JP3428302B2 - Heating and cooling machine - Google Patents

Heating and cooling machine

Info

Publication number
JP3428302B2
JP3428302B2 JP20161196A JP20161196A JP3428302B2 JP 3428302 B2 JP3428302 B2 JP 3428302B2 JP 20161196 A JP20161196 A JP 20161196A JP 20161196 A JP20161196 A JP 20161196A JP 3428302 B2 JP3428302 B2 JP 3428302B2
Authority
JP
Japan
Prior art keywords
valve
heat exchanger
heating
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20161196A
Other languages
Japanese (ja)
Other versions
JPH1047801A (en
Inventor
達規 桜武
和也 下坊
敏 今林
基彦 北村
哲雄 今井
朗 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP20161196A priority Critical patent/JP3428302B2/en
Publication of JPH1047801A publication Critical patent/JPH1047801A/en
Application granted granted Critical
Publication of JP3428302B2 publication Critical patent/JP3428302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷房時は圧縮機を使
用し、暖房時は圧縮機を使用しないで他の冷媒搬送手段
と冷媒加熱器を使用する暖冷房機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating / cooling machine that uses a compressor during cooling and does not use a compressor during heating but uses other refrigerant conveying means and a refrigerant heater.

【0002】[0002]

【従来の技術】従来のこの種の暖冷房機は、特開平5ー
215349号公報に示すようなものが一般的であっ
た。以下その構成について図5を参照しながら説明す
る。図5に示すように圧縮機1、四方弁2、室外熱交換
器3、室外熱交換器用絞り機構4、冷房用絞り機構5、
室内熱交換器6、アキュムレータ7で順次接続された冷
媒回路を構成し、圧縮機1と四方弁2の間に吐出逆止弁
8を配設し、室外熱交換器用絞り機構4と冷房用絞り機
構5との間に冷媒加熱器9、気液分離器10、冷媒搬送
手段11を有する冷媒回路ブロック12を配設し、冷媒
回路ブロック12は室外熱交換器用電磁弁13を介して
室外熱交換器用絞り機構4と接続し、冷房用電磁弁14
を介して冷房用絞り機構5と接続される。バーナ24で
加熱される冷媒加熱器9の上方に設けられた気液分離器
10は冷媒加熱器9と加熱器往き管22と加熱器出口管
23とでループ状に接続され、冷媒搬送手段11は受液
器15、電磁弁16、落とし込み逆止弁17、戻り逆止
弁18で構成され、電磁弁16は気液分離器10と受液
器15の上部を接続する均圧管19に配設され落とし込
み逆止弁17は受液器15の底部と気液分離器10との
間に配設され戻り逆止弁18は冷房運転時冷房用絞り機
構5の下流側から分岐し受液器15の上部に接続する。
気液分離器10の出口ガス管20は気液分離器出口逆止
弁21を介して吐出逆止弁8と四方弁2の間に接続され
る。室外熱交換器用電磁弁13は均圧管19と加熱器9
とを接続する配管に接続し、冷房用電磁弁14は加熱器
往き管22に接続してある。
2. Description of the Related Art A conventional heating / cooling machine of this type is generally as disclosed in Japanese Patent Laid-Open No. 215349/1993. The configuration will be described below with reference to FIG. As shown in FIG. 5, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the outdoor heat exchanger throttling mechanism 4, the cooling throttling mechanism 5,
The indoor heat exchanger 6 and the accumulator 7 constitute a refrigerant circuit that is sequentially connected, the discharge check valve 8 is arranged between the compressor 1 and the four-way valve 2, and the outdoor heat exchanger throttle mechanism 4 and the cooling throttle A refrigerant circuit block 12 having a refrigerant heater 9, a gas-liquid separator 10 and a refrigerant conveying means 11 is arranged between the mechanism 5 and the mechanism 5, and the refrigerant circuit block 12 exchanges outdoor heat via an electromagnetic valve 13 for outdoor heat exchanger. The cooling solenoid valve 14 is connected to the cooling mechanism 4
Is connected to the cooling throttle mechanism 5. The gas-liquid separator 10 provided above the refrigerant heater 9 heated by the burner 24 is connected in a loop shape by the refrigerant heater 9, the heater forward pipe 22 and the heater outlet pipe 23, and the refrigerant conveying means 11 Is composed of a liquid receiver 15, a solenoid valve 16, a drop check valve 17, and a return check valve 18, and the solenoid valve 16 is arranged in a pressure equalizing pipe 19 connecting the gas-liquid separator 10 and the upper portion of the liquid receiver 15. The drop check valve 17 is provided between the bottom of the liquid receiver 15 and the gas-liquid separator 10, and the return check valve 18 branches from the downstream side of the cooling throttle mechanism 5 during the cooling operation to receive the liquid. Connect to the top of.
The outlet gas pipe 20 of the gas-liquid separator 10 is connected between the discharge check valve 8 and the four-way valve 2 via a gas-liquid separator outlet check valve 21. The outdoor heat exchanger solenoid valve 13 includes a pressure equalizing pipe 19 and a heater 9.
The cooling solenoid valve 14 is connected to the heater forward pipe 22.

【0003】以上の構成で、冷房運転時は四方弁2を圧
縮機1の吐出ガスが室外熱交換器3へ流れるごとく切替
え、室外熱交換器用電磁弁13と冷房用電磁弁14を通
電開放し、圧縮機1を運転する。圧縮機1で圧縮された
高温高圧冷媒ガスは室外熱交換器3で凝縮し、2つの絞
り機構で減圧膨張し室内熱交換器6で蒸発し蒸発した冷
媒ガスはアキュムレータ7を通って圧縮機1に戻り冷房
運転サイクルを形成する。
With the above construction, during cooling operation, the four-way valve 2 is switched so that the discharge gas of the compressor 1 flows to the outdoor heat exchanger 3, and the outdoor heat exchanger solenoid valve 13 and the cooling solenoid valve 14 are energized and opened. , The compressor 1 is operated. The high-temperature high-pressure refrigerant gas compressed by the compressor 1 is condensed by the outdoor heat exchanger 3, decompressed and expanded by the two throttle mechanisms, evaporated by the indoor heat exchanger 6, and evaporated, and the refrigerant gas is passed through the accumulator 7 and the compressor 1 Then, the cooling operation cycle is formed.

【0004】一方、暖房運転は四方弁2を圧縮機1の吐
出ガスが室内熱交換器6へ流れるごとく切替え室外熱交
換器用電磁弁13、冷房用電磁弁14は非通電閉成した
状態でバーナ24で冷媒加熱器9を加熱する。加熱され
た冷媒は2相状態で加熱器出口管23を通って気液分離
器10内へ流入する。そこで液成分は再び加熱器往き管
22を通って冷媒加熱器9に流入し、ガス成分は気液分
離器出口逆止弁21、四方弁2を通り、室内熱交換器6
で放熱し暖房を行い液化した冷媒は戻り逆止弁18を経
て受液器15に溜まる。受液器15に溜まった液冷媒は
電磁弁16を開にすることで、気液分離器10と受液器
15の圧力は等しくなり、受液器15と気液分離器10
との落差で落とし込み逆止弁17を経て気液分離器10
に戻される。
On the other hand, in the heating operation, the four-way valve 2 is switched so that the discharge gas of the compressor 1 flows to the indoor heat exchanger 6, and the solenoid valve 13 for the outdoor heat exchanger and the solenoid valve 14 for cooling are deenergized and the burner is closed. At 24, the refrigerant heater 9 is heated. The heated refrigerant flows into the gas-liquid separator 10 through the heater outlet pipe 23 in a two-phase state. Then, the liquid component again flows into the refrigerant heater 9 through the heater upstream pipe 22, and the gas component passes through the gas-liquid separator outlet check valve 21 and the four-way valve 2 to pass through the indoor heat exchanger 6
The liquefied refrigerant that radiates heat and is heated by is collected in the liquid receiver 15 through the return check valve 18. The liquid refrigerant accumulated in the liquid receiver 15 opens the solenoid valve 16 so that the pressures of the gas-liquid separator 10 and the liquid receiver 15 become equal, and the liquid receiver 15 and the gas-liquid separator 10
And the gas-liquid separator 10 through the check valve 17
Returned to.

【0005】以上のごとく、受液器15と電磁弁16の
開閉動作と戻り逆止弁18の逆止作用とで冷媒を圧縮機
1の運転なしで搬送することができる。
As described above, the refrigerant can be conveyed without operating the compressor 1 by the opening / closing operation of the liquid receiver 15 and the electromagnetic valve 16 and the check function of the return check valve 18.

【0006】暖房運転開始時は、圧縮機1を運転し室外
熱交換器3内の冷媒を室内熱交換器6へ回収する時に一
定時間室外熱交換器用電磁弁13を開にして、冷媒加熱
器9の下部から圧縮機オイル混じりの液冷媒を、均圧管
19からガス冷媒を室外熱交換器3へ流すことで冷媒加
熱器9に滞留している圧縮機オイルを圧縮機1に回収す
るとともに、受液器15内の冷媒ガスを引き出し、液冷
媒で満たして暖房運転の始動を確実にするものである。
At the start of the heating operation, when the compressor 1 is operated and the refrigerant in the outdoor heat exchanger 3 is recovered in the indoor heat exchanger 6, the outdoor heat exchanger electromagnetic valve 13 is opened for a certain period of time to make the refrigerant heater. The liquid refrigerant mixed with the compressor oil from the lower part of 9 and the gas refrigerant flowing from the pressure equalizing pipe 19 to the outdoor heat exchanger 3 collect the compressor oil retained in the refrigerant heater 9 in the compressor 1, and The refrigerant gas in the liquid receiver 15 is drawn out and filled with the liquid refrigerant to ensure the start of the heating operation.

【0007】またこの種の暖冷房機で圧縮機1の吐出と
吸入の圧力バランスを確実にとり圧縮機1の起動を確実
なものにするため特開平4ー13062号公報に示すよ
うな圧縮機の吐出と吸入管を圧縮機バイパス電磁弁でバ
イパスするような冷媒回路構成(図示せず)も知られて
いる。
Further, in order to ensure the pressure balance between the discharge and the suction of the compressor 1 in this type of heating / cooling machine to ensure the start-up of the compressor 1, a compressor as disclosed in Japanese Patent Laid-Open No. 4-13062 is used. A refrigerant circuit configuration (not shown) in which the discharge and suction pipes are bypassed by a compressor bypass solenoid valve is also known.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の構成では次のような課題があった。
However, the above-mentioned conventional structure has the following problems.

【0009】(1)気液分離器10の上部に落とし込み
逆止弁17が配設してあり、落とし込み逆止弁は両端を
受液器15と気液分離器10とに接合するので、気液分
離器10の底部から電磁弁16の先端まで高さが大きく
コンパクト性に欠け、さらに部品点数、接合加工箇所が
多くコスト高となるという課題があった。
(1) A drop check valve 17 is provided on the upper part of the gas-liquid separator 10, and both ends of the drop check valve are joined to the receiver 15 and the gas-liquid separator 10. There was a problem that the height from the bottom of the liquid separator 10 to the tip of the solenoid valve 16 was large and lacked in compactness, and the number of parts and joining processing points were large and the cost was high.

【0010】(2)室外熱交換器用電磁弁13、冷房用
電磁弁14、電磁弁16、圧縮機バイパス電磁弁の4個
もの電磁弁を使用しており、接合箇所が多く冷媒回路が
複雑でコスト高となる課題があった。
(2) As many as four solenoid valves, that is, the outdoor heat exchanger solenoid valve 13, the cooling solenoid valve 14, the solenoid valve 16, and the compressor bypass solenoid valve are used, and there are many joints and the refrigerant circuit is complicated. There was a problem of high cost.

【0011】(3)圧縮機オイル回収は室外熱交換器3
を通すため圧縮機オイルが圧縮機1まで戻るのに時間を
要し、さらに冷媒加熱器9内の圧縮機オイルは冷媒加熱
器9の下部と均圧管19とを接続した配管から室外熱交
換器用電磁弁13を介して圧縮機1に戻すようにしてあ
るため配管構成が複雑で溶接箇所が多くコスト高になる
課題があった。
(3) The compressor oil recovery is performed by the outdoor heat exchanger 3.
Since it passes through, it takes time for the compressor oil to return to the compressor 1, and the compressor oil in the refrigerant heater 9 is used for the outdoor heat exchanger from the pipe connecting the lower part of the refrigerant heater 9 and the pressure equalizing pipe 19. Since it is returned to the compressor 1 via the solenoid valve 13, there is a problem that the piping configuration is complicated and there are many welding points and the cost is high.

【0012】(4)さらに受液器15に溜まった液冷媒
を気液分離器10へ落とし込む時に電磁弁16の作動音
が発生する課題があった。
(4) Further, there is a problem that when the liquid refrigerant accumulated in the liquid receiver 15 is dropped into the gas-liquid separator 10, an operating noise of the solenoid valve 16 is generated.

【0013】本発明は上記課題を解決するもので、気液
分離器とその上方に配設してある受液器、電磁弁、落と
し込み逆止弁からなる熱搬送手段の大巾なシンプル化、
小型化と低コスト化を図るとともに、電磁弁の個数を削
減し、冷媒配管構成を簡素化し、圧縮機の起動保証、圧
縮機オイル保証、暖房運転の起動保証を確実なものとし
機器の信頼性向上と低コスト化を図り、さらに受液器か
ら気液分離器へ液冷媒を落とし込む際の静音化を図り暖
房運転時の機器の信頼性向上を目的とするものである。
The present invention is to solve the above-mentioned problems, and greatly simplifies the heat transfer means consisting of a gas-liquid separator and a liquid receiver arranged above it, a solenoid valve, and a check valve.
In addition to downsizing and cost reduction, reducing the number of solenoid valves, simplifying the refrigerant piping configuration, ensuring the compressor start guarantee, compressor oil guarantee, and heating operation start guarantee are reliable. The purpose of the present invention is to improve the cost and reduce the cost, and further to reduce the noise when the liquid refrigerant is dropped from the liquid receiver to the gas-liquid separator to improve the reliability of the device during the heating operation.

【0014】[0014]

【課題を解決するための手段】本発明は上記課題を解決
するために圧縮機、四方弁、室外熱交換器、室外熱交換
器逆止弁、冷房用絞り機構、ファン付き室内熱交換器、
アキュムレータを順次連結し、圧縮機と四方弁との間に
吐出逆止弁、四方弁とアキュムレータとの間に吸入逆止
弁を配し、室外熱交換器逆止弁と冷房用絞り機構との間
には仕切板により気液分離室と受液室とに分離する容器
をバーナ付き冷媒加熱器の上方に設け、上記気液分離室
とバーナ付き冷媒加熱器とは冷媒加熱器往き管と冷媒加
熱器出口管とでループ状に接続し、上記仕切板に穿設さ
れた開口部には弁駆動手段で開閉する弁体を有し、上記
気液分離室、四方弁、室内熱交換器、戻り逆止弁、上記
受液室とを順次連結すると共に、気液分離室内に立ち上
がり気液分離室の下方に小孔を有する液管と室外熱交換
器逆止弁との間に室外熱交換器用絞り機構を有し、室外
熱交換器逆止弁と室外熱交換器用絞り機構との間から吸
入逆止弁とアキュムレータとの間をバイパス電磁弁を介
して接続し、上記冷房用絞り機構は冷房用電磁弁を介し
て上記加熱器往き管と接続し上記戻り逆止弁は冷房用減
圧機構と室内熱交換器との間から上記受液室へ接続した
構成としてある。
In order to solve the above problems, the present invention provides a compressor, a four-way valve, an outdoor heat exchanger, an outdoor heat exchanger check valve, a cooling throttle mechanism, an indoor heat exchanger with a fan,
Accumulators are connected in sequence, a discharge check valve is placed between the compressor and the four-way valve, and a suction check valve is placed between the four-way valve and the accumulator, and the outdoor heat exchanger check valve and the cooling throttle mechanism are connected. A container for separating a gas-liquid separation chamber and a liquid receiving chamber by a partition plate is provided above the refrigerant heater with a burner, and the gas-liquid separation chamber and the refrigerant heater with a burner are a refrigerant heater forward pipe and a refrigerant. The heater outlet pipe is connected in a loop, and the opening formed in the partition plate has a valve body that is opened and closed by a valve drive means, and the gas-liquid separation chamber, a four-way valve, an indoor heat exchanger, The return check valve and the liquid receiving chamber are sequentially connected, and outdoor heat exchange is performed between the liquid pipe having a small hole that rises in the gas-liquid separation chamber and has a small hole below the gas-liquid separation chamber and the outdoor heat exchanger check valve. It has a throttle mechanism for the heat exchanger, and the intake check valve and the accumulator are connected from between the outdoor heat exchanger check valve and the outdoor heat exchanger throttle mechanism. The cooling throttle mechanism is connected to the heater forward pipe via the cooling solenoid valve, and the return check valve is the cooling decompression mechanism and the indoor heat exchanger. It is configured to be connected to the liquid receiving chamber from between.

【0015】さらに暖房開始時は前回の暖房停止からの
経過時間に応じて燃焼開始時の冷媒挙動を変更する制御
装置を設けたものである。
Further, at the start of heating, a control device is provided for changing the behavior of the refrigerant at the start of combustion according to the elapsed time from the previous stop of heating.

【0016】さらに弁駆動手段は全波整流平滑回路装置
を有し、通電開始時又は通電から非通電に切り変わり時
に電源周期半サイクル毎に適宜通電、非通電を決定しう
る制御装置を設けたものである。
Further, the valve driving means has a full-wave rectifying / smoothing circuit device, and is provided with a control device capable of appropriately determining whether to energize or de-energize every half cycle of the power supply cycle when starting energization or switching from energization to non-energization. It is a thing.

【0017】本発明は上記構成によって、従来の気液分
離器と受液器を1つの容器内に仕切板を介し気液分離室
と受液室として設け、落とし込み逆止弁、電磁弁、均圧
管を廃止し、仕切板に穿設された開口部に弁駆動手段で
開閉する弁体を容器内に設けてある為、部品点数、接合
加工箇所を削減でき信頼性の向上、低コスト化、小型コ
ンパクト化が図れる。
According to the present invention, the conventional gas-liquid separator and the liquid receiver are provided as a gas-liquid separation chamber and a liquid receiving chamber through a partition plate in a single container, and a drop-in check valve, a solenoid valve, and an equalizer are provided. Since the pressure tube is abolished and the valve body that opens and closes by the valve drive means is provided in the opening in the partition plate inside the container, the number of parts and joining processing points can be reduced, reliability is improved, cost reduction, Can be made compact and compact.

【0018】また従来の圧縮機バイパス電磁弁と室外熱
交換器用電磁弁とが各々有していた圧縮機圧力バランス
機能と圧縮機オイル回収、受液器ガス抜き機能とをバイ
パス電磁弁のみで行える配管構成としたので電磁弁の個
数を従来よりも減らすことができ低コスト化が図れる。
Further, the compressor pressure balancing function, the compressor oil recovery function, and the receiver gas degassing function, which are respectively provided in the conventional compressor bypass solenoid valve and the outdoor heat exchanger solenoid valve, can be performed only by the bypass solenoid valve. Since the piping configuration is adopted, the number of solenoid valves can be reduced as compared with the conventional one, and the cost can be reduced.

【0019】また圧縮機オイル回収、受液室ガス抜きの
配管を気液分離室の下部より導出された液管のみで構成
したことにより、冷媒回路が簡素化でき、接合箇所も削
減でき低コスト化が図れると共に圧縮機オイル回収時、
圧縮機オイルは室外熱交換器を通らない為、短時間で圧
縮機オイルが圧縮機に戻り圧縮機の信頼性向上も図れ
る。
Further, since the compressor oil recovery and the receiving chamber degassing pipe are constituted only by the liquid pipe led out from the lower part of the gas-liquid separation chamber, the refrigerant circuit can be simplified, the number of joints can be reduced, and the cost can be reduced. And recovery of compressor oil,
Since the compressor oil does not pass through the outdoor heat exchanger, the compressor oil returns to the compressor in a short time and the reliability of the compressor can be improved.

【0020】また暖房開始時は燃焼開始時の冷媒挙動変
更制御装置で冷媒挙動制御手段を最適に変更し暖房開始
時に冷媒加熱器内に液冷媒を確保し冷媒加熱器の異常加
熱を防止し安定した暖房運転が実現でき暖房運転時の機
器の信頼性向上が図れる。さらに弁駆動手段の全波整流
平滑回路装置が電磁音の発生を防止し、さらに電源周期
半サイクル毎に適宜通電、非通電を決定する制御装置で
弁体開時の弁体とシャフトの当接音、弁体閉時の弁体と
弁座部との当接音が軽減でき弁体作動時の静音化を図る
ことができる。
At the start of heating, the refrigerant behavior control means at the start of combustion optimally changes the refrigerant behavior control means to secure the liquid refrigerant in the refrigerant heater at the start of heating to prevent abnormal heating of the refrigerant heater and stabilize it. The heating operation can be realized, and the reliability of the device during the heating operation can be improved. Further, the full-wave rectifying / smoothing circuit device of the valve driving means prevents the generation of electromagnetic noise, and further, the control device which determines whether to energize or de-energize every half cycle of the power supply cycle makes contact between the valve body and the shaft when the valve body is opened The noise and the contact noise between the valve body and the valve seat portion when the valve body is closed can be reduced, and the noise can be reduced when the valve body operates.

【0021】[0021]

【発明の実施の形態】本発明は圧縮機、四方弁、室外熱
交換器、室外熱交換器逆止弁、冷房用絞り機構、ファン
付き室内熱交換器、アキュムレータを順次連結し、圧縮
機と四方弁との間に吐出逆止弁、四方弁とアキュムレー
タとの間に吸入逆止弁を配し、室外熱交換器逆止弁と冷
房用絞り機構との間には仕切板により気液分離室と受液
室とに分離する容器をバーナ付き冷媒加熱器の上方に設
け、上記気液分離室とバーナ付き冷媒加熱器とは冷媒加
熱器往き管と冷媒加熱器出口管とでループ状に接続し、
上記仕切板に穿設された開口部には弁駆動手段で開閉す
る弁体を有し、上記気液分離室、四方弁、室内熱交換
器、戻り逆止弁、上記受液室とを順次連結すると共に、
気液分離室内に立ち上がり気液分離室の下方に小孔を有
する液管と室外熱交換器逆止弁との間に室外熱交換器用
絞り機構を有し、室外熱交換器逆止弁と室外熱交換器用
絞り機構との間から吸入逆止弁とアキュムレータとの間
をバイパス電磁弁を介して接続し、上記冷房用絞り機構
は冷房用電磁弁を介して上記冷媒加熱器往き管と接続し
上記戻り逆止弁は冷房用減圧機構と室内熱交換器との間
から上記受液室へ接続したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a compressor, a four-way valve, an outdoor heat exchanger, an outdoor heat exchanger check valve, a cooling throttle mechanism, an indoor heat exchanger with a fan, and an accumulator, which are sequentially connected to a compressor. A discharge check valve is placed between the four-way valve and a suction check valve between the four-way valve and the accumulator, and a partition plate is provided between the outdoor heat exchanger check valve and the cooling throttle mechanism to separate gas and liquid. A container for separating the chamber and the liquid receiving chamber is provided above the burner-equipped refrigerant heater, and the gas-liquid separation chamber and the burner-equipped refrigerant heater form a loop in the refrigerant heater forward pipe and the refrigerant heater outlet pipe. connection,
The partition plate has a valve body opened and closed by a valve drive means in the opening, and the gas-liquid separation chamber, the four-way valve, the indoor heat exchanger, the return check valve, and the liquid receiving chamber are sequentially arranged. While connecting
There is a throttling mechanism for the outdoor heat exchanger between the liquid pipe having a small hole standing up in the gas-liquid separation chamber and a small hole below the gas-liquid separation chamber and the outdoor heat exchanger check valve. The intake check valve and the accumulator are connected to each other via the bypass solenoid valve from the heat exchanger throttle mechanism, and the cooling throttle mechanism is connected to the refrigerant heater forward pipe via the cooling solenoid valve. The return check valve is connected to the liquid receiving chamber from between the pressure reducing mechanism for cooling and the indoor heat exchanger.

【0022】そして従来の気液分離器と受液器を1つの
容器内に仕切板を介し気液分離室と受液室として設け、
落とし込み逆止弁、電磁弁、均圧管を廃止し、仕切板に
穿設された開口部に弁駆動手段で開閉する弁体を容器内
に設けてある為、部品点数、接合加工箇所を削減でき信
頼性の向上、低コスト化、小型コンパクト化が図れ、従
来の圧縮機バイパス電磁弁と室外熱交換器用電磁弁とが
各々有していた圧縮機圧力バランス機能と圧縮機オイル
回収、受液器ガス抜き機能とをバイパス電磁弁のみで行
える配管構成としたので電磁弁の個数を従来よりも減ら
すことができ低コスト化が図れ、圧縮機オイル回収、受
液室ガス抜きの配管を気液分離室の下部より導出された
液管のみで構成したことにより、冷媒回路が簡素化で
き、接合箇所も削減でき低コスト化が図れると共に圧縮
機オイル回収時、圧縮機オイルは室外熱交換器を通らな
い為、短時間で圧縮機オイルが圧縮機に戻り圧縮機の信
頼性向上も図れる。
A conventional gas-liquid separator and a liquid receiver are provided in one container as a gas-liquid separation chamber and a liquid receiving chamber via a partition plate.
Since the drop-in check valve, solenoid valve, and pressure equalizing pipe are abolished, and the valve body that opens and closes by the valve drive means is provided in the container in the opening formed in the partition plate, the number of parts and joining processing points can be reduced. Higher reliability, lower cost, smaller size, compact compressor pressure balance function and compressor oil recovery, liquid receiver that conventional compressor bypass solenoid valve and outdoor heat exchanger solenoid valve each had. Since the gas venting function is a piping configuration that can be performed only by the bypass solenoid valve, the number of solenoid valves can be reduced compared to the past and cost can be reduced, and the compressor oil recovery and receiving chamber gas venting piping can be separated into gas and liquid. By using only the liquid pipe led out from the lower part of the chamber, the refrigerant circuit can be simplified, the number of joints can be reduced, and the cost can be reduced.At the time of collecting the compressor oil, the compressor oil does not pass through the outdoor heat exchanger. Compressed in a short time because there is no Oil can be achieved also improve the reliability of the compressor to return to the compressor.

【0023】また暖房停止後は上記室内熱交換器のファ
ンを上記室内熱交換器に配設した温度検出器の出力値に
応じた電圧で運転させながら一定時間上記弁駆動手段を
通電、非通電動作をさせ、暖房開始時は前回の暖房停止
からの経過時間に応じて燃焼開始時の冷媒挙動を変更す
る制御装置を設け、さらに冷媒挙動を変更する手段は上
記圧縮機の運転を行わない第1制御と、上記バイパス弁
と上記弁体を開成し圧縮機の運転によるガスパージ運転
後バイパス弁と弁体を閉成し圧縮機運転によるポンプダ
ウンを行う第2制御と、圧縮機運転によるポンプダウン
に続いて前記第2制御を行う第3制御を有し、前回の暖
房停止から暖房開始までの経過時間が長くなると第1か
ら第3の制御を選択し、さらにまた第3制御のポンプダ
ウン実行時間は上記冷媒加熱器のバーナ制御用の給気温
度検出器の出力と前回の暖房停止から暖房開始までの経
過時間とに応じて設定するものである。
After the heating is stopped, the fan of the indoor heat exchanger is operated at a voltage according to the output value of the temperature detector arranged in the indoor heat exchanger, and the valve driving means is energized and de-energized for a certain period of time. When the heating is started, a controller is provided for changing the refrigerant behavior at the start of combustion according to the elapsed time from the previous heating stop, and the means for changing the refrigerant behavior does not operate the compressor. 1 control, the second control in which the bypass valve and the valve body are opened and the gas purge operation is performed by the operation of the compressor, the bypass valve and the valve body are closed, and the pump is down by the compressor operation; and the pump down by the compressor operation Following the above, there is a third control for performing the second control, and when the elapsed time from the previous heating stop to the heating start becomes long, the first to third controls are selected, and the pump down of the third control is executed again. Time is up It is to set according the output and the last heating stop of supply air temperature detector for burner control refrigerant heater to the elapsed time of heating to the start.

【0024】そして暖房開始時は燃焼開始時の冷媒挙動
変更制御装置で冷媒挙動制御手段を最適に変更し暖房開
始時に冷媒加熱器内に液冷媒を確保し冷媒加熱器の異常
過熱を防止し安定した暖房運転が実現でき暖房運転時の
機器の信頼性向上が図れる。
At the start of heating, the refrigerant behavior change control device at the start of combustion optimally changes the refrigerant behavior control means to secure a liquid refrigerant in the refrigerant heater at the start of heating to prevent abnormal overheating of the refrigerant heater and stabilize it. The heating operation can be realized, and the reliability of the device during the heating operation can be improved.

【0025】また弁駆動手段は通電時シャフトを押し出
し弁体を開弁させるもので、全波整流平滑回路装置を有
し、通電開始時又は通電から非通電に切り変わり時、電
源周期半サイクル毎に適宜通電、非通電を決定しうる制
御装置を設け、上記弁駆動手段の制御装置はバーナ燃焼
量と前記冷媒加熱器出口管温度により弁駆動手段の通
電、非通電動作周期を演算する演算部と演算出力により
上記弁駆動手段の通電、非通電動作を制御する動作制御
部を有し、さらにまた弁駆動手段は燃焼量及び前記冷媒
加熱器出口温度にかかわらず通電時間が一定となるよう
動作する制御装置を有するものである。
Further, the valve driving means pushes the shaft when energized to open the valve body, has a full-wave rectifying and smoothing circuit device, and starts the energization or switches from energized to non-energized at every half cycle of the power supply cycle. Is provided with a control device capable of appropriately determining whether to energize or de-energize, and the controller for the valve driving means is a computing unit for computing the energizing / de-energizing operation cycle of the valve driving means based on the burner combustion amount and the refrigerant heater outlet pipe temperature. And an operation output for controlling the energization and de-energization of the valve drive means by the calculation output, and the valve drive means operates so that the energization time is constant regardless of the combustion amount and the refrigerant heater outlet temperature. It has a control device to operate.

【0026】そして弁駆動手段の全波整流平滑回路装置
が電磁音の発生を防止し、さらに電源周期半サイクル毎
に適宜通電、非通電を決定する制御装置で弁体開時の弁
体とシャフトの当接音、弁体閉時の弁体と弁座部との当
接音が軽減でき弁体作動時の静音化を図りつつ、安定し
た暖房運転ができるものである。
The full-wave rectifying / smoothing circuit device of the valve driving means prevents the generation of electromagnetic noise, and further, the control device which determines whether to energize or de-energize every half cycle of the power supply cycle is a valve device and a shaft when the valve body is opened. It is possible to reduce the abutment sound of No. 1 and the abutment sound between the valve body and the valve seat portion when the valve body is closed, and it is possible to perform a stable heating operation while suppressing noise when the valve body operates.

【0027】以下、本発明の実施例について図面を用い
て説明する。 (実施例1)図1は本発明の実施例1の暖冷房機のシス
テムブロック図であり、仕切板と弁体で受液室と気液分
離室に区分される容器は主要断面図で示してある。なお
図1において、従来例の図5と同一のものには同一の符
号を付している。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a system block diagram of a heating / cooling machine according to Embodiment 1 of the present invention, and a container divided into a liquid receiving chamber and a gas-liquid separating chamber by a partition plate and a valve body is shown in a main sectional view. There is. In FIG. 1, the same parts as those in FIG. 5 of the conventional example are designated by the same reference numerals.

【0028】図1において、1は圧縮機、2は四方弁、
3は室外ファン25を有する室外熱交換器、26は室外
熱交換器逆止弁、5は冷房用絞り機構、6は室内ファン
27を有する室内交換器、7はアキュムレータで圧縮機
1と四方弁2の間には吐出逆止弁8、四方弁2とアキュ
ムレータ7の間には吸入逆止弁28を設けている。室外
熱交換器逆止弁26と冷房用絞り機構5との間には冷媒
及び弁体29を収納する容器30をバーナ31を有する
冷媒加熱器9の上方に冷媒加熱器往き管32と冷媒加熱
器出口管33でループ状に接続してある。容器30は上
下2つのボール型部材を仕切板34を挟んでダブル部分
全周を溶接接合して構成され、仕切板34の下方部は気
液分離室35であり暖房運転時は底部に冷媒38を溜め
ている。仕切板34の上部は多孔板37を内蔵した受液
室36で仕切板の下方部との連通は容器30に接合して
ある弁駆動手段39で動作する弁体29によって開閉さ
れる。前記弁駆動手段のシャフト52は弁体29の凹部
よりも小径にして挿入しシャフト52を弁体29に当接
させて弁体を開閉動作する構成を有している。弁駆動手
段は、図2に示すようにコイル54に通電するとプラン
ジャ55が吸引されシャフト52が押し出され、コイル
54への通電を止めるとプランジャ55が上へバネ56
によって持ち上がりシャフト52も持ち上げられる構成
になっている。したがって弁駆動手段39が非通電の時
は、弁体29もバネ56により上方に持ち上げられてお
り、弁体29もバネ57によって気液置換孔59を有す
る弁ガイド58に構成してある弁座に当接している。
In FIG. 1, 1 is a compressor, 2 is a four-way valve,
3 is an outdoor heat exchanger having an outdoor fan 25, 26 is an outdoor heat exchanger check valve, 5 is a cooling throttle mechanism, 6 is an indoor exchanger having an indoor fan 27, 7 is an accumulator, the compressor 1 and a four-way valve A discharge check valve 8 is provided between the two, and a suction check valve 28 is provided between the four-way valve 2 and the accumulator 7. Between the outdoor heat exchanger check valve 26 and the cooling throttle mechanism 5, a container 30 for accommodating the refrigerant and the valve body 29 is provided above the refrigerant heater 9 having a burner 31. The outlet pipe 33 is connected in a loop. The container 30 is constructed by welding two upper and lower ball-shaped members by welding the entire circumference of a double portion with a partition plate 34 sandwiched therebetween. A lower portion of the partition plate 34 is a gas-liquid separation chamber 35, and a refrigerant 38 is provided at the bottom during heating operation. Is accumulating. The upper part of the partition plate 34 is a liquid receiving chamber 36 containing a perforated plate 37, and communication with the lower part of the partition plate is opened and closed by a valve body 29 operated by a valve driving means 39 joined to the container 30. The shaft 52 of the valve driving means has a diameter smaller than that of the recess of the valve body 29 and is inserted so that the shaft 52 is brought into contact with the valve body 29 to open and close the valve body. As shown in FIG. 2, when the coil 54 is energized, the plunger 55 is attracted and the shaft 52 is pushed out, and when the coil 54 is deenergized, the plunger 55 moves upward.
The lifting shaft 52 can also be lifted by the above. Therefore, when the valve drive means 39 is not energized, the valve body 29 is also lifted upward by the spring 56, and the valve body 29 is also formed by the spring 57 in the valve guide 58 having the gas-liquid replacement hole 59. Is in contact with.

【0029】気液分離室35からは気液分離室出口逆止
弁40を介して四方弁2と吐出逆止弁8の間へ配管接続
し、室内熱交換器6と冷房用絞り機構5の間からは戻り
逆止弁18を介して受液室36の上方に配管接続してあ
る。さらに気液分離室35内に開口部が立ち上がり気液
分離室35下方部に小孔41を有する液管42と室外熱
交換器逆止弁26の間に室外熱交換器用絞り機構4を設
け、室外熱交換器逆止弁26と室外熱交換器用絞り機構
4の間から吸入逆止弁28とアキュムレータ7との間に
バイパス電磁弁43を介して配管接続し、冷房用絞り機
構5は冷房用電磁弁14を介して冷媒加熱器往き管32
と配管接続している。
From the gas-liquid separation chamber 35, a pipe connection is made between the four-way valve 2 and the discharge check valve 8 via a gas-liquid separation chamber outlet check valve 40 to connect the indoor heat exchanger 6 and the cooling throttle mechanism 5. From between, the return check valve 18 is connected to the upper side of the liquid receiving chamber 36 by piping. Further, the opening mechanism rises in the gas-liquid separation chamber 35, and the outdoor heat exchanger throttle mechanism 4 is provided between the liquid pipe 42 having the small hole 41 in the lower portion of the gas-liquid separation chamber 35 and the outdoor heat exchanger check valve 26. Pipe connection is made between the outdoor heat exchanger check valve 26 and the outdoor heat exchanger throttle mechanism 4 to the intake check valve 28 and the accumulator 7 via a bypass solenoid valve 43, and the cooling throttle mechanism 5 is used for cooling. Refrigerant heater forward pipe 32 via solenoid valve 14
It is connected to the pipe.

【0030】44はバーナ31への燃料の供給を可変す
る燃料供給装置、45はバーナ31の燃焼用空気量の制
御に利用する給気温度検出器である。48は燃料供給装
置44と冷媒加熱器出口管33に配設してある加熱器出
口温度検出器46と電気的に接続されている演算部47
の出力で弁駆動手段39の通電、非通電を制御し、通電
開始時又は通電から非通電に切り変わる時は電源周期半
サイクル毎に適宜通電、非通電も制御する動作制御部で
ある。49は弁駆動手段39の供給電源に設けた全波整
流平滑回路装置である。50は圧縮機1、室内ファン2
7、バイパス電磁弁43、燃料供給装置44、給気温度
検出器45、弁駆動手段39の動作制御部48、室内熱
交換器6に配設してある室内熱交換器温度検出器51、
室温検出器60と電気的に接続されるとともに、暖房停
止後の室内ファンと弁駆動装置の制御及び次の暖房開始
までの経過時間に応じて燃焼開始時の冷媒挙動を制御す
る制御装置である。
Reference numeral 44 is a fuel supply device for varying the supply of fuel to the burner 31, and 45 is a supply air temperature detector used for controlling the amount of combustion air in the burner 31. Reference numeral 48 is a calculation unit 47 electrically connected to the fuel supply device 44 and a heater outlet temperature detector 46 arranged in the refrigerant heater outlet pipe 33.
Is an operation control unit that controls the energization / de-energization of the valve drive means 39 by the output of the above, and also controls energization / de-energization appropriately every half cycle of the power supply cycle when starting energization or switching from energization to de-energization. Reference numeral 49 is a full-wave rectifying / smoothing circuit device provided in the power supply of the valve driving means 39. 50 is a compressor 1 and an indoor fan 2
7, the bypass solenoid valve 43, the fuel supply device 44, the supply air temperature detector 45, the operation control unit 48 of the valve drive means 39, the indoor heat exchanger temperature detector 51 arranged in the indoor heat exchanger 6,
The control device is electrically connected to the room temperature detector 60 and controls the indoor fan and the valve drive device after the heating is stopped and controls the refrigerant behavior at the start of combustion according to the elapsed time until the start of the next heating. .

【0031】次に動作、作用について説明する。暖房は
冷媒加熱器9でバーナ31の燃焼熱によって加熱された
冷媒が気液2相状態で冷媒加熱器出口管33を通って気
液分離室35に流入し、液冷媒は気液分離室35の下部
に冷媒38として溜まり、冷媒加熱器往き管32より再
び冷媒加熱器9へ流入する。一方、気液分離されたガス
冷媒は気液分離室出口逆止弁40、四方弁2を通って室
内熱交換器6に流入止、室内ファン25の運転で室内側
に放熱した冷媒は凝縮液化してさらに過冷却液となる。
弁駆動手段39が非通電の時は、弁体29は弁ガイド5
8に構成してある弁座に当接してある為、過冷却液冷媒
の圧力が受液室36の圧力よりも若干高くなると過冷却
液冷媒が戻り逆止弁18を通って受液室36に入る。受
液室36に入った液冷媒は多孔板37で拡散し、受液室
36内の蒸気状態の冷媒を凝縮させるので、受液室36
内の圧力が急速に減圧される。そうすると、室内熱交換
器6の液冷媒が圧力の下がった受液室36内に吸引さ
れ、受液室36内は液冷媒で満たされる。次に弁駆動手
段39に燃料供給装置44と加熱器出口温度検出器46
の信号で演算部47と動作制御部48により全波整流平
滑回路装置49で平滑された直流電源を通電するとシャ
フト52が弁体29に当接し押し出されたシャフト52
で弁体29が開き、図3に示すように受液室36内は気
液置換孔59で気液置換を行い、受液室32内の液冷媒
は重力作用により、気液置換孔59を通り気液分離室3
5へ流入し、液冷媒38として溜まる。
Next, the operation and action will be described. For heating, the refrigerant heated by the combustion heat of the burner 31 in the refrigerant heater 9 flows into the gas-liquid separation chamber 35 through the refrigerant heater outlet pipe 33 in the gas-liquid two-phase state, and the liquid refrigerant is the gas-liquid separation chamber 35. Is accumulated in the lower portion of the refrigerant as the refrigerant 38 and flows into the refrigerant heater 9 again through the refrigerant heater forward pipe 32. On the other hand, the gas-liquid separated gas refrigerant stops flowing into the indoor heat exchanger 6 through the gas-liquid separation chamber outlet check valve 40 and the four-way valve 2, and the refrigerant radiated to the indoor side by the operation of the indoor fan 25 is condensed and liquefied. And become a supercooled liquid.
When the valve drive means 39 is de-energized, the valve element 29 moves to the valve guide 5
Since it is in contact with the valve seat configured in FIG. 8, when the pressure of the supercooling liquid refrigerant becomes slightly higher than the pressure of the liquid receiving chamber 36, the supercooling liquid refrigerant returns and passes through the check valve 18 to receive the liquid receiving chamber 36. to go into. The liquid refrigerant that has entered the liquid receiving chamber 36 diffuses at the perforated plate 37 and condenses the refrigerant in the vapor state in the liquid receiving chamber 36.
The pressure inside is rapidly reduced. Then, the liquid refrigerant of the indoor heat exchanger 6 is sucked into the liquid receiving chamber 36 whose pressure has dropped, and the liquid receiving chamber 36 is filled with the liquid refrigerant. Next, the valve drive means 39 is connected to the fuel supply device 44 and the heater outlet temperature detector 46.
When the DC power source smoothed by the full wave rectifying / smoothing circuit device 49 is energized by the calculation unit 47 and the operation control unit 48 with the signal of the above, the shaft 52 abuts on the valve body 29 and is pushed out.
The valve body 29 is opened with the gas-liquid replacement hole 59 in the liquid-receiving chamber 36 as shown in FIG. 3, and the liquid refrigerant in the liquid-receiving chamber 32 is gravitationally acted to open the gas-liquid replacement hole 59. Passage gas-liquid separation chamber 3
5 and accumulated as the liquid refrigerant 38.

【0032】次に弁駆動手段39を燃料供給装置44と
加熱器出口温度検出器46の信号で演算部47と動作制
御部48により非通電にするとシャフト52はバネ56
で持ち上げられ弁体29はバネ57により閉状態となり
再び受液室32内へ室内熱交換器6から過冷却液冷媒が
流入し受液室36を液冷媒で満たし弁駆動手段39を通
電するという動作を繰返す。ここで弁駆動手段39を燃
料供給装置44と加熱器出口温度検出器46の信号で演
算部47で演算するのは燃焼量が大きくなると弁駆動装
置39の通電、非通電サイクルを多くし冷媒循環量を多
くし、逆に燃焼量が小さくなると上記サイクルを少なく
し冷媒循環量を少なくし燃焼量と冷媒循環量のバランス
を最適にし安定した暖房運転を行うためである。同様
に、2相状態の冷媒温度で冷媒の潜熱を間接的に検出し
室内温度や室内ファン電圧等で冷媒圧力条件が変動して
も冷媒循環量を最適に保持し安定した暖房運転を行うた
めである。
Next, when the valve drive means 39 is de-energized by the operation part 47 and the operation control part 48 by the signals of the fuel supply device 44 and the heater outlet temperature detector 46, the shaft 52 is spring 56.
And the valve body 29 is closed by the spring 57 and the supercooled liquid refrigerant flows into the liquid receiving chamber 32 from the indoor heat exchanger 6 again to fill the liquid receiving chamber 36 with the liquid refrigerant and energize the valve driving means 39. Repeat the operation. Here, the operation of the valve drive means 39 by the signals of the fuel supply device 44 and the heater outlet temperature detector 46 in the operation part 47 is to increase the energization / de-energization cycle of the valve drive device 39 when the combustion amount becomes large, and the refrigerant circulation. This is because when the amount is increased and conversely the combustion amount is decreased, the cycle is reduced and the refrigerant circulation amount is reduced to optimize the balance between the combustion amount and the refrigerant circulation amount to perform stable heating operation. Similarly, in order to perform a stable heating operation by indirectly detecting the latent heat of the refrigerant at the refrigerant temperature in the two-phase state and optimally maintaining the refrigerant circulation amount even if the refrigerant pressure condition changes due to the indoor temperature, the indoor fan voltage, or the like. Is.

【0033】以上のことから1つの容器30内に弁体2
9を設けてある為、容器30の底部から弁駆動手段39
の先端までの寸法を小さくすることができると共に、部
品点数、接合加工箇所を削減でき、信頼性の向上、低コ
スト化が図れる。
From the above, the valve body 2 is placed in one container 30.
9 is provided, the valve driving means 39 is provided from the bottom of the container 30.
It is possible to reduce the size up to the tip of the device, reduce the number of parts and the number of joint processing points, improve reliability, and reduce cost.

【0034】また弁駆動手段39の電源に全波整流平滑
回路装置49と制御部に燃料供給装置44と加熱器出口
温度検出器46の信号で弁駆動手段39の通電、非通電
時間を制御し、かつ通電開始時又は通電から非通電に切
り変わる時は電源周期半サイクル毎に適宜通電、非通電
も制御する演算部47と動作制御部48を設けてある
為、弁駆動手段39の動作電磁音、さらに通電開始した
時シャフト52が弁体29に当接する音や通電から非通
電に切り変わる時弁体29が弁ガイド58に構成してあ
る弁座に当接する音が低減できると共に、安定した暖房
運転ができる。
The full-wave rectifying / smoothing circuit device 49 is used as the power source of the valve driving means 39, and the energization / non-energization time of the valve driving means 39 is controlled by the signals of the fuel supply device 44 and the heater outlet temperature detector 46 in the control section. Further, when the energization is started or when the energization is switched to the non-energization, the operation section 47 and the operation control section 48 which appropriately control energization and de-energization every half cycle of the power supply cycle are provided. It is possible to reduce the noise, and further, the sound of the shaft 52 coming into contact with the valve body 29 when the energization is started, and the sound of coming into contact with the valve seat formed in the valve guide 58 when the valve body 29 is switched from energized to stable. It is possible to do the heating operation.

【0035】次に図4は室温検出器60が設定値に達し
たことを検知してバーナ31の燃焼が停止して暖房停止
となるサーモOFFから室温検出器60が設定値を下回
ったことを検知して燃料供給装置44が作動しバーナ3
1の燃焼が開始して暖房開始となるサーモONまでの経
過時間による冷媒挙動制御の変更を示しており、t1
3、t5はサーモOFF点、t2、t4、t6はサーモO
N点を示す。サーモOFFからサーモONまでの時間は
1〜t2が最長で、t3〜t4、t5〜t6の順に短くなっ
ている。
Next, FIG. 4 shows that the room temperature detector 60 has fallen below the set value from the thermo-OFF state in which the combustion of the burner 31 is stopped when the room temperature detector 60 reaches the set value and the heating is stopped. Upon detection, the fuel supply device 44 operates and the burner 3
1 shows the change of the refrigerant behavior control depending on the elapsed time from the start of combustion of No. 1 to the start of heating to start the heating, t 1 ,
t 3 and t 5 are thermo OFF points, and t 2 , t 4 and t 6 are thermo O
N points are shown. Time from thermo OFF to thermo-ON is t 1 ~t 2 is the longest, it is shorter in the order of t 3 ~t 4, t 5 ~t 6.

【0036】t1でサーモOFFすると一定時間(△
1)室内ファン27は室内熱交換器温度検出器51の
出力値に応じて運転し、弁駆動手段39は通電、非通電
動作を演算部47と動作制御部48により行ないバーナ
31の残熱による冷媒加熱器9の異常温度上昇を防止す
る。そしてt2でサーモONすると制御装置50により
バイパス電磁弁43が一定時間開成し圧縮機1の圧力バ
ランスを行い、その後圧縮機1の運転によりポンプダウ
ン運転を行い室外熱交換器3側に漏れた暖房を暖房回路
側に回収し、そのあとバイパス電磁弁43と弁駆動手段
39によって弁体29とを開成しガスパージ運転を行
い、冷媒加熱器9内のガス冷媒を圧縮機へ流出させ代わ
りに液冷媒を冷媒加熱器9に引き込み、さらにひき続い
てバイパス電磁弁39と弁体29とを閉成しポンプダウ
ン運転を行い圧縮機1及び室外熱交換器3に残った冷媒
を暖房回路側に回収する。
When the thermostat is turned off at t 1 , a certain time (Δ
t 1 ) The indoor fan 27 operates according to the output value of the indoor heat exchanger temperature detector 51, and the valve driving means 39 performs energization / de-energization operation by the calculation unit 47 and the operation control unit 48. The residual heat of the burner 31. This prevents the abnormal temperature rise of the refrigerant heater 9 due to. When the thermostat is turned on at t 2 , the control device 50 opens the bypass solenoid valve 43 for a certain period of time to balance the pressure of the compressor 1, and then the compressor 1 is operated to perform the pump down operation and leak to the outdoor heat exchanger 3 side. The heating is recovered to the heating circuit side, and then the bypass solenoid valve 43 and the valve driving means 39 are opened to perform the gas purging operation, and the gas refrigerant in the refrigerant heater 9 is discharged to the compressor instead of being discharged. The refrigerant is drawn into the refrigerant heater 9, and then the bypass solenoid valve 39 and the valve body 29 are closed to perform pump down operation to recover the refrigerant remaining in the compressor 1 and the outdoor heat exchanger 3 to the heating circuit side. To do.

【0037】ここで、給気温度検出器44の温度が高い
時は冷媒の圧力も高く冷媒ガス比容積が小さい為、室外
熱交換器3側に漏れた冷媒を圧縮機1の運転で暖房側に
回収するにはt1からt2の経過時間が同じでもポンプダ
ウン時間は短く、逆に給気温度検出器44の温度が低い
時は、冷媒の比容積が大きい為ポンプダウン時間を長く
するように制御装置50で制御する。t3でサーモOF
Fしt4でサーモONする場合はt1からt2の経過時間
より短いので室外熱交換器3への冷媒の漏れ込みは少な
いが、バーナ31の残熱で冷媒加熱器9の液冷媒は蒸発
して減少し、時間経過とともに蒸発しきってしまうた
め、バイパス電磁弁43を一定時間開成し圧縮機1の圧
力バランスをとった後、ガスパージ運転とそれにひき続
くポンプダウン運転を行い冷媒加熱器9内に液冷媒を引
きこむ。t5でサーモOFFしt6でサーモONする場合
はt3からt4の経過時間よりさらに短く燃焼停止後一定
時間弁駆動装置39を動作させることにより冷媒加熱器
9に液冷媒が確保されているので圧縮機1の運転は不要
となる。
When the temperature of the supply air temperature detector 44 is high, the pressure of the refrigerant is high and the specific volume of the refrigerant gas is small. Therefore, the refrigerant leaked to the outdoor heat exchanger 3 side is heated by the operation of the compressor 1. Even if the elapsed time from t 1 to t 2 is the same, the pump down time is short, and when the temperature of the supply air temperature detector 44 is low, the pump down time is lengthened because the specific volume of the refrigerant is large. As described above, the control device 50 controls. thermo OF at t 3
When the thermostat is turned on at F 4 and t 4 , the refrigerant leaks little to the outdoor heat exchanger 3 because it is shorter than the elapsed time from t 1 to t 2 , but the residual heat of the burner 31 causes the liquid refrigerant of the refrigerant heater 9 to Since it evaporates and decreases, and evaporates over time, the bypass solenoid valve 43 is opened for a certain period of time to balance the pressure of the compressor 1, and then the gas purge operation and the subsequent pump down operation are performed to perform the refrigerant heater 9 Pull the liquid refrigerant into it. If you thermo ON is secured liquid refrigerant in the refrigerant heater 9 by operating the elapsed time from the even shorter combustion stopped after a predetermined time valve driving device 39 of t 4 from t 3 in thermo OFF and t 6 in t 5 Therefore, the operation of the compressor 1 is unnecessary.

【0038】またリモコン(図示せず)などの外部スイ
ッチにより暖房OFFとしたあとの時間経過後にスイッ
チにより暖房0Nした時も、サーモOFF後のサーモO
Nと同様に考えることができるのは言うまでもない。
Also, when the heating is turned off by the switch after the time has elapsed after the heating is turned off by an external switch such as a remote controller (not shown), the thermostat O after the thermostat is turned off.
It goes without saying that it can be considered in the same way as N.

【0039】以上のように暖房運転停止から暖房運転開
始までのあらゆる経過時間に対して燃焼開始時に冷媒加
熱器9内に液冷媒の確保ができ冷媒加熱器の異常過熱を
防止し安定した暖房運転が実現でき暖房運転時の機器の
信頼性向上が図れる。
As described above, the liquid refrigerant can be secured in the refrigerant heater 9 at the start of combustion for all the elapsed time from the heating operation stop to the heating operation start, and abnormal heating of the refrigerant heater is prevented to ensure stable heating operation. It is possible to improve the reliability of equipment during heating operation.

【0040】なお、暖房運転停止から暖房開始までの経
過時間は、サーモOFF中にリモコンOFFをする場合
があるため、例えば燃焼停止を起点に燃焼開始前の冷媒
挙動運転開始までとした方がより実際的で適切であり、
冷媒挙動に対して効果がある。
Since the remote control may be turned off during the thermostat is turned off for the elapsed time from the heating operation stop to the heating start, it is more preferable to set it from the combustion stop to the refrigerant behavior operation start before the start of combustion. Practical and appropriate,
It has an effect on the behavior of the refrigerant.

【0041】また圧縮機1の運転動作で暖房回路中に吐
出した圧縮機オイルはガスパージ運転と同様にバイパス
電磁弁43を開成させ圧縮器1を運転させることにより
液管42に設けた小孔41から室外熱交換器用絞り機構
4を通って圧縮機1に回収でき、バイパス電磁弁43の
みで圧縮機1の圧力バランス、圧縮機オイル回収、ガス
パージ機能が可能となり冷媒回路が簡素化でき、配管接
合箇所も削減でき低コスト化が図れ、さらに圧縮機オイ
ル回収時、室外熱交換器を通らないため短時間で圧縮機
オイルか圧縮機1に戻り、圧縮機1の信頼性向上が図れ
る。
The compressor oil discharged into the heating circuit during the operation of the compressor 1 opens the bypass solenoid valve 43 to operate the compressor 1 as in the gas purging operation. Can be recovered to the compressor 1 through the outdoor heat exchanger throttling mechanism 4, and the bypass solenoid valve 43 alone can perform the pressure balance of the compressor 1, the recovery of the compressor oil, and the gas purging function, thereby simplifying the refrigerant circuit and connecting the pipes. The number of locations can be reduced and the cost can be reduced. Furthermore, when the compressor oil is recovered, it does not pass through the outdoor heat exchanger, so that the compressor oil can be returned to the compressor 1 in a short time, and the reliability of the compressor 1 can be improved.

【0042】なお、冷房運転は冷房用電磁弁14を開成
し四方弁2を圧縮機1の吐出ガスが室外熱交換器3へ流
入するように切り替え、圧縮機1と室内ファン27及び
室外ファン25の運転により従来方式の圧縮機駆動の冷
房を行う。
In the cooling operation, the cooling solenoid valve 14 is opened and the four-way valve 2 is switched so that the gas discharged from the compressor 1 flows into the outdoor heat exchanger 3, and the compressor 1, the indoor fan 27 and the outdoor fan 25 are operated. By the operation of, the conventional compressor-driven cooling is performed.

【0043】[0043]

【発明の効果】以上のように本発明によれば弁体を気液
分離室と受液室を有する1つの容器内に設けてある為、
容器底部から弁駆動装置の先端までの寸法が小さくする
ことができ構成の大巾なシンプル化、小型化、低コスト
化を図ることができる。またバイパス電磁弁を設けるこ
とにより冷媒回路構成も圧縮機機動保証、圧縮機オイル
保証、暖房運転開始前の冷媒加熱器液冷媒保証等機器の
信頼性向上を図りつつ、シンプル化、低コスト化を図る
ことができる。また弁駆動手段に全波整流平滑回路装置
を設け電源周期半サイクル毎に適宜通電、非通電を決定
する制御装置で弁体動作音の低減化が可能となり、安定
した暖房静音運転が可能となる。
As described above, according to the present invention, since the valve body is provided in one container having the gas-liquid separation chamber and the liquid receiving chamber,
The size from the bottom of the container to the tip of the valve drive device can be reduced, and the configuration can be greatly simplified, downsized, and cost reduced. In addition, by providing a bypass solenoid valve, the refrigerant circuit configuration is also guaranteed to be compressor operation, compressor oil guarantee, refrigerant heater liquid refrigerant guarantee before the start of heating operation, while improving the reliability of the equipment, while simplifying and reducing costs. Can be planned. Further, the valve drive means is provided with a full-wave rectifying / smoothing circuit device, and the control device for appropriately determining whether to energize or de-energize every half cycle of the power supply cycle can reduce the operation noise of the valve body and enable stable heating and silent operation. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の暖冷房機のシステムブロッ
ク図
FIG. 1 is a system block diagram of a heating / cooling machine according to a first embodiment of the present invention.

【図2】同実施例1の弁駆動手段の断面図FIG. 2 is a sectional view of the valve drive means of the first embodiment.

【図3】同実施例1の弁体の開状態図FIG. 3 is an open state diagram of the valve body according to the first embodiment.

【図4】同実施例1の冷媒挙動制御動作図FIG. 4 is a refrigerant behavior control operation diagram of the first embodiment.

【図5】従来の暖冷房機のシステムブロック図FIG. 5 is a system block diagram of a conventional heating and cooling machine.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 室外熱交換器用絞り機構 5 冷房用絞り機構 6 室内熱交換器 9 冷媒加熱器 26 室外熱交換器逆止弁 29 弁体 30 容器 34 仕切板 35 気液分離室 36 受液室 39 弁駆動手段 43 バイパス電磁弁 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 Throttle mechanism for outdoor heat exchanger 5 Cooling throttle mechanism 6 Indoor heat exchanger 9 Refrigerant heater 26 Outdoor heat exchanger check valve 29 valve 30 containers 34 Partition 35 Gas-liquid separation chamber 36 receiving chamber 39 valve driving means 43 Bypass solenoid valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 基彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 今井 哲雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 大島 朗 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−145385(JP,A) 特開 平7−91762(JP,A) 特開 平5−215349(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 399 F25B 13/00 341 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Motohiko Kitamura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Tetsuo Imai 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Akira Oshima 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-8-145385 (JP, A) JP-A-7-91762 (JP, A) JP-A-5-215349 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 1/00 399 F25B 13/00 341

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、四方弁、室外熱交換器、室外熱交
換器逆止弁、冷房用絞り機構、ファン付き室内熱交換
器、アキュムレータを順次連結し、圧縮機と四方弁との
間に吐出逆止弁、四方弁とアキュムレータとの間に吸入
逆止弁を配し、室外熱交換器逆止弁と冷房用絞り機構と
の間には仕切板により気液分離室と受液室とに分離する
容器をバーナ付き冷媒加熱器の上方に設け、上記気液分
離室とバーナ付き冷媒加熱器とは冷媒加熱器往き管と冷
媒加熱器出口管とでループ状に接続し、上記仕切板に穿
設された開口部には弁駆動手段で開閉する弁体を有し、
上記気液分離室、四方弁、室内熱交換器、戻り逆止弁、
上記受液室とを順次連結すると共に、気液分離室内に立
ち上がり気液分離室の下方に小孔を有する液管と室外熱
交換器逆止弁との間に室外熱交換器用絞り機構を有し、
室外熱交換器逆止弁と室外熱交換器用絞り機構との間か
ら吸入逆止弁とアキュムレータとの間をバイパス電磁弁
を介して接続し、上記冷房用絞り機構は冷房用電磁弁を
介して上記冷媒加熱器往き管と接続し上記戻り逆止弁は
冷房用減圧機構と室内熱交換器との間から上記受液室へ
接続した暖冷房機。
1. A compressor, a four-way valve, an outdoor heat exchanger, an outdoor heat exchanger check valve, a cooling throttle mechanism, an indoor heat exchanger with a fan, and an accumulator are sequentially connected, and between the compressor and the four-way valve. A discharge check valve, a suction check valve between the four-way valve and the accumulator, and a partition plate between the outdoor heat exchanger check valve and the throttle mechanism for cooling to separate the gas-liquid separation chamber and the receiving chamber. The container for separating into and is provided above the refrigerant heater with a burner, the gas-liquid separation chamber and the refrigerant heater with a burner are connected in a loop with the refrigerant heater forward pipe and the refrigerant heater outlet pipe, and the partition The opening formed in the plate has a valve body that is opened and closed by valve driving means,
Gas-liquid separation chamber, four-way valve, indoor heat exchanger, return check valve,
In addition to sequentially connecting the liquid receiving chambers, an outdoor heat exchanger throttling mechanism is provided between the liquid pipe having a small hole that rises in the gas liquid separating chamber and has a small hole below the gas liquid separating chamber and the outdoor heat exchanger check valve. Then
The intake check valve and the accumulator are connected between the outdoor heat exchanger check valve and the outdoor heat exchanger throttle mechanism via a bypass solenoid valve, and the cooling throttle mechanism is connected via the cooling solenoid valve. A heating / cooling machine connected to the refrigerant heater forward pipe, and the return check valve connected to the liquid receiving chamber from between the cooling decompression mechanism and the indoor heat exchanger.
【請求項2】暖房停止後は室内熱交換器のファンを前記
室内熱交換器に配設した室内熱交換器温度検出器の出力
値に応じた電圧で運転させながら一定時間上記弁駆動手
段を通電、非通電動作させ、暖房開始時は前回の暖房停
止からの経過時間に応じて燃焼開始時の冷媒挙動を変更
する制御装置を設けた請求項1記載の暖冷房機。
2. After the heating is stopped, the fan of the indoor heat exchanger is operated at a voltage corresponding to the output value of the indoor heat exchanger temperature detector arranged in the indoor heat exchanger, and the valve driving means is operated for a certain period of time. The heating / cooling machine according to claim 1, further comprising a control device that is energized / de-energized and changes the behavior of the refrigerant at the start of combustion at the start of heating according to the elapsed time from the previous stop of heating.
【請求項3】冷媒挙動を変更する手段は圧縮機の運転を
行わない第1制御と、バイパス弁と弁体を開成し圧縮機
の運転によるガスパージ運転後、前記バイパス弁と弁体
を閉成し圧縮機運転によるポンプダウンを行う第2制御
と、圧縮機運転によるポンプダウンに続いて前記第2制
御を行う第3制御を有し、前回の暖房停止から暖房開始
までの経過時間が長くなると第1から第3の制御を選択
する請求項2記載の暖冷房機。
3. The means for changing the behavior of the refrigerant is a first control in which the compressor is not operated, a bypass valve and a valve element are opened, and a gas purge operation is performed by the operation of the compressor, and then the bypass valve and the valve element are closed. When the second control for performing pump down by the compressor operation and the third control for performing the second control after the pump down by the compressor operation are provided, and the elapsed time from the previous heating stop to the heating start becomes long, The heating / cooling machine according to claim 2, wherein the first to third controls are selected.
【請求項4】第3制御のポンプダウン実行時間は冷媒加
熱器のバーナ制御用の給気温度検出器の出力と前回の暖
房停止から暖房開始までの経過時間とに応じて設定する
請求項3記載の暖冷房機。
4. The pump down execution time of the third control is set according to the output of the supply air temperature detector for burner control of the refrigerant heater and the elapsed time from the previous heating stop to the heating start. The heating and cooling machine described.
【請求項5】弁駆動手段は、通電時シャフトを押し出し
開弁させるもので全波整流平滑回路装置を有し、通電開
始時又は通電から非通電に切り変わり時電源周期半サイ
クル毎に適宜通電、非通電を決定しうる制御装置を設け
た請求項1記載の暖冷房機。
5. The valve driving means pushes and opens the shaft when energized and has a full-wave rectifying and smoothing circuit device, and energizes appropriately every half cycle of the power supply cycle at the start of energization or when switching from energization to non-energization. The heating / cooling machine according to claim 1, further comprising a control device capable of determining non-energization.
【請求項6】弁駆動手段はバーナ燃焼量と冷媒加熱器出
口管温度により上記弁駆動手段の通電、非通電動作周期
を演算する演算部と演算出力により上記弁駆動手段の通
電、非通電動作を制御する動作制御部を有する請求項5
記載の暖冷房機。
6. A valve drive means calculates the energization / de-energization operation cycle of the valve drive means based on the burner combustion amount and the refrigerant heater outlet pipe temperature, and the energization / de-energization operation of the valve drive means by a calculation output. 6. An operation control unit for controlling
The heating and cooling machine described.
【請求項7】弁駆動手段は燃焼量及び冷媒加熱器出口温
度にかかわらず通電時間が一定となるよう動作する制御
装置を有する請求項6記載の暖冷房機。
7. The heating / cooling machine according to claim 6, wherein the valve driving means has a control device which operates so that the energization time is constant regardless of the combustion amount and the refrigerant heater outlet temperature.
JP20161196A 1996-07-31 1996-07-31 Heating and cooling machine Expired - Fee Related JP3428302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20161196A JP3428302B2 (en) 1996-07-31 1996-07-31 Heating and cooling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20161196A JP3428302B2 (en) 1996-07-31 1996-07-31 Heating and cooling machine

Publications (2)

Publication Number Publication Date
JPH1047801A JPH1047801A (en) 1998-02-20
JP3428302B2 true JP3428302B2 (en) 2003-07-22

Family

ID=16443937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20161196A Expired - Fee Related JP3428302B2 (en) 1996-07-31 1996-07-31 Heating and cooling machine

Country Status (1)

Country Link
JP (1) JP3428302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002366309A1 (en) * 2001-12-18 2003-06-30 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion

Also Published As

Publication number Publication date
JPH1047801A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
JP5475874B2 (en) Heat pump system
CN110836554A (en) Heat pump system, control method thereof and defrosting control method
JP3750520B2 (en) Refrigeration equipment
JP3291753B2 (en) Refrigerant charging amount detection device for refrigeration equipment
EP1528332B1 (en) air conditioner having multiple outdoor units and control method thereof
JP3428302B2 (en) Heating and cooling machine
JP3684708B2 (en) Heating and cooling machine
JP2814642B2 (en) Heating and cooling machine
JP2658457B2 (en) Heating and cooling machine
JPH086954B2 (en) Heating and cooling machine
JP2658458B2 (en) Heating and cooling machine
JP2511959B2 (en) Air conditioner
JP3109212B2 (en) Heat transfer device
KR20050046433A (en) Capacity control type cooling system having multiple compressor and the drive method of the same
JP3139099B2 (en) Heat transfer device
JP2712589B2 (en) Air conditioning
JP2762605B2 (en) Heating and cooling machine
JP2827656B2 (en) Heat transfer device
JP2827809B2 (en) Heat transfer device
JPS6193285A (en) Control device in compressor
JP2867838B2 (en) Heating and cooling machine
JP2867691B2 (en) Heating and cooling machine
JP2001133055A (en) Refrigeration system
JP2882256B2 (en) Heating and cooling machine
WO2002046666A1 (en) Heat source unit for refrigerator and refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees