JP3429988B2 - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JP3429988B2
JP3429988B2 JP29834197A JP29834197A JP3429988B2 JP 3429988 B2 JP3429988 B2 JP 3429988B2 JP 29834197 A JP29834197 A JP 29834197A JP 29834197 A JP29834197 A JP 29834197A JP 3429988 B2 JP3429988 B2 JP 3429988B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
objective lens
ray analysis
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29834197A
Other languages
Japanese (ja)
Other versions
JPH11135052A (en
Inventor
直正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29834197A priority Critical patent/JP3429988B2/en
Publication of JPH11135052A publication Critical patent/JPH11135052A/en
Application granted granted Critical
Publication of JP3429988B2 publication Critical patent/JP3429988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子線の照射によ
って試料から発生される二次電子を検出して試料の走査
像を形成する走査電子顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope which forms a scan image of a sample by detecting secondary electrons generated from the sample by irradiation with an electron beam.

【0002】[0002]

【従来の技術】走査電子顕微鏡は、電子源から発生さ
れ、収束レンズ及び対物レンズにより細く絞られた電子
線を偏向器を用いて試料上で走査し、電子線照射によっ
て試料から発生する二次電子を二次電子検出器により検
出し、その検出信号を電子線の走査と同期して処理する
ことで試料像を形成する装置である。
2. Description of the Related Art A scanning electron microscope uses a deflector to scan an electron beam generated from an electron source and narrowed down by a converging lens and an objective lens, and scans the sample with a secondary electron beam emitted from the sample. This is an apparatus for forming a sample image by detecting electrons by a secondary electron detector and processing the detection signal in synchronization with scanning of an electron beam.

【0003】この走査電子顕微鏡において、試料像の分
解能向上のための手段の一つとして試料を対物レンズに
近づけて対物レンズの主面との距離を短くすることが行
われている。しかしながら、対物レンズの主面と試料と
の距離が短い場合、X線分析を行うときなどの様に高い
加速電圧とすると、対物レンズ磁路の飽和ためにフォー
カスに必要な磁界強度が得られなくなり、試料と対物レ
ンズとの距離を長くしなければならなかった。
In this scanning electron microscope, as one means for improving the resolution of a sample image, the sample is brought closer to the objective lens to shorten the distance from the main surface of the objective lens. However, if the distance between the principal surface of the objective lens and the sample is short, and the acceleration voltage is high, such as when performing X-ray analysis, the magnetic field strength necessary for focusing cannot be obtained due to saturation of the magnetic path of the objective lens. , The distance between the sample and the objective lens had to be lengthened.

【0004】[0004]

【発明が解決しようとする課題】上記のように従来の走
査電子顕微鏡では、低加速電圧による高分解能観察と、
高加速電圧によるX線分析とで、対物レンズと試料の間
の距離を変えなければならない。従って、低加速電圧に
よる高分解能観察を行った後、X線分析を行うためには
試料を電子線の照射方向、すなわちz軸方向に動かさな
ければならず、電子線加速電圧の変更に伴う観察条件の
変化とz軸方向への試料の移動の2つの変動要因のため
に目的の視野を見失うなどの問題があった。
As described above, in the conventional scanning electron microscope, high resolution observation with a low accelerating voltage,
The distance between the objective lens and the sample has to be changed by X-ray analysis with a high acceleration voltage. Therefore, in order to perform X-ray analysis after performing high-resolution observation with a low acceleration voltage, the sample must be moved in the electron beam irradiation direction, that is, the z-axis direction. There was a problem such as losing the target field of view due to two changing factors of changes in conditions and movement of the sample in the z-axis direction.

【0005】本発明は、このような従来技術の問題点を
鑑みてなされたもので、試料を移動することなく高分解
能観察とX線分析とを行うことのできる走査電子顕微鏡
を提供することを目的とする。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a scanning electron microscope capable of performing high resolution observation and X-ray analysis without moving a sample. To aim.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明では、X線分析時は試料像観察用の対物レンズ
の励磁をOFF又は高分解能観察時よりも弱励磁状態と
し、より長焦点距離でフォーカス可能な位置に配置され
た収束レンズ又はX線分析専用の対物レンズにて電子線
を試料にフォーカスすることで、目的の視野を見失うこ
となくX線分析を行うことができるようにする。
In order to achieve the above object, according to the present invention, during the X-ray analysis, the excitation of the objective lens for observing the sample image is set to OFF or a weaker excitation state than during the high resolution observation, and the Focusing an electron beam on a sample with a converging lens or a dedicated objective lens for X-ray analysis placed at a position where focus can be achieved at the focal length, so that X-ray analysis can be performed without losing sight of the target field of view. To do.

【0007】すなわち、本発明は、電子線を発生する電
子源と、電子線を収束するための収束レンズと、電子線
を細く絞って試料上に照射させるための対物レンズと、
電子線を試料上で二次元的に走査するための偏向器と、
試料から電子線の照射により発生した二次信号を検出す
るための二次信号検出器とを具備した走査電子顕微鏡に
おいて、二次信号検出器として試料像観察用の検出器と
X線分析用の検出器とを備え、試料像観察時は対物レン
ズにより電子線を試料にフォーカスさせ、X線分析時に
は対物レンズの励磁をOFF又は試料像観察時よりも弱
励磁状態とし収束レンズにより電子線を試料にフォーカ
スさせることを特徴とする。
That is, according to the present invention, an electron source for generating an electron beam, a converging lens for converging the electron beam, an objective lens for narrowing the electron beam and irradiating the sample on the sample are provided.
A deflector for two-dimensionally scanning an electron beam on a sample,
In a scanning electron microscope equipped with a secondary signal detector for detecting a secondary signal generated by irradiation of an electron beam from a sample, a detector for observing a sample image and a detector for X-ray analysis as a secondary signal detector. Equipped with a detector, the electron beam is focused on the sample by the objective lens when observing the sample image, and the excitation of the objective lens is turned off during X-ray analysis or weaker than that when observing the sample image and the electron beam is sampled by the converging lens. It is characterized by focusing on.

【0008】また、本発明は、電子線を発生する電子源
と、電子線を収束するための収束レンズと、電子線を細
く絞って試料上に照射させるための対物レンズと、電子
線を試料上で二次元的に走査するための偏向器と、試料
から電子線の照射により発生した二次信号を検出するた
めの二次信号検出器とを具備した走査電子顕微鏡におい
て、二次信号検出器として試料像観察用の検出器とX線
分析用の検出器とを備え、対物レンズとは独立に制御可
能なX線分析専用対物レンズを対物レンズと同軸上に設
け、試料像観察時にはX線専用対物レンズの励磁をOF
Fとし対物レンズにて電子線を試料にフォーカスさせ、
X線分析時には対物レンズの励磁をOFFとしX線分析
専用対物レンズにて電子線を試料にフォーカスさせるこ
とを特徴とする。
Further, according to the present invention, an electron source for generating an electron beam, a converging lens for converging the electron beam, an objective lens for narrowing the electron beam and irradiating the sample with the electron beam, and an electron beam for the sample. In a scanning electron microscope equipped with a deflector for two-dimensionally scanning above and a secondary signal detector for detecting a secondary signal generated by irradiation of an electron beam from a sample, a secondary signal detector As a sample image observation detector and an X-ray analysis detector, a dedicated X-ray analysis objective lens that can be controlled independently of the objective lens is provided coaxially with the objective lens. Excitation of the dedicated objective lens is OF
Let F be the electron beam focused on the sample with the objective lens,
During X-ray analysis, the excitation of the objective lens is turned off, and the electron beam is focused on the sample by the objective lens dedicated to X-ray analysis.

【0009】偏向器は上下2段のコイルを有し、試料像
観察時とX線分析時とで偏向器の2段のコイルの電流比
又は巻線比を切り替えるのが好ましい。また、電子線の
光軸に垂直な方向に磁場を発生させるアライメントコイ
ルと、アライメントコイルの電流を制御する手段を具備
し、試料像観察とX線分析の切り替えによる視野移動を
補正するのが好ましい。
The deflector preferably has upper and lower two-stage coils, and the current ratio or winding ratio of the two-stage coils of the deflector is preferably switched between when observing a sample image and when performing X-ray analysis. Further, it is preferable that an alignment coil for generating a magnetic field in a direction perpendicular to the optical axis of the electron beam and a means for controlling the current of the alignment coil are provided to correct the visual field movement due to switching between the sample image observation and the X-ray analysis. .

【0010】本発明の走査電子顕微鏡によると、試料を
動かすことなく高分解能像観察からX線分析に瞬時に移
行することができる。また、X線分析時でも高分解能の
試料像を得ることができる。さらに、試料像観察時とX
線分析時とで偏向コイルの上下2段に流す電流比又は巻
線比を切り替えることにより、試料像観察とX線分析と
を切り替えたときの画像の歪みを最小にするとともに、
高精度に倍率を制御することができる。
According to the scanning electron microscope of the present invention, it is possible to instantaneously shift from high-resolution image observation to X-ray analysis without moving the sample. Moreover, a high-resolution sample image can be obtained even during X-ray analysis. Furthermore, when observing the sample image and X
By switching the current ratio or winding ratio flowing in the upper and lower two stages of the deflection coil during line analysis, distortion of the image when switching between sample image observation and X-ray analysis is minimized, and
The magnification can be controlled with high accuracy.

【0011】また、アライメントコイルを設け、試料像
観察とX線分析の切り替え時にアライメントコイルに予
め決められた電流を流すことより、試料像観察とX線分
析の切り替えによる視野移動を補正することができる。
Further, by providing an alignment coil and applying a predetermined current to the alignment coil when switching between sample image observation and X-ray analysis, it is possible to correct the visual field movement due to switching between sample image observation and X-ray analysis. it can.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1及び図2は、本発明による走
査電子顕微鏡の一例の概略断面図である。図1は試料像
観察時の状態を示し、図2はX線分析時の状態を示す。
陰極1と第一陽極2の間には、マイクロプロセッサ(C
PU)30で制御される高電圧制御電源20により電圧
が印加され、所定のエミッション電流が陰極1から引き
出される。陰極1と第二陽極3の間にはCPU30で制
御される高電圧制御電源20により加速電圧が印加され
るため、陰極1から放出された一次電子線4は加速され
て後段のレンズ系に進行する。一次電子線4は、レンズ
制御電源21で制御されたビーム電流調整用の収束レン
ズ5で収束され、絞り板9で一次電子線4の不要な領域
が除去される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are schematic cross-sectional views of an example of a scanning electron microscope according to the present invention. FIG. 1 shows a state at the time of observing a sample image, and FIG. 2 shows a state at the time of X-ray analysis.
Between the cathode 1 and the first anode 2, a microprocessor (C
A voltage is applied by a high voltage control power supply 20 controlled by a PU) 30, and a predetermined emission current is extracted from the cathode 1. An accelerating voltage is applied between the cathode 1 and the second anode 3 by the high voltage control power supply 20 controlled by the CPU 30, so that the primary electron beam 4 emitted from the cathode 1 is accelerated and advances to the lens system in the subsequent stage. To do. The primary electron beam 4 is converged by the converging lens 5 for beam current adjustment controlled by the lens control power supply 21, and the diaphragm plate 9 removes an unnecessary region of the primary electron beam 4.

【0013】その後、レンズ制御電源22で制御された
縮小率調整用の収束レンズ6、及び対物レンズ制御電源
23で制御された対物レンズ7により試料8に微小スポ
ットとして収束され、偏向コイル15で試料上を二次元
的に走査される。偏向コイル15の走査信号は、観察倍
率に応じて偏向コイル制御電源24により制御される。
一次電子線のビーム開き角は絞り板9の絞り穴径と、縮
小率調整用の収束レンズ6の焦点位置で、最適値に決め
られる。
After that, it is converged as a minute spot on the sample 8 by the converging lens 6 for adjusting the reduction ratio controlled by the lens control power source 22 and the objective lens 7 controlled by the objective lens control power source 23, and the sample is deflected by the deflection coil 15 by the deflection coil 15. The top is scanned two-dimensionally. The scanning signal of the deflection coil 15 is controlled by the deflection coil control power supply 24 according to the observation magnification.
The beam divergence angle of the primary electron beam is determined to an optimum value by the diameter of the diaphragm hole of the diaphragm plate 9 and the focal position of the converging lens 6 for adjusting the reduction ratio.

【0014】一次電子線4の照射によって試料8から発
生した二次電子14は二次電子検出器12により検出さ
れ、その検出信号を一次電子線4の走査と同期してCP
U30にて処理し、像表示装置13に試料像として表示
する。また、一次電子線4の照射によって試料8から発
生したX線10はX線検出器11によって検出され、電
気的信号に変換される。X線検出器11から出力された
信号は、X線分析装置27内で信号処理を行い、X線分
析装置27のディスプレイにX線強度分布として表示さ
れる。
The secondary electrons 14 generated from the sample 8 by the irradiation of the primary electron beam 4 are detected by the secondary electron detector 12, and the detection signal thereof is synchronized with the scanning of the primary electron beam 4 to CP.
It is processed in U30 and displayed as a sample image on the image display device 13. Further, the X-rays 10 generated from the sample 8 by the irradiation of the primary electron beam 4 are detected by the X-ray detector 11 and converted into electric signals. The signal output from the X-ray detector 11 is subjected to signal processing in the X-ray analysis device 27, and is displayed as an X-ray intensity distribution on the display of the X-ray analysis device 27.

【0015】試料像観察時は、図1に示すように、一次
電子線4は対物レンズ7により試料8にフォーカスされ
る。一方、X線分析時は、図2に示すように、対物レン
ズ制御電源23により対物レンズ7の励磁はOFF又は
試料像観察時よりも弱励磁状態にされ、一次電子線4は
縮小率調整用の収束レンズ6により試料8にフォーカス
される。
During observation of the sample image, the primary electron beam 4 is focused on the sample 8 by the objective lens 7, as shown in FIG. On the other hand, during X-ray analysis, as shown in FIG. 2, the objective lens control power supply 23 turns off the excitation of the objective lens 7 or makes it weaker than that during observation of the sample image, and the primary electron beam 4 is used for reduction rate adjustment. The sample 8 is focused by the converging lens 6.

【0016】このように切り替えを行うことにより、試
料8を可能な限り対物レンズ7に近づけて低加速電圧に
より高分解能像観察を行って視野探しを行い、視野が見
つかったあとX線分析に切り替えた場合、試料8をz軸
方向(電子線の照射方向)に移動しなくてよいため、目
的の視野を見失うことなくX線分析を行うことができ
る。
By switching in this way, the sample 8 is brought as close as possible to the objective lens 7 to perform high-resolution image observation with a low accelerating voltage to search for a visual field, and after the visual field is found, switch to X-ray analysis. In this case, since the sample 8 does not have to be moved in the z-axis direction (electron beam irradiation direction), X-ray analysis can be performed without losing sight of the target visual field.

【0017】また、偏向コイル15は上下2段のコイル
により構成されており、それらのコイルに流れる電流の
電流比は偏向コイル制御電源24により制御され、試料
像観察時とX線分析時とで切り替えられる。偏向コイル
15の上下2段のコイルに、試料像観察時とX線分析時
の各々の巻線比の違ったコイルを備え、それらのコイル
を試料像観察時とX線分析時とで切り替えて使用するよ
うにしてもよい。
Further, the deflection coil 15 is composed of upper and lower two-stage coils, and the current ratio of the currents flowing through these coils is controlled by the deflection coil control power supply 24, so that the sample image is observed and the X-ray analysis is performed. Can be switched. Two coils above and below the deflection coil 15 are provided with coils having different winding ratios during sample image observation and X-ray analysis, and these coils are switched between sample image observation and X-ray analysis. It may be used.

【0018】試料像観察時には、像の歪みをなくするた
めに、一次電子線4が常に対物レンズ7の主面の中心を
通るようにして偏向する必要がある。そのため上下2段
の偏向コイルによる偏向が必須である。しかし、X線分
析時には、対物レンズ7の励磁はOFF又は試料像観察
時よりも弱励磁状態にされるため、一次電子線4を対物
レンズ7の主面の中心に通す必要がない。従って、X線
分析時の偏向コイル15の制御に当たっては、一次電子
線を対物レンズ7の主面の中心を通すために必要であっ
た条件、すなわち2段の偏向コイルの電流比や巻線比に
対する条件を解除して、試料像観察時とは異なった条件
で偏向制御することにより偏向の自由度を増して広い視
野観察を可能とすることができる。例えば、X線分析時
には、偏向コイル15を1段の偏向コイルとして使用し
てもよい。
At the time of observing the sample image, in order to eliminate the image distortion, it is necessary to deflect the primary electron beam 4 so that it always passes through the center of the main surface of the objective lens 7. Therefore, the deflection by the upper and lower deflection coils is essential. However, at the time of X-ray analysis, the excitation of the objective lens 7 is turned off or weaker than that at the time of observing the sample image. Therefore, it is not necessary to pass the primary electron beam 4 through the center of the main surface of the objective lens 7. Therefore, in controlling the deflection coil 15 during X-ray analysis, the conditions required to pass the primary electron beam through the center of the main surface of the objective lens 7, that is, the current ratio and winding ratio of the two-stage deflection coil are used. By canceling the condition (1) and controlling the deflection under a condition different from that at the time of observing the sample image, it is possible to increase the degree of freedom of deflection and enable wide-field observation. For example, during X-ray analysis, the deflection coil 15 may be used as a single-stage deflection coil.

【0019】さらに、上記のように試料像観察時とX線
分析時とを切り替えた場合の視野合せのために、アライ
メントコイル制御電源25により制御されたアライメン
トコイル16が設けられている。予め試料像観察とX線
分析とを切り替えた場合の視野移動、及びその視野移動
を補正するためにアライメントコイル16に流すべき電
流値を一次電子線の加速電圧などをパラメータとして実
験等によって求めてテーブルなどの形で記憶しておく。
そして、試料像観察とX線分析とを切り替えたとき、前
記テーブルを参照してアライメントコイル制御電源25
によりアライメントコイル16に流す電流を設定するこ
とにより、モード切り替えによる視野ずれを補正するこ
とができる。
Further, the alignment coil 16 controlled by the alignment coil control power supply 25 is provided for visual field alignment when the observation of the sample image and the X-ray analysis are switched as described above. The field of view when the sample image observation and the X-ray analysis are switched in advance, and the current value to be passed through the alignment coil 16 in order to correct the field of view is obtained by experiments using the acceleration voltage of the primary electron beam as a parameter. Remember in the form of a table.
Then, when switching between the sample image observation and the X-ray analysis, the alignment coil control power supply 25 is referred to by referring to the table.
By setting the current to be passed through the alignment coil 16, the field shift due to the mode switching can be corrected.

【0020】図3及び図4は、本発明による走査電子顕
微鏡の他の例の概略断面図である。図3は試料像観察時
の状態を示し、図4はX線分析時の状態を示す。説明を
簡単にするため、図3及び図4において図1及び図2と
同じ機能部分には図1及び図2と同一の符号を付し、そ
の詳細な説明を省略する。この走査型電子顕微鏡は対物
レンズ7とは別にX線専用対物レンズ制御電源26によ
り制御されたX線専用対物レンズ17が配置されてい
る。X線専用対物レンズ17には、高励磁条件でも飽和
することのない磁路材が使用されている。
3 and 4 are schematic cross-sectional views of other examples of the scanning electron microscope according to the present invention. FIG. 3 shows a state at the time of observing a sample image, and FIG. 4 shows a state at the time of X-ray analysis. To simplify the description, in FIGS. 3 and 4, the same functional portions as those in FIGS. 1 and 2 are denoted by the same reference numerals as those in FIGS. 1 and 2, and detailed description thereof is omitted. In this scanning electron microscope, an X-ray objective lens 17 controlled by an X-ray objective lens control power source 26 is arranged separately from the objective lens 7. The X-ray objective lens 17 uses a magnetic path material that does not saturate under high excitation conditions.

【0021】試料像観察時は、図3に示すように、一次
電子線4は対物レンズ7により試料8にフォーカスされ
る。一方、X線分析時は、図4に示すように、対物レン
ズ制御電源23により対物レンズ7の励磁はOFFさ
れ、一次電子線4はX線専用対物レンズ制御電源26に
より制御されたX線分析用の対物レンズ17により試料
8にフォーカスされる。高分解能を実現するためには、
X線専用対物レンズ17は試料8に近い位置、すなわち
対物レンズ7の近くに設置するのが好ましい。
When observing the sample image, as shown in FIG. 3, the primary electron beam 4 is focused on the sample 8 by the objective lens 7. On the other hand, during X-ray analysis, as shown in FIG. 4, the objective lens control power supply 23 turns off the excitation of the objective lens 7, and the primary electron beam 4 is controlled by the X-ray dedicated objective lens control power supply 26. The sample 8 is focused by the objective lens 17 for. To achieve high resolution,
The X-ray dedicated objective lens 17 is preferably installed at a position close to the sample 8, that is, near the objective lens 7.

【0022】なお、図5の概略断面図に示すように、1
つの磁路材35に対物レンズ用コイル36とX線専用対
物レンズ用コイル37を巻回して、2つのレンズを一体
化した構造とすることもできる。図5に示したレンズを
対物レンズとして使用するときはコイル36にのみ励磁
電流を流し、X線専用対物レンズとして使用するときは
コイル37にのみ励磁電流を流す。
As shown in the schematic sectional view of FIG.
The objective lens coil 36 and the X-ray objective lens coil 37 may be wound around one magnetic path member 35 to form a structure in which the two lenses are integrated. When the lens shown in FIG. 5 is used as an objective lens, an exciting current is applied only to the coil 36, and when used as an X-ray objective lens, an exciting current is applied only to the coil 37.

【0023】[0023]

【発明の効果】本発明によると、試料を移動させること
なく高分解能像観察とX線分析を行うことができ、目的
の視野を見失うことなくX線分析を行うことができる。
According to the present invention, high-resolution image observation and X-ray analysis can be performed without moving the sample, and X-ray analysis can be performed without losing sight of the target visual field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による走査電子顕微鏡の一例の概略断面
図であり、試料像観察時の状態を示す図。
FIG. 1 is a schematic sectional view of an example of a scanning electron microscope according to the present invention, showing a state when observing a sample image.

【図2】本発明による走査電子顕微鏡の一例の概略断面
図であり、X線分析時の状態を示す図。
FIG. 2 is a schematic sectional view of an example of a scanning electron microscope according to the present invention, showing a state during X-ray analysis.

【図3】本発明による走査電子顕微鏡の他の例の概略断
面図であり、試料像観察時の状態を示す図。
FIG. 3 is a schematic cross-sectional view of another example of the scanning electron microscope according to the present invention, showing a state when observing a sample image.

【図4】本発明による走査電子顕微鏡の他の例の概略断
面図であり、X線分析時の状態を示す図。
FIG. 4 is a schematic cross-sectional view of another example of the scanning electron microscope according to the present invention, showing a state during X-ray analysis.

【図5】対物レンズとX線専用対物レンズを一体化した
レンズの概略断面図。
FIG. 5 is a schematic cross-sectional view of a lens in which an objective lens and an X-ray dedicated objective lens are integrated.

【符号の説明】[Explanation of symbols]

1…陰極、2…第一陽極、3…第二陽極、4…一次電子
線、5…ビーム電流調節用収束レンズ、6…縮小率調整
用収束レンズ、7…対物レンズ、8…試料、9…絞り
板、10…X線、11…X線検出器、12…二次電子検
出器、13…像表示装置、14…二次電子、15…偏向
コイル、16…アライメントコイル、17…X線専用対
物レンズ、20…高電圧制御電源、21…ビーム電流調
節用収束レンズ制御電源、22…縮小率調整用収束レン
ズ制御電源、23…対物レンズ制御電源、24…走査コ
イル制御電源、25…アライメントコイル制御電源、2
6…X線専用対物レンズ制御電源、27…X線分析装
置、30…制御CPU、35…磁路材、36…対物レン
ズ用コイル、37…X線専用対物レンズ用コイル
DESCRIPTION OF SYMBOLS 1 ... Cathode, 2 ... 1st anode, 3 ... 2nd anode, 4 ... Primary electron beam, 5 ... Convergence lens for beam current adjustment, 6 ... Convergence lens for reduction ratio adjustment, 7 ... Objective lens, 8 ... Sample, 9 ... diaphragm plate, 10 ... X-ray, 11 ... X-ray detector, 12 ... secondary electron detector, 13 ... image display device, 14 ... secondary electron, 15 ... deflection coil, 16 ... alignment coil, 17 ... X-ray Dedicated objective lens, 20 ... High voltage control power supply, 21 ... Converging lens control power supply for beam current adjustment, 22 ... Convergence lens control power supply for reduction ratio adjustment, 23 ... Objective lens control power supply, 24 ... Scanning coil control power supply, 25 ... Alignment Coil control power supply, 2
6 ... X-ray dedicated objective lens control power supply, 27 ... X-ray analyzer, 30 ... Control CPU, 35 ... Magnetic path material, 36 ... Objective lens coil, 37 ... X-ray dedicated objective lens coil

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−255589(JP,A) 特開 平8−203460(JP,A) 特開 平8−162056(JP,A) 特開 平7−302564(JP,A) 特開 昭54−97358(JP,A) 特開 昭53−27359(JP,A) 特開 昭59−165358(JP,A) 特開 昭59−112556(JP,A) 実開 昭57−180964(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01J 37/21 H01J 37/252 H01J 37/28 ─────────────────────────────────────────────────── ─── Continued Front Page (56) References JP-A-8-255589 (JP, A) JP-A-8-203460 (JP, A) JP-A-8-162056 (JP, A) JP-A-7- 302564 (JP, A) JP 54-97358 (JP, A) JP 53-27359 (JP, A) JP 59-165358 (JP, A) JP 59-112556 (JP, A) 57-180964 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01J 37/21 H01J 37/252 H01J 37/28

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電子線を発生する電子源と、前記電子線
を収束するための収束レンズと、前記電子線を細く絞っ
て試料上に照射させるための対物レンズと、前記電子線
を前記試料上で二次元的に走査するための偏向器と、前
記試料から前記電子線の照射により発生した二次信号を
検出するための二次信号検出器とを具備した走査電子顕
微鏡において、 前記二次信号検出器として試料像観察用の検出器とX線
分析用の検出器とを備え、試料像観察からX線分析への
切り替え時に、前記試料への前記電子線のフォーカス
を、前記対物レンズによるフォーカスから、前記対物レ
ンズの励磁をOFF又は試料像観察時よりも弱励磁状態
とした前記収束レンズによるフォーカスに切り替える
とを特徴とする走査電子顕微鏡。
1. An electron source for generating an electron beam, a converging lens for converging the electron beam, an objective lens for narrowing the electron beam and irradiating the electron beam on a sample, and the electron beam for the sample. A scanning electron microscope comprising a deflector for two-dimensionally scanning above, and a secondary signal detector for detecting a secondary signal generated by irradiation of the electron beam from the sample, wherein the secondary As a signal detector, a detector for observing a sample image and a detector for X-ray analysis are provided to change from a sample image observation to an X-ray analysis.
Focusing of the electron beam on the sample during switching
From the focus by the objective lens
Excitation is off or weaker than when observing the sample image
A scanning electron microscope , wherein the focus is switched to the focus by the converging lens .
【請求項2】 電子線を発生する電子源と、前記電子線
を収束するための収束レンズと、前記電子線を細く絞っ
て試料上に照射させるための対物レンズと、前記電子線
を前記試料上で二次元的に走査するための偏向器と、前
記試料から前記電子線の照射により発生した二次信号を
検出するための二次信号検出器とを具備した走査電子顕
微鏡において、 前記二次信号検出器として試料像観察用の検出器とX線
分析用の検出器とを備え、前記対物レンズとは独立に制
御可能なX線分析専用対物レンズを前記対物レンズと同
軸上に設け、試料像観察からX線分析への切り替え時
に、前記試料への前記電子線のフォーカスを、前記X線
専用対物レンズの励磁をOFFとした前記対物レンズに
よるフォーカスから、前記対物レンズの励磁をOFFと
した前記X線分析専用対物レンズによるフォーカスに切
り替えることを特徴とする走査電子顕微鏡。
2. An electron source for generating an electron beam, a converging lens for converging the electron beam, an objective lens for narrowing the electron beam and irradiating the electron beam on a sample, and the electron beam for the sample. A scanning electron microscope comprising a deflector for two-dimensionally scanning above, and a secondary signal detector for detecting a secondary signal generated by irradiation of the electron beam from the sample, wherein the secondary and a signal detector for a sample image observed as a detector and a detector of X-ray analysis, provided the controllable X-ray analysis only objective lens independently on the objective lens coaxial with said objective lens, the sample When switching from image observation to X-ray analysis
The focus of the electron beam on the sample, the X-ray
For the objective lens with the excitation of the dedicated objective lens turned off
From the focus, the excitation of the objective lens is turned off.
Focus on the objective lens for X-ray analysis
Scanning electron microscope, characterized in that changing Ri.
【請求項3】 請求項1又は2記載の走査電子顕微鏡に
おいて、前記偏向器は上下2段のコイルを有し、試料像
観察時とX線分析時とで前記偏向器の2段のコイルの電
流比又は巻線比を切り替えることを特徴とする走査電子
顕微鏡。
3. The scanning electron microscope according to claim 1, wherein the deflector has upper and lower two-stage coils, and the deflector has two stages of coils for observing a sample image and X-ray analysis. A scanning electron microscope characterized by switching a current ratio or a winding ratio.
【請求項4】 請求項1〜3のいずれか1項記載の走査
電子顕微鏡において、前記電子線の光軸に垂直な方向に
磁場を発生させるアライメントコイルと、前記アライメ
ントコイルの電流を制御する手段を具備し、試料像観察
とX線分析の切り替えによる視野移動を補正することを
特徴とする走査電子顕微鏡。
4. The scanning electron microscope according to claim 1, wherein an alignment coil for generating a magnetic field in a direction perpendicular to the optical axis of the electron beam and a means for controlling the current of the alignment coil. A scanning electron microscope, which is provided with: and corrects a visual field movement due to switching between sample image observation and X-ray analysis.
【請求項5】 収束レンズを通った電子線を後段の対物
レンズによって試料上にフォーカスし、視野探しを行う
ステップと、 前記電子線の加速電圧を高くし、前記対物レンズの励磁
をOFF又は前記視野探しの時よりも弱励磁状態とし、
前記収束レンズによって電子線を試料上にフォーカスす
るステップと、 前記収束レンズによって試料上にフォーカスした前記電
子線を用いて、前記視野探しによって得られた視野内の
X線分析を行うステップとを含むことを特徴とするX線
分析方法。
5. A step of focusing an electron beam that has passed through a converging lens onto a sample by means of an objective lens at a subsequent stage to search for a field of view, increasing the acceleration voltage of the electron beam, and turning off the excitation of the objective lens or Weaker excitation than when searching the field of view,
Focusing an electron beam on the sample by the converging lens, and performing X-ray analysis in the visual field obtained by the visual field search using the electron beam focused on the sample by the converging lens. An X-ray analysis method characterized by the above.
JP29834197A 1997-10-30 1997-10-30 Scanning electron microscope Expired - Lifetime JP3429988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29834197A JP3429988B2 (en) 1997-10-30 1997-10-30 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29834197A JP3429988B2 (en) 1997-10-30 1997-10-30 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPH11135052A JPH11135052A (en) 1999-05-21
JP3429988B2 true JP3429988B2 (en) 2003-07-28

Family

ID=17858426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29834197A Expired - Lifetime JP3429988B2 (en) 1997-10-30 1997-10-30 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP3429988B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3688160B2 (en) 1999-09-17 2005-08-24 株式会社日立製作所 Scanning electron microscope
JP4945267B2 (en) 2007-02-28 2012-06-06 株式会社日立ハイテクノロジーズ electronic microscope
JP2009205936A (en) * 2008-02-28 2009-09-10 Hitachi High-Technologies Corp Scanning electron microscope
JP5934501B2 (en) * 2011-12-13 2016-06-15 株式会社日立ハイテクノロジーズ Scanning electron beam apparatus and dimension measuring method using the same
JPWO2016121471A1 (en) * 2015-01-30 2017-11-30 株式会社日立ハイテクノロジーズ Charged particle beam equipment that creates analytical images from secondary particle images
JP7455676B2 (en) 2020-06-05 2024-03-26 株式会社日立ハイテク Electron microscope and electron microscope focus adjustment method

Also Published As

Publication number Publication date
JPH11135052A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
US6740877B2 (en) Scanning electron microscope and sample observation method using the same
US6841775B2 (en) Electron microscope
KR100384727B1 (en) Scanning electron microscope and sample observation method using it
US8067733B2 (en) Scanning electron microscope having a monochromator
JPH0286036A (en) Ion micro-analyzer
JP3372138B2 (en) Scanning electron microscope
JP3429988B2 (en) Scanning electron microscope
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JP3376793B2 (en) Scanning electron microscope
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
US6555824B1 (en) Method and device for focusing a charged particle beam
JPH09219170A (en) Secondary electron detecting device for scanning electron microscope
JP4146103B2 (en) Electron beam apparatus equipped with a field emission electron gun
JP3156428B2 (en) Scanning electron microscope
US20220384140A1 (en) Method for operating a particle beam device, computer program product and particle beam device for carrying out the method
US20240145210A1 (en) Electron Microscope, Multipole Element for Use Therein, and Control Method for Such Electron Microscope
KR100460482B1 (en) Scanning electron microscope
JPH1196954A (en) Scanning electron microscope
JPS6364255A (en) Particle beam radiating device
JPH08138601A (en) Scanning electron microscope
JPH06150869A (en) Scanning electron microscope
JPH071685B2 (en) Scanning electron microscope
JP3101141B2 (en) Electron beam equipment
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method
JPH0537398Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

EXPY Cancellation because of completion of term