel. A method of purifying metallic titanium by vacuum separation after connecting a capacitor is mainly employed. In such a method, the titanium metal formed in the reaction vessel is at a high temperature and easily reacts with the air, and the reaction with the air leads to the contamination of the titanium metal. An inert gas flows from the inside of the reaction vessel into the opening of the condenser connection pipe flange of the reaction vessel (hereinafter, referred to as a “connection flange”), or a valve is attached to the connection flange, so that the inside of the reaction vessel can be cooled. Air contamination was prevented. On the other hand, an apparatus in which a reaction vessel and a condenser are integrated is prepared in advance, and in this apparatus, a partition plate made of a thin metal plate or a low melting point metal plate is arranged between the reaction vessel and the condenser. During the reduction reaction, both are shut off, and prior to the start of vacuum separation, these partitions are removed by punching or heating (Japanese Patent Publication No. 55-16220,
No. 55-36255) is also known. According to this method, the connection between the reaction vessel and the condenser is not required, and the intrusion of air into the reaction vessel can be prevented. However, when these methods are used, the apparatus is inevitably complicated. [0005] By the way, when the reaction vessel and the condenser are connected to each other while an inert gas such as argon is supplied from the reaction vessel to the opening of the connection flange as described above, a large amount of imperfection is required. It required an active gas and increased the cost of producing metals. Further, when a valve is attached to the connection flange portion, there remains a problem that the device becomes complicated and leakage from the valve cannot be avoided. Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a part of the opening surface of the connection flange of the reaction vessel has been used in advance as a reducing agent. If the opening area of the flange part at the time of connection is reduced by closing with a plate of magnesium, which is the same as the Air can be prevented
Furthermore, when the vacuum separation is started, when the high-temperature magnesium vapor or magnesium chloride vapor passes through the opening of the connection flange, the magnesium plate is easily melted by the heat so that it does not hinder the vacuum separation. And completed the present invention. That is, according to the method for purifying a metal of the present invention, after purifying a metal in a reaction vessel by a magnesium reduction reaction of a metal halide, a connection pipe provided in the reaction vessel is connected to a condenser, and the metal is purified. Heat inside the container
In a metal purification method in which a by-product present in a pipe is evaporated to perform vacuum separation, 15 to 99% of an opening of a flange provided in a connecting pipe is closed in advance with a magnesium plate, and the entire flange is closed. After performing a reduction reaction by sealing the reaction vessel by attaching a cover flange to the reaction vessel, when connecting the reaction vessel to the condenser, the cover flange is blown out from the reaction vessel while blowing out an inert gas from the reaction vessel through the opening of the flange. Remove and connect the condenser to the connection pipe
And the by-product evaporative gas passes through the opening of the flange.
It is characterized in that the magnesium plate is melted by the heat generated during the heat treatment . More specifically, by attaching a magnesium plate to the connection flange of the reaction vessel before starting the reduction reaction, a part of the opening of the connection flange is made 15 to 99% of the area of the flange opening. During the reduction reaction, a cover flange is attached from above the magnesium plate. Attachment of the magnesium plate to the connection flange is performed by welding a metal fitting to the connection flange in advance, and inserting a magnesium plate into the connection flange or bolting. The thickness of this magnesium plate is 10 mm to allow easy melting at the start of separation.
The following are preferable, and the cross-sectional shape thereof may be any shape as long as it can cover the opening surface of the connection flange, and may be a square or a circle or a part of which is cut out or has a hole. Things can also be used. The magnesium plate previously attached to the connection flange of the reaction vessel reduces the opening area of the connection portion on the reaction vessel side when the reaction vessel is connected to the condenser.
The flow of a small amount of inert gas into the opening of the connection flange can prevent air from entering the reaction vessel. At the start of vacuum separation, high-temperature magnesium vapor or magnesium chloride vapor passes through portions that are not covered by the magnesium plate, so that the magnesium plate is easily heated by the heat of these vapors. It is melted and vaporized and collected in a condenser together with magnesium chloride and unreacted magnesium from the reaction vessel. The metallic magnesium collected in the capacitor is used again for the reduction reaction, but the magnesium plate does not become an impurity for the metal generated by the reduction reaction. An embodiment of the present invention will be described with reference to the production of titanium metal. EXAMPLE In the reaction apparatus shown in FIG. 1, a part of the connection flange 9 at the upper part of the reaction vessel 1 was thickened so as to cover about 70% of the opening surface of the connection flange as shown in FIGS. About 2
The magnesium plate 6 of mm is attached using the stopper 10, and the upper part thereof is covered with the cover flange 11. Molten magnesium is injected into the reaction vessel from the flange 8. Next, when titanium tetrachloride is dropped from the titanium tetrachloride dropping pipe 3,
Metal titanium and magnesium chloride are formed in the reaction vessel. Magnesium chloride is removed from the system from the magnesium chloride extraction pipe 2 as appropriate, and after the reduction reaction, a metal titanium mass 5 containing unreacted magnesium and magnesium chloride is obtained in the reaction vessel. An argon gas insertion valve 4 is provided in the reaction vessel.
The cover flange 11 is removed from the reaction vessel at the same time
Connect with The amount of argon gas used at this time was about 1.7.
Nm 3, which is significantly reduced since the amount of use when the argon gas is flown without using the conventional magnesium plate is about 5.6 Nm 3 . After the connection, the heating furnace 7 heats the reaction vessel 1 and depressurizes the system using an exhaust system (not shown) connected to the condenser 12, thereby forming metallic titanium produced in the reaction vessel. Vacuum separation of unreacted magnesium and magnesium chloride contained in the lump is performed. [0014] The metal titanium obtained by the method of the present invention showed no difference in quality from that obtained by the conventional method. According to the metal refining method of the present invention, the amount of inert gas used can be greatly reduced without complicating the apparatus, and the production of metal can be reduced, as compared with the conventional method. Costs can be reduced.

【図面の簡単な説明】 【図1】本発明を実施した金属チタン製造用反応装置の
1例を示す断面図である。 【図2】マグネシウムの板を取り付けた接続フランジ部
の実施例を示す断面図である。 【図3】接続フランジの開口部にマグネシウムの板を取
り付けた実施例を示す正面図である。 【図4】本発明を実施した金属の精製装置の1例を示す
断面図である。 [図面の簡単な説明] 1 反応容器 2 塩化マグネシウム抜き出しパイプ 3 四塩化チタン滴下パイプ 4 アルゴンガス挿入バルブ 5 金属チタン塊 6 マグネシウムの板 7 加熱炉 8 フランジ 9 接続フランジ 10 止め金具 11 カバーフランジ 12 コンデンサ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing one example of a reaction apparatus for producing titanium metal according to the present invention. FIG. 2 is a sectional view showing an embodiment of a connection flange portion to which a magnesium plate is attached. FIG. 3 is a front view showing an embodiment in which a magnesium plate is attached to an opening of a connection flange. FIG. 4 is a cross-sectional view showing one example of a metal purifying apparatus embodying the present invention. [Brief description of the drawings] 1 Reaction vessel 2 Magnesium chloride extraction pipe 3 Titanium tetrachloride dropping pipe 4 Argon gas insertion valve 5 Metallic titanium lump 6 Magnesium plate 7 Heating furnace 8 Flange 9 Connection flange 10 Stopper 11 Cover flange 12 Capacitor

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ハロゲン化金属のマグネシウム還元反応
により反応容器内で金属を精製した後、該反応容器に設
けた接続用配管とコンデンサとを接続して、反応容器内
を加熱しその内部に存在する副生成物を蒸発させて真空
分離を行う金属の精製方法において、 前記接続用配管に設けたフランジの開口部の15〜99
を、マグネシウムの板で予め閉塞しておき、前記フラ
ンジの全体にカバーフランジを取り付けて前記反応容器
を密閉して還元反応を行った後、反応容器とコンデンサ
とを接続する際に、不活性ガスを反応容器から前記フラ
ンジの開口部を通して吹き出させつつ該カバーフランジ
を取り外して、前記接続用配管にコンデンサを接続し、
前記副生成物の蒸発ガスが前記フランジの開口部を通過
する際の熱によって前記マグネシウムの板を溶融するこ
とを特徴とする金属の精製方法。
(57) [Claim 1] After purifying a metal in a reaction vessel by a magnesium reduction reaction of a metal halide, a connection pipe provided in the reaction vessel is connected to a condenser to perform a reaction. Inside the container
In a metal purification method in which the by-product is heated to evaporate by-products present therein and perform vacuum separation, wherein 15 to 99 of an opening of a flange provided in the connecting pipe is provided.
% Is closed in advance with a magnesium plate, a cover flange is attached to the entire flange, the reaction vessel is sealed, and a reduction reaction is performed. the hula gas from the reaction vessel
Remove the cover flange while blowing out through the opening of the nozzle, connect a capacitor to the connection pipe ,
Evaporation gas of the by-product passes through the opening of the flange
A method of refining a metal, wherein the magnesium plate is melted by heat at the time of melting .
JP35657592A 1992-12-22 1992-12-22 Metal purification method Expired - Lifetime JP3435180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35657592A JP3435180B2 (en) 1992-12-22 1992-12-22 Metal purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35657592A JP3435180B2 (en) 1992-12-22 1992-12-22 Metal purification method

Publications (2)

Publication Number Publication Date
JPH06192754A JPH06192754A (en) 1994-07-12
JP3435180B2 true JP3435180B2 (en) 2003-08-11

Family

ID=18449713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35657592A Expired - Lifetime JP3435180B2 (en) 1992-12-22 1992-12-22 Metal purification method

Country Status (1)

Country Link
JP (1) JP3435180B2 (en)

Also Published As

Publication number Publication date
JPH06192754A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
TW328550B (en) Ultra high purity magnesium and vacuum distillation purification method and apparatus
JP2002212647A (en) Highly refining method for high purity metal and refining apparatus therefor
US4447045A (en) Apparatus for preparing high-melting-point high-toughness metals
JP3435180B2 (en) Metal purification method
EP0097135A1 (en) Apparatus and method for producing purified refractory metal from a chloride thereof
WO2000058373A8 (en) Process for producing polyolefins
JPH06136466A (en) Treatment of molten aluminum or molten aluminum alloy
JPH10121163A (en) Method and device for producing high-purity indium
JP2960652B2 (en) Method and apparatus for purifying high purity metal
US4518421A (en) Process for producing solid metal particles from a bath of metal
US4242136A (en) Process for producing metallic zirconium
JP3076306B2 (en) Condensate retention equipment for low temperature hearth refining.
JP3033201B2 (en) Low melting point metal removal equipment
CA1163800A (en) Metal distillation apparatus
JP3464380B2 (en) Continuous vacuum purification method and device for aluminum alloy scrap
JP4231283B2 (en) High purity magnesium oxide fine powder production apparatus and high purity magnesium oxide fine powder production method using the same
JP3979518B2 (en) Manufacturing method of high purity metal
JP2005220444A (en) High purity metal, sputtering target composed of high purity metal, thin film deposited by sputtering, and method for producing high purity metal
JP4900350B2 (en) Manufacturing method to obtain high purity manganese
JPH06145831A (en) Treatment of molten aluminum or molten aluminum alloy
JPS59226127A (en) Device for producing high-melting high-toughness metal
JPH0255490B2 (en)
RU2095450C1 (en) Method for production of extra pure aluminium
RU2269585C1 (en) Method for thermal melting of metal
US4708190A (en) Treating metals and/or metallic compounds

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10