JP3431223B2 - Forming method of Al alloy based composite material - Google Patents

Forming method of Al alloy based composite material

Info

Publication number
JP3431223B2
JP3431223B2 JP22879893A JP22879893A JP3431223B2 JP 3431223 B2 JP3431223 B2 JP 3431223B2 JP 22879893 A JP22879893 A JP 22879893A JP 22879893 A JP22879893 A JP 22879893A JP 3431223 B2 JP3431223 B2 JP 3431223B2
Authority
JP
Japan
Prior art keywords
composite material
alloy
molding
specific gravity
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22879893A
Other languages
Japanese (ja)
Other versions
JPH0790422A (en
Inventor
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP22879893A priority Critical patent/JP3431223B2/en
Publication of JPH0790422A publication Critical patent/JPH0790422A/en
Application granted granted Critical
Publication of JP3431223B2 publication Critical patent/JP3431223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Al合金をマトリック
スとした粒子分散型複合材料と該複合材料を用いる成形
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle dispersion type composite material using an Al alloy as a matrix and a molding method using the composite material.

【0002】[0002]

【従来の技術】粒子分散型複合材料は、たとえばコンポ
キャスト法、粉末冶金法、メカニカルアロイング法など
の各種の製造方法によって製造されている。これらの複
合材料は、静水圧圧縮、焼結、熱間押出し等の方法によ
って成形され、製品の形状が限定される。また、鋳造
法、溶湯鍛造法、鍛造法によって比較的自由な形状の製
品が製造できる場合もある。
2. Description of the Related Art Particle-dispersed composite materials are manufactured by various manufacturing methods such as a compocast method, a powder metallurgy method and a mechanical alloying method. These composite materials are molded by methods such as isostatic pressing, sintering, hot extrusion, etc., and the shape of the product is limited. Further, there are cases where a product having a relatively free shape can be manufactured by a casting method, a molten metal forging method, or a forging method.

【0003】[0003]

【発明が解決しようとする課題】粒子分散型複合材料を
製造する過程において、マトリックス金属と、これに添
加した複合粒子との比重差が大きいと溶融したマトリッ
クス金属のなかでは、複合粒子が、沈降や浮上によって
分離するという問題点がある。一方、鍛造法や溶湯鍛造
法には、大掛かりなプレス機械や強靱な鉄鋼型が必要な
ため、設備費等のコストがかさむ。また、鋳造法によっ
て前記複合材料を用いて製品を製造する場合、溶湯中に
含まれている複合粒子の一部が分解して湯流れを悪くし
たり、製品に巣やポロシティーが発生するという問題点
がある。その他、押し湯、上がり湯、湯道など多くの駄
肉や仕掛けが必要である。また、マトリックスに鋳造用
Al合金を用いている場合は、鍛造法は材料に割れが生
じるため適用できない。本発明は、前記事情に鑑みてな
されたもので、前記問題点を解消した成形が容易で、欠
陥のない粒子分散型複合材料と、その成形法を提供する
ことを目的とする。
In the process of producing a particle-dispersed composite material, when the difference in specific gravity between the matrix metal and the composite particles added to the matrix metal is large, the composite particles will be precipitated in the molten matrix metal. There is a problem of separation by levitation. On the other hand, the forging method and the molten metal forging method require a large-scale press machine and a tough steel die, which increases costs such as equipment costs. Further, when a product is produced by using the composite material by a casting method, a part of the composite particles contained in the molten metal is decomposed to deteriorate the flow of the molten metal, or the product has a nest or porosity. There is a problem. In addition, a lot of extra meat and tricks such as hot water, rising water, and runway are required. Further, when an Al alloy for casting is used for the matrix, the forging method cannot be applied because the material is cracked. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a particle-dispersed composite material which eliminates the above problems and is easy to mold and has no defects, and a molding method thereof.

【0004】[0004]

【課題を解決するための手段】前記目的に添い、本発明
は、Al合金に、セラミックス粒子を分散してなる複合
材料において、前記Al合金と前記セラミックス粒子の
比重の差をΔmとしたとき、Δm÷Al合金比重=0.
5以下となるように両者を組み合せるAl合金基複合材
料によって、また該材料を用いて、真空または不活性ガ
ス雰囲気の成形型内で加熱しながら加圧し、一工程で成
形することによって前記課題を解決した。これによって
セラミックス粒子がマトリックスAl合金中において沈
降や浮上せず、良品質の複合材料が容易に製造できる。
According to the present invention, in the composite material in which ceramic particles are dispersed in an Al alloy, when the difference in specific gravity between the Al alloy and the ceramic particles is Δm, Δm ÷ Al alloy specific gravity = 0.
By using an Al alloy matrix composite material in which both are combined so as to have a ratio of 5 or less, and by using the material and pressurizing while heating in a mold in a vacuum or an inert gas atmosphere, and molding in one step Solved. As a result, the ceramic particles do not settle or float in the matrix Al alloy, and a good quality composite material can be easily manufactured.

【0005】本発明は、粒子分散型複合材料を成形型内
に配置し、これに所定の圧力Pを加えながら、真空また
は不活性ガス雰囲気中で、前記材料を全溶融、部分溶融
または軟化した状態に加熱し、そのまま、一工程で製品
に成形するものである。ここで、Al合金とセラミック
ス粒子との比重の差をΔmとしたとき、Δm÷Al合金
比重=0.5以下となるように、Al合金とセラミック
ス粒子を組合せる。すなわち、マトリックスのAl合金
に対し、その比重差が50%以内となるようなセラミッ
クス粒子を用いる。そして複数種類のセラミックスを用
いる場合は、この比重差が50%以内の粒子を少なくと
も70%以上の率で含むセラミックス粒子を用いるもの
とする。そしてセラミックス粒子の比重がAl合金のそ
れより大きい場合には、その粒子径を10μm以下とし
てマトリックス合金内における沈降を避け、浮力が大き
くなるようにする。このようにしたのは本発明の加工方
法は、加工に比較的長時間を要するため、マトリックス
のAl合金中に添加分散してあるセラミックス粒子が、
マトリックス合金中において沈降または浮上して分離し
易くなり、製品の上部と下部で粒子濃度の異なる部分が
できるからである。
According to the present invention, a particle-dispersed composite material is placed in a molding die, and the material is completely melted, partially melted or softened in a vacuum or an inert gas atmosphere while applying a predetermined pressure P thereto. It is heated to a state and molded into a product in one step as it is. Here, when the difference in specific gravity between the Al alloy and the ceramic particles is Δm, the Al alloy and the ceramic particles are combined so that Δm ÷ Al alloy specific gravity = 0.5 or less. That is , ceramic particles having a difference in specific gravity of 50% or less with respect to the Al alloy of the matrix are used. When a plurality of types of ceramics are used, ceramic particles containing particles having a difference in specific gravity of 50% or less at a rate of 70% or more are used. When the specific gravity of the ceramic particles is larger than that of the Al alloy, the particle diameter is set to 10 μm or less to prevent sedimentation in the matrix alloy and increase the buoyancy. In this way, the processing method of the present invention requires a relatively long time for processing, so that the ceramic particles added and dispersed in the Al alloy of the matrix are
This is because the particles easily settle or float in the matrix alloy and are easily separated from each other, and portions having different particle concentrations are formed in the upper part and the lower part of the product.

【0006】ここで、添加するセラミックス粒子に、た
とえばB4 C(比重2.52),BN(同2.27),
SiO2 (同2.32),BeO(同3.02),Si
C(同3.22),MgO(同3.58),Al2 3
(同3.98)などを用いる。またマトリックスとなる
Al合金には、JIS AC4A,AC4B,AC8A
等々の鋳造用Al合金及び展伸用Al合金などを用い
る。
Here, the added ceramic particles include, for example, B 4 C (specific gravity 2.52), BN (2.27),
SiO 2 (2.32), BeO (3.02), Si
C (3.22), MgO (3.58), Al 2 O 3
(Id. 3.98) is used. In addition, the Al alloy used as the matrix is JIS AC4A, AC4B, AC8A.
An Al alloy for casting and an Al alloy for wrought, etc. are used.

【0007】本発明では、前記仕様のセラミックス粒子
を分散し、前記Al合金をマトリックスとした粒子分散
型複合材料を用い、次の要領で成形加工する。たとえ
ば、図1に示すように下型1の中央にボス型2を配設
し、その上部に所定材寸の前記複合材料3を載置し、そ
の上方より上型4によって、加熱しながら加圧する。こ
の上型4には製品形状に対応した凹部4aが設けてあ
り、この凹部4aからエア抜き孔5が設けてある。これ
を真空または不活性ガス雰囲気において所定温度に加熱
しつつ、所定時間をかけて所定圧力Pのもので加圧すれ
ばよい。その結果、同図(b)に示すような成形品3a
がえられる。図2は他の実施例で、同様に下型21、ボ
ス型22、上型23、凹部24aを備え、ボス型22上
に複合材料23を載置し、上型24により加熱しながら
加圧するものである。これによって同図(b)に示すカ
ップ形状の成形品23aがえられ、さらにこれを同図
(c)のように仕上げ加工をすれば、ピストン23bが
えられる。なお、成形型内では全溶融、又は部分溶融、
又は軟化した状態で複合材料が成形される。
In the present invention, the ceramic particles having the above-mentioned specifications are dispersed, and the particle-dispersed composite material having the Al alloy as a matrix is used to perform the molding process in the following manner. For example, as shown in FIG. 1, a boss mold 2 is arranged in the center of a lower mold 1, and the composite material 3 having a predetermined material size is placed on the upper part of the boss mold 2. Press. The upper mold 4 is provided with a recess 4a corresponding to the shape of the product, and an air vent hole 5 is provided through the recess 4a. This may be heated to a predetermined temperature in a vacuum or an inert gas atmosphere and pressurized with a predetermined pressure P for a predetermined time. As a result, the molded product 3a as shown in FIG.
Can be obtained. FIG. 2 shows another embodiment, which similarly includes a lower mold 21, a boss mold 22, an upper mold 23, and a concave portion 24a. A composite material 23 is placed on the boss mold 22 and pressed by the upper mold 24 while being heated. It is a thing. As a result, a cup-shaped molded product 23a shown in FIG. 7B is obtained, and when this is further finished as shown in FIG. 7C, the piston 23b is obtained. In addition, in the molding die, completely melted or partially melted,
Alternatively, the composite material is molded in the softened state.

【0008】本方法においては大型のプレス機等を必要
とせず、成形型も鉄鋼型のような強靱性は必要としな
い。素材は複合材料等の難変形性材料でも成形でき、成
形前、内部に巣やポロシティー等が存在していても、潰
して健全化できる。質量や体積を制御すれば、歩留りの
極めて良いnet shape製品を製造することがで
きる。変形速度が遅いため、大変形させることが可能で
あり、一回の工程で小断面素材から大断面製品を製造で
き、複雑形状の製品も製造できる。圧力Pを加える方法
は、質量がある程度大きなものを上型に適用したり、上
型上部に重りを置いたり、圧子により油圧を加えること
等が考えられる。成形後は、水冷コイル等により急速冷
却すれば、高強度の製品を製造することもできる。ま
た、本発明の複合材料であれば、多回数で成形したり、
繰り返し成形したりしても、あまり複合粒子の分散状況
を変化させないで成形することができる。なお、このよ
うな方法で成形すると、単繊維強化複合材料では、成形
は可能であるが単繊維またはウィスカの方向が並んでし
まい、強度に異方性が発生してしまい好ましくない。し
かし、粒子分散複合材料の場合、ほとんど異方性は発生
しないので都合がよい。
The present method does not require a large press machine or the like, and the forming die does not require toughness unlike a steel die. The material can be made of a non-deformable material such as a composite material, and can be crushed and made sound even if there are cavities or porosity inside before forming. By controlling the mass and the volume, it is possible to manufacture a net shape product having an extremely high yield. Since the deformation speed is slow, large deformation is possible, and a large cross-section product can be manufactured from a small cross-section material in a single process, and a product with a complicated shape can also be manufactured. As a method of applying the pressure P, it is conceivable to apply one having a large mass to the upper mold, place a weight on the upper part of the upper mold, apply hydraulic pressure by an indenter, or the like. After molding, a high-strength product can be manufactured by rapidly cooling with a water-cooled coil or the like. Further, if the composite material of the present invention, it can be molded many times,
Even if it is repeatedly molded, it can be molded without changing the dispersion state of the composite particles. When the single fiber reinforced composite material is formed by such a method, the single fiber reinforced composite material can be formed, but the directions of the single fibers or the whiskers are aligned, which causes anisotropy in the strength, which is not preferable. However, in the case of a particle-dispersed composite material, anisotropy hardly occurs, which is convenient.

【0009】実施例1 真空容器内に図1(a)に示すようなカーボン製成形下
型(内径約φ200mm,内面にhBNをコーティン
グ)を設置し、その中に比重が約2.7のAC4A(A
l−Si−Mg)系合金に、径が5μmで比重が約3.
2のSiC粒子を10mass%分散複合した粒子分散
複合素材(φ100mm×H20mm)を設置した。こ
れにカーボン製成形上型(内径約φ200mm、下面に
hBNをコーティング)を乗せ、さらにその上に重りを
乗せて50kgの質量が加わるようにした(成形前の初
期圧力は約64kPa,成形後最終圧力は約16kPa
になる)。この状態で真空容器内を約1×10-2Paに
減圧し、803Kの加熱を3600S継続した。これに
より、図1(b)に示すように、この複合材料は一工程
で直径が2倍のディスクに成形することができた。また
SiC粒子の重力による偏析は、あまり認められなかっ
た。 実施例2 真空容器内に図1(a)に示すようなカーボン製成形下
型(内径約φ200mm,内面にhBNをコーティン
グ)を設置し、その中に比重が約2.7のAC4B(A
l−Si−Cu)系合金に、径が3.5μmで比重が約
3.98のAl23 粒子を5mass%分散複合した
粒子分散複合材料素材(φ100mm×H20mm)を
設置した。これにカーボン製成形上型(内径約φ200
mm、下面にhBNをコーティング)を乗せ、さらにそ
の上に重りを乗せて50kgの質量が加わるようにした
(成形前の初期圧力は約64kPa、成形後最終圧力は
約16kPaになる)。この状態で真空容器内を約1×
10-2Paに減圧し、803Kの加熱を3600S継続
した。これにより、図1(b)に示すように、この複合
材料は一工程で直径が2倍のディスクに成形することが
できた。またAl2 3 粒子の重力による偏析は、あま
り認められなかった。 実施例3 真空容器内に図2(a)に示すようなカーボン製成形下
型(内径約φ200mm、内面にhBNをコーティン
グ)を設置し、その中に比重が約2.7のAC8A
((Al−Si−Cu)系合金に、径が10μmで比重
が約3.2のSiC粒子を20mass%分散複合した
粒子分散複合材料素材(φ70mm×H30mm)を設
置した。これにカーボン製成形上型(内径約φ200m
m、下面にhBNをコーティング)を乗せ、さらにその
上に重りを乗せて50kgの質量が加わるようにした。
この状態で真空容器内を約1×10-2Paに減圧し、8
03Kの加熱を3600S継続した。これにより、この
複合材料は一工程で図2(b)に示すようなカップ形状
に成形することができた。またSiC粒子の重力による
偏析は、あまり認められなかった。なおこの成形したカ
ップは、図2(c)に示すようなピストンに仕上げ加工
した。
Example 1 Under the carbon molding as shown in Fig. 1 (a) in the vacuum container
Mold (inner diameter approx. 200 mm, hBN coated on inner surface)
AC4A (A with a specific gravity of about 2.7)
1-Si-Mg) alloy with a diameter of 5 μm and a specific gravity of about 3.
Particle dispersion in which 2% SiC particles are dispersed by 10 mass%
A composite material (φ100 mm × H20 mm) was installed. This
In addition to this, a carbon molding upper die (inner diameter about 200 mm, on the lower surface
hBN coating) and put a weight on it
I put it on and added 50kg of mass.
Initial pressure is about 64 kPa, final pressure after molding is about 16 kPa
become). In this state, the inside of the vacuum container is about 1 x 10-2To Pa
The pressure was reduced and heating at 803K was continued for 3600S. to this
Therefore, as shown in FIG.
It was possible to mold a disk with a diameter of 2 times. Also
Segregation of SiC particles due to gravity was not observed so much
It was Example 2 Under the carbon molding as shown in Fig. 1 (a) in the vacuum container
Mold (inner diameter approx. 200 mm, hBN coated on inner surface)
AC4B (A) with a specific gravity of about 2.7.
l-Si-Cu) alloy with a diameter of 3.5 μm and a specific gravity of about
3.98 Al2O3Particles were dispersed by 5 mass% and composited.
Particle dispersion composite material (φ100mm × H20mm)
installed. In addition to this, a carbon molding upper die (inner diameter approx.
mm, hBN coating on the bottom)
I put a weight on top of it and added 50kg of mass.
(Initial pressure before molding is about 64 kPa, final pressure after molding is
It will be about 16 kPa). In this state, the inside of the vacuum container is about 1 ×
10-2Reduce pressure to Pa and continue heating at 803K for 3600S
did. As a result, as shown in FIG.
The material can be formed into a disk with double the diameter in one step
did it. Also Al2O 3Gravity segregation of particles is
Was not recognized. Example 3 Under the carbon molding as shown in Fig. 2 (a) in the vacuum container
Mold (Inner diameter about 200 mm, hBN coated on the inner surface)
AC8A with a specific gravity of about 2.7.
((Al-Si-Cu) based alloy with a specific gravity of 10 μm
With SiC particles of about 3.2 dispersed and compounded in 20 mass%
A particle-dispersed composite material (φ70 mm x H30 mm) is installed.
I put it. In addition to this, a carbon molding upper die (inner diameter of about 200 m
m, hBN coating on the bottom surface), and then
A weight was placed on top to add a mass of 50 kg.
In this state, the inside of the vacuum container is about 1 x 10-2Reduce pressure to Pa, 8
Heating at 03K was continued for 3600S. This makes this
The composite material has a cup shape as shown in Fig. 2 (b) in one step.
Could be molded into. Also, due to the gravity of the SiC particles
Segregation was rarely observed. In addition, this molded
Top is finished into a piston as shown in Fig. 2 (c).
did.

【0010】[0010]

【発明の効果】本発明においては、本発明に係る特定仕
様の粒子分散型複合材料を用いて成形することにより、
成形や変形が難しい複合材料を容易に最終製品に近いも
の(Net shape)に成形できる。また、製品内
部には巣やポロシティーが、鋳造法で製造した場合より
少なく、マトリックスとなるAl合金は何でもよい。そ
して成形に時間がかるが添加してある複合粒子が沈降し
たり浮揚して片寄ることもない。
INDUSTRIAL APPLICABILITY In the present invention, by molding using the particle-dispersed composite material of the specific specifications according to the present invention,
A composite material that is difficult to mold or deform can be easily molded into a product close to the final product (Net shape). In addition, there are fewer cavities and porosities inside the product than in the case of being manufactured by the casting method, and any Al alloy serving as a matrix may be used. Although the molding takes time, the added composite particles do not settle or float and become uneven.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合材料を用いておこなう本発明
に係る成形法の一実施例の説明図で、同図(a)は成形
前を、同図(b)は成形後の状態を示す。
FIG. 1 is an explanatory view of an embodiment of a molding method according to the present invention, which is carried out using a composite material according to the present invention. FIG. 1A shows a state before molding, and FIG. 1B shows a state after molding. Show.

【図2】本発明に係る複合材料を用いて行なう本発明に
係る成形法の他の実施例の説明図で、同図(a)は成形
前を、同図(b)は成形後を、同図(c)は、(b)の
成形品を仕上げ加工した状態を示す。
2A and 2B are explanatory views of another embodiment of the molding method according to the present invention, which is performed using the composite material according to the present invention. FIG. 2A is before molding, FIG. FIG. 6C shows a state in which the molded product of FIG.

【符号の説明】[Explanation of symbols]

1,21 下型 2,22 ボス型 3,23 複合材料 4,24 上型 1,21 Lower mold 2,22 Boss type 3,23 Composite material 4,24 Upper mold

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al合金に、セラミックス粒子を分散し
てなる複合材料を用いて成形する場合に、該複合材料を
成形型内に配置し、真空または不活性ガス雰囲気中で、
該材料を全溶解、部分溶解、または軟化した状態に加熱
しながら、該複合材料に所定の圧力を加えることで、一
工程で成形することを特徴とする成形法であって、 前記Al合金と前記セラミックス粒子の比重差をΔmと
したとき、Δm÷Al合金比重=0.5以下となるよう
に両者を組合せた複合材料を用いることを特徴とする複
合材料の成形法。
1. When molding using a composite material in which ceramic particles are dispersed in an Al alloy, the composite material is placed in a molding die, and the composite material is placed in a vacuum or an inert gas atmosphere.
All dissolved material, partial dissolution, or with heating to a softened state, to the composite material by applying a predetermined pressure, a molding method, which comprises forming in a single step, and the Al alloy The specific gravity difference of the ceramic particles is Δm
So that Δm ÷ Al alloy specific gravity = 0.5 or less
Is characterized by using a composite material that is a combination of both
Molding method for composite materials.
【請求項2】 前記セラミックスの比重が、前記Al合
金の比重より大きい場合に、そのセラミックスの粒子径
を10μm以下とした複合材料を用いることを特徴とす
る請求項に記載の複合材料の成形法。
The specific gravity of claim 2 wherein said ceramic is, when the specific gravity is greater than the Al alloy, molding the composite material according to claim 1 which comprises using a composite material in which the particle diameter of the ceramic and 10μm or less Law.
JP22879893A 1993-09-14 1993-09-14 Forming method of Al alloy based composite material Expired - Fee Related JP3431223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22879893A JP3431223B2 (en) 1993-09-14 1993-09-14 Forming method of Al alloy based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22879893A JP3431223B2 (en) 1993-09-14 1993-09-14 Forming method of Al alloy based composite material

Publications (2)

Publication Number Publication Date
JPH0790422A JPH0790422A (en) 1995-04-04
JP3431223B2 true JP3431223B2 (en) 2003-07-28

Family

ID=16882026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22879893A Expired - Fee Related JP3431223B2 (en) 1993-09-14 1993-09-14 Forming method of Al alloy based composite material

Country Status (1)

Country Link
JP (1) JP3431223B2 (en)

Also Published As

Publication number Publication date
JPH0790422A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
Harris Cast metal matrix composites
US5429796A (en) TiAl intermetallic articles
US5394930A (en) Casting method for metal matrix composite castings
JPH0159343B2 (en)
Ervina Efzan et al. Fabrication method of aluminum matrix composite (AMCs): a review
EP0765946A1 (en) Processes for producing Mg-based composite materials
US6662852B2 (en) Mold assembly and method for pressure casting elevated melting temperature materials
CN110066937A (en) A kind of high intensity, the preparation method of high-modulus, high-ductility ceramic particle aluminum matrix composite
US5141683A (en) Method of producing reinforced materials
JP3431223B2 (en) Forming method of Al alloy based composite material
JPWO2008136224A1 (en) Molded body for powder sintered body, powder sintered body and production method thereof
US5376462A (en) Thixoformable layered materials and articles made from them
CN113061791B (en) Magnesium alloy, magnesium alloy casting and manufacturing method thereof
JPH08232028A (en) Composite material and its preparation
JPS62161463A (en) Production of composite metallic material
JPH0432527A (en) Manufacture of foamed body of ti-al series intermetallic compound and product thereby
WO2023136101A1 (en) Method for manufacturing metal matrix composite material
JP2005320581A (en) Method for manufacturing porous metal body
JP2936695B2 (en) Aluminum alloy powder forging method
JP2001507281A (en) Machinable metal matrix composite and liquid metal infiltration method
Asthana Solidification Processing of Reinforced Metals: Frabrication Techniques
Yakoub Squeeze casting of zinc-aluminium (ZA) alloys and ZA-27/SIC composites
JPH035063A (en) Manufacture of mixed material
JPH05295471A (en) Production of preform for composite material
Moll et al. Properties of particle reinforced magnesium alloys in correlation with different particle shapes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees