JP3427695B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP3427695B2
JP3427695B2 JP26122797A JP26122797A JP3427695B2 JP 3427695 B2 JP3427695 B2 JP 3427695B2 JP 26122797 A JP26122797 A JP 26122797A JP 26122797 A JP26122797 A JP 26122797A JP 3427695 B2 JP3427695 B2 JP 3427695B2
Authority
JP
Japan
Prior art keywords
heat
refrigerant
liquid
heat exchanger
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26122797A
Other languages
Japanese (ja)
Other versions
JPH1194301A (en
Inventor
真理 佐田
昌弘 岡
悟 大倉
忠 竿尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP26122797A priority Critical patent/JP3427695B2/en
Publication of JPH1194301A publication Critical patent/JPH1194301A/en
Application granted granted Critical
Publication of JP3427695B2 publication Critical patent/JP3427695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置に係り、
特に、熱源と利用側冷媒回路とを中間熱交換器によって
熱交換可能に接続し、該中間熱交換器での熱交換により
熱源と利用側冷媒回路との間で熱搬送を行うようにした
ものに対する構成の簡略化対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system,
In particular, a heat source and a use-side refrigerant circuit are heat-exchangeably connected by an intermediate heat exchanger, and heat is transferred between the heat source and the use-side refrigerant circuit by heat exchange in the intermediate heat exchanger. For the simplification of the configuration.

【0002】[0002]

【従来の技術】従来より、例えば特開昭62−2389
51号公報に開示されているような複数の冷媒回路を備
えた冷凍システムが知られている。この種の冷凍システ
ムは、圧縮機、熱源側熱交換器、減圧機構及び中間熱交
換器の熱源側熱交換部が冷媒配管によって接続されて成
る1次側冷媒回路と、ポンプ、中間熱交換器の利用側熱
交換部及び利用側熱交換器が冷媒配管によって接続され
て成る2次側冷媒回路とを備えている。中間熱交換器で
は、熱源側熱交換部と利用側熱交換部との間で熱交換が
可能になっている。また、このシステムを空気調和装置
に適用する場合には利用側熱交換器が室内に配置され
る。
2. Description of the Related Art Conventionally, for example, Japanese Patent Laid-Open No. 62-2389.
A refrigeration system including a plurality of refrigerant circuits as disclosed in Japanese Patent No. 51 is known. This type of refrigeration system includes a compressor, a heat source side heat exchanger, a pressure reducing mechanism, and a heat source side heat exchange section of the intermediate heat exchanger, which are connected by a refrigerant pipe, a primary side refrigerant circuit, a pump, and an intermediate heat exchanger. And a secondary-side refrigerant circuit in which the usage-side heat exchanger and the usage-side heat exchanger are connected by a refrigerant pipe. In the intermediate heat exchanger, heat can be exchanged between the heat source side heat exchange section and the use side heat exchange section. Moreover, when this system is applied to an air conditioner, a utilization side heat exchanger is arranged indoors.

【0003】このような構成により、中間熱交換器によ
って1次側冷媒回路と2次側冷媒回路との間で熱交換を
行い、1次側冷媒回路から2次側冷媒回路へ熱搬送する
ことにより室内の空気調和を行うようになっている。
With such a configuration, heat is transferred between the primary side refrigerant circuit and the secondary side refrigerant circuit by the intermediate heat exchanger, and heat is transferred from the primary side refrigerant circuit to the secondary side refrigerant circuit. By this, the air conditioning in the room is performed.

【0004】[0004]

【発明が解決しようとする課題】ところで、この種の冷
凍装置において、中間熱交換器を複数設け、そのうち熱
交換動作を行う中間熱交換器の台数を制御することによ
って冷凍能力を調整することが考えられる。
By the way, in this type of refrigerating apparatus, it is possible to adjust the refrigerating capacity by providing a plurality of intermediate heat exchangers and controlling the number of the intermediate heat exchangers that perform the heat exchanging operation. Conceivable.

【0005】具体的に説明すると、図7に示すように、
1つの閉回路で成る2次側冷媒路(C)に一対の中間熱交
換器(a1,a2)の利用側熱交換部(c1,c2)を並列に設けてお
く。一方、各中間熱交換器(a1,a2)に対応して2つの1
次側冷媒回路(A,B)を備えさせ、各1次側冷媒回路(A,B)
における中間熱交換器(a1,a2)の熱源側熱交換部(b1,b2)
それぞれを互いに異なる中間熱交換器(a1,a2)の利用側
熱交換部(c1,c2)との間で熱交換可能に配置する。
More specifically, as shown in FIG.
The secondary side refrigerant passage (C) formed of one closed circuit is provided with the use side heat exchange parts (c1, c2) of the pair of intermediate heat exchangers (a1, a2) in parallel. On the other hand, there are two 1s corresponding to each intermediate heat exchanger (a1, a2).
Secondary side refrigerant circuit (A, B) is equipped, each primary side refrigerant circuit (A, B)
Heat source side heat exchange part (b1, b2) of the intermediate heat exchanger (a1, a2)
The heat exchange units (c1, c2) of the intermediate heat exchangers (a1, a2) that are different from each other are arranged to be capable of heat exchange.

【0006】以下、それぞれの回路構成ついて詳しく説
明する。2次側冷媒回路(C)を、ポンプ(d)、四路切換弁
(e)、電動弁(f)、室内熱交換器(g)、各中間熱交換器(a
1,a2)の利用側熱交換部(c1,c2)を冷媒配管により接続し
て成す。各中間熱交換器(a1,a2)の利用側熱交換部(c1,c
2)は、本回路の一部が分岐された各分岐管(h1,h2)のそ
れぞれに設けられている。一方、各1次側冷媒回路(A,
B)を、圧縮機(i1,i2)、四路切換弁(j1,j2)、室外熱交換
器(k1,k2)、電動膨張弁(l1,l2)、中間熱交換器(a1,a2)
の熱源側熱交換部(b1,b2)を冷媒配管により接続して成
す。
Each circuit configuration will be described in detail below. Secondary side refrigerant circuit (C), pump (d), four way switching valve
(e), motor operated valve (f), indoor heat exchanger (g), each intermediate heat exchanger (a
The heat exchange parts (c1, c2) on the use side of (1, a2) are connected by a refrigerant pipe. Utilization side heat exchange parts (c1, c of each intermediate heat exchanger (a1, a2)
2) is provided in each of the branch pipes (h1, h2) where a part of this circuit is branched. On the other hand, each primary side refrigerant circuit (A,
B), compressor (i1, i2), four-way switching valve (j1, j2), outdoor heat exchanger (k1, k2), electric expansion valve (l1, l2), intermediate heat exchanger (a1, a2)
The heat source side heat exchange parts (b1, b2) are connected by a refrigerant pipe.

【0007】つまり、各回路において冷媒を循環させ、
各中間熱交換器(a1,a2)での熱交換によって熱搬送を行
う構成とする。また、一方の1次側冷媒回路(B)での冷
媒循環動作を停止することにより、片側の中間熱交換器
(a1)のみで熱交換を行うようにすることで、冷凍能力を
調整することができる。
That is, the refrigerant is circulated in each circuit,
Heat is transferred by heat exchange in each intermediate heat exchanger (a1, a2). Also, by stopping the refrigerant circulation operation in one of the primary side refrigerant circuits (B), one side of the intermediate heat exchanger
By performing heat exchange only with (a1), the refrigerating capacity can be adjusted.

【0008】このように片側の中間熱交換器(a1)のみで
熱交換を行うようにした場合、熱交換動作を行っていな
い中間熱交換器(a2)の利用側熱交換部(c2)に2次側冷媒
が流れてしまう可能性がある。つまり、1次側冷媒回路
(B)の冷媒から熱を受けない冷媒が循環してしまう可能
性があり、冷凍能力が必要以上に低下してしまったり、
室内の冷房運転動作時に、ガス冷媒が1次側冷媒回路と
熱交換を行わずにガス相のままポンプ(d)に吸入されて
しまうといった不具合を招くことがある。
In this way, when heat exchange is performed only by the intermediate heat exchanger (a1) on one side, the heat exchange section (c2) on the use side of the intermediate heat exchanger (a2) that does not perform heat exchange operation The secondary side refrigerant may flow. That is, the primary side refrigerant circuit
There is a possibility that the refrigerant that does not receive heat from the refrigerant of (B) will circulate, and the refrigerating capacity will drop more than necessary,
During the indoor air-cooling operation, the gas refrigerant may be sucked into the pump (d) in the gas phase without heat exchange with the primary side refrigerant circuit.

【0009】この不具合を解消するために、図7に示す
ように、2次側冷媒回路(B)の分岐管(h2)に電磁弁(m)を
設け、中間熱交換器(a2)が熱交換動作を行わない場合に
は、この電磁弁(m)を閉鎖することで、該中間熱交換器
(a2)での冷媒流通を阻止することが考えられる。
In order to solve this problem, as shown in FIG. 7, a solenoid valve (m) is provided in the branch pipe (h2) of the secondary side refrigerant circuit (B), and the intermediate heat exchanger (a2) is heated. When the exchange operation is not performed, by closing this solenoid valve (m), the intermediate heat exchanger
It may be possible to prevent the refrigerant flow in (a2).

【0010】そればかりでなく、各1次側冷媒回路(A,
B)の圧縮機(i1,i2)がインバータ制御等により容量可変
なものである場合、各1次側冷媒回路(A,B)での冷媒循
環量に応じて各分岐管(h1,h2)での流量調整を行うこと
が必要になる。つまり、各1次側冷媒回路(A,B)の冷媒
流量の比率に対応して各中間熱交換器(a1,a2)の利用側
熱交換部(c1,c2)での冷媒流量を調整して運転効率の向
上を維持する必要がある。
Not only that, but each primary side refrigerant circuit (A,
When the compressor (i1, i2) of B) has a variable capacity due to inverter control, etc., each branch pipe (h1, h2) corresponding to the refrigerant circulation amount in each primary side refrigerant circuit (A, B) It is necessary to adjust the flow rate at. That is, the refrigerant flow rate in the use side heat exchange section (c1, c2) of each intermediate heat exchanger (a1, a2) is adjusted according to the ratio of the refrigerant flow rate in each primary side refrigerant circuit (A, B). Therefore, it is necessary to maintain the improvement of operational efficiency.

【0011】この要求に応える構成として、図8に示す
ように、少なくとも一方の分岐管(h2)に流量調整電動弁
(n)を設けておき、この弁(n)の開度を調整することによ
って各利用側熱交換部(c1,c2)での冷媒流量を調整する
ことが挙げられる。
In order to meet this requirement, as shown in FIG. 8, at least one of the branch pipes (h2) is equipped with a flow rate control motorized valve.
(n) may be provided, and the flow rate of the refrigerant in each of the use side heat exchange sections (c1, c2) may be adjusted by adjusting the opening degree of the valve (n).

【0012】しかしながら、上述したように、分岐管(h
2)に電磁弁(m)や電動弁(n)を設けるものでは、部品点数
の増大を招き、運転状態に応じた弁の開度調整動作が必
要になってしまい、回路の実用性の向上を図ることがで
きない。
However, as described above, the branch pipe (h
In the case where the solenoid valve (m) or motorized valve (n) is provided in 2), the number of parts is increased, and the valve opening adjustment operation is required according to the operating condition, improving the practicality of the circuit. Can't plan.

【0013】本発明は、かかる点に鑑みてなされたもの
であり、複数の熱源と利用側回路とを備え、複数の中間
熱交換器によって熱源と利用側冷媒との間で熱搬送を行
う冷凍装置であって、各中間熱交換器での熱交換量を可
変として冷凍能力を変更するようにしたものに対し、部
品点数の増大を招くことなく、且つ特別な制御動作も必
要とすることなしに、この能力調整を可能とすることを
目的とする。
The present invention has been made in view of the above point, and includes a plurality of heat sources and a use side circuit, and a plurality of intermediate heat exchangers for transferring heat between the heat source and the use side refrigerant. An apparatus that changes the refrigerating capacity by changing the amount of heat exchange in each intermediate heat exchanger, but does not cause an increase in the number of parts and does not require special control operations. In addition, the purpose is to enable this ability adjustment.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、熱交換が行われている側の中間熱交換器
での冷媒の流通に伴って発生する圧力損失よりも、熱交
換が行われていない側の中間熱交換器での液冷媒の位置
水頭を大きくすることにより、この熱交換が行われてい
ない側の中間熱交換器での液冷媒またはガス冷媒のバイ
パスを回避するようにした。
In order to achieve the above object, the present invention provides a method of generating heat rather than pressure loss caused by the flow of the refrigerant in the intermediate heat exchanger on the side where heat exchange is performed. The position of the liquid refrigerant in the intermediate heat exchanger on the non-exchanged side is increased to avoid the bypass of the liquid refrigerant or the gas refrigerant in the intermediate heat exchanger on the non-exchanged side. I decided to do it.

【0015】具体的に、請求項1記載の発明は、図1に
示すように、搬送手段(10)と、利用側熱交換器(13)と、
熱源(A,B)から冷熱を受ける中間熱交換手段(5A,5B)の受
熱流路(5b,5b)とが液配管(LL)及びガス配管(LG)によっ
て接続されて成る利用側冷媒回路(C)を備え、ガス配管
(LG)より中間熱交換手段(5A,5B)の受熱流路(5b,5b)に流
入したガス冷媒を熱源(A,B)からの冷熱により凝縮させ
た後、その液冷媒を液配管(LL)を経て利用側熱交換器(1
3)に供給して該利用側熱交換器(13)に吸熱動作を行わせ
る冷凍装置を前提としている。上記中間熱交換手段(5A,
5B)の受熱流路(5b,5b)を、液配管(LL)及びガス配管(LG)
がそれぞれ分岐されて成る分岐管(LL-1〜LG-2)により互
いに並列に接続された複数の通路で成す。上記液配管(L
L)の各分岐管(LL-1,LL-2)の分岐部(6C-B)の位置を、一
部の受熱流路(5b)が熱源(A)から冷熱を受け且つ他の受
熱流路(5b)が冷熱を受けていない状況で、上記一部の受
熱流路(5b)を流れる冷媒の圧力損失に起因して下降する
他の受熱流路(5b)での冷媒液面よりも低い位置に設定し
た構成としている。
Specifically, the invention according to claim 1 is, as shown in FIG. 1, a conveying means (10), a utilization side heat exchanger (13),
A refrigerant circuit on the use side, which is formed by connecting the heat receiving passages (5b, 5b) of the intermediate heat exchange means (5A, 5B) that receives cold heat from the heat source (A, B) with the liquid pipe (LL) and the gas pipe (LG). Equipped with (C), gas pipe
(LG) after condensing the gas refrigerant flowing into the heat receiving passages (5b, 5b) of the intermediate heat exchange means (5A, 5B) by the cold heat from the heat sources (A, B), the liquid refrigerant (liquid pipe) LL) and then the heat exchanger (1
It is premised on a refrigerating device which is supplied to 3) to cause the utilization side heat exchanger (13) to perform an endothermic operation. The intermediate heat exchange means (5A,
5B) heat receiving flow path (5b, 5b), liquid piping (LL) and gas piping (LG)
A plurality of passages connected in parallel to each other by branch pipes (LL-1 to LG-2) each of which is branched. Liquid piping (L
At the position of the branch portion (6C-B) of each branch pipe (LL-1, LL-2) of (L), a part of the heat receiving flow path (5b) receives cold heat from the heat source (A) and other heat receiving flow In a situation where the passage (5b) is not receiving cold heat, the refrigerant liquid level in the other heat receiving passage (5b) descends due to the pressure loss of the refrigerant flowing through the part of the heat receiving passage (5b) rather than the liquid surface of the refrigerant. The configuration is set to a low position.

【0016】この特定事項により、冷熱を受けていない
受熱流路(5b)において、ここに流入するガス冷媒が受熱
流路(5b)から液配管(LL)に流れ出るためには、冷熱を受
けている受熱流路(5b)を流れる冷媒の圧力損失に起因し
て下降している冷媒液面が液配管(LL)にまで達している
必要がある。しかし、本発明では、この液配管(LL)の各
分岐管(LL-1,LL-2)の分岐部(6C-B)の位置がこの冷媒液
面よりも低い位置に設定されているので、液配管(LL)に
ガス冷媒が流れ出ることはない。
According to this specific matter, in the heat receiving passage (5b) not receiving cold heat, in order for the gas refrigerant flowing therein to flow out from the heat receiving passage (5b) to the liquid pipe (LL), the cold heat is received. It is necessary that the refrigerant liquid level descending due to the pressure loss of the refrigerant flowing through the heat receiving flow path (5b) is reaching the liquid pipe (LL). However, in the present invention, the position of the branch portion (6C-B) of each branch pipe (LL-1, LL-2) of this liquid pipe (LL) is set to a position lower than this refrigerant liquid level. The gas refrigerant does not flow out into the liquid pipe (LL).

【0017】請求項2記載の発明は、同じく、搬送手段
(10)と、利用側熱交換器(13)と、熱源(A,B)から温熱を
受ける中間熱交換手段(5A,5B)の受熱流路(5b,5b)とが液
配管(LL)及びガス配管(LG)によって接続されて成る利用
側冷媒回路(C)を備え、液配管(LL)より中間熱交換手段
(5A,5B)の受熱流路(5b,5b)に流入した液冷媒を熱源(A,
B)からの温熱により蒸発させた後、そのガス冷媒をガス
配管(LG)を経て利用側熱交換器(13)に供給して該利用側
熱交換器(13)に放熱動作を行わせる冷凍装置を前提とす
る。上記中間熱交換手段(5A,5B)の受熱流路(5b,5b)を、
液配管(LL)及びガス配管(LG)がそれぞれ分岐されて成る
分岐管(LL-1〜LG-2)により互いに並列に接続された複数
の通路で成す。また、上記ガス配管(LG)の各分岐管(LG-
1,LG-2)の分岐部(6C-A)の位置を、一部の受熱流路(5b)
が熱源(A)から温熱を受け且つ他の受熱流路(5b)が温熱
を受けていない状況で、上記一部の受熱流路(5b)を流れ
る冷媒の圧力損失に起因して上昇する他の受熱流路(5b)
での冷媒液面よりも高い位置に設定した構成としてい
る。
According to a second aspect of the present invention, the transporting means is also the same.
(10), the heat exchanger (13) on the use side, and the heat receiving passages (5b, 5b) of the intermediate heat exchange means (5A, 5B) that receives the heat from the heat sources (A, B) are liquid pipes (LL) And a use side refrigerant circuit (C) connected by a gas pipe (LG), and an intermediate heat exchange means from the liquid pipe (LL)
The liquid refrigerant flowing into the heat receiving channels (5b, 5b) of (5A, 5B) is used as a heat source (A,
After evaporating by the heat from B), the gas refrigerant is supplied to the heat exchanger (13) on the use side through the gas pipe (LG) to freeze the heat exchanger (13) on the use side. Assuming a device. The heat receiving flow path (5b, 5b) of the intermediate heat exchange means (5A, 5B),
The liquid pipe (LL) and the gas pipe (LG) are branched into branch pipes (LL-1 to LG-2), each of which has a plurality of passages connected in parallel with each other. In addition, each branch pipe (LG-
1, LG-2) branch part (6C-A) position, part of heat receiving flow path (5b)
Is receiving heat from the heat source (A) and the other heat receiving channel (5b) is not receiving heat, and the temperature rises due to the pressure loss of the refrigerant flowing through the heat receiving channel (5b). Heat receiving channel (5b)
It is set to a position higher than the liquid surface of the refrigerant.

【0018】この特定事項により、温熱を受けていない
受熱流路(5b)において、ここに流入する液冷媒が受熱流
路(5b)からガス配管(LG)に流れ出るためには、温熱を受
けている受熱流路(5b)を流れる冷媒の圧力損失に起因し
て上昇している冷媒液面がガス配管(LG)にまで達してい
る必要がある。しかし、本発明では、このガス管(LG)の
各分岐管(LG-1,LG-2)の分岐部(6C-A)の位置がこの冷媒
液面よりも高い位置に設定されているので、ガス配管(L
G)に液冷媒が流れ出ることはない。
According to this specific matter, in the heat receiving channel (5b) not receiving heat, in order for the liquid refrigerant flowing therein to flow out from the heat receiving channel (5b) to the gas pipe (LG), It is necessary that the rising liquid level of the refrigerant due to the pressure loss of the refrigerant flowing through the heat receiving flow path (5b) reaches the gas pipe (LG). However, in the present invention, the position of the branch portion (6C-A) of each branch pipe (LG-1, LG-2) of this gas pipe (LG) is set to a position higher than this refrigerant liquid level. , Gas pipe (L
Liquid refrigerant does not flow out to G).

【0019】請求項3記載の発明は、上述した請求項1
及び2記載の発明に係る構成を兼ね備えたものである。
つまり、搬送手段(10)と、利用側熱交換器(13)と、熱源
(A,B)から冷熱または温熱を受ける中間熱交換手段(5A,5
B)の受熱部(5b,5b)とが液配管(LL)及びガス配管(LG)に
よって接続されて成る利用側冷媒回路(C)を備え、ガス
配管(LG)より中間熱交換手段(5A,5B)の受熱部(5b,5b)に
流入したガス冷媒を熱源(A,B)からの冷熱により凝縮さ
せた後、その液冷媒を液配管(LL)を経て利用側熱交換器
(13)に供給して該利用側熱交換器(13)に吸熱を行わせる
第1の冷媒循環動作と、液配管(LL)より中間熱交換手段
(5A,5B)の受熱部(5b,5b)に流入した液冷媒を熱源(A,B)
からの温熱により蒸発させた後、そのガス冷媒をガス配
管(LG)を経て利用側熱交換器(13)に供給して該利用側熱
交換器(13)に放熱を行わせる第2の冷媒循環動作とが切
り換え可能な冷凍装置を前提としている。上記中間熱交
換手段(5A,5B)の受熱流路(5b,5b)を、液配管(LL)及びガ
ス配管(LG)がそれぞれ分岐されて成る分岐管(LL-1〜LG-
2)により互いに並列に接続された複数の通路で成す。上
記液配管(LL)の各分岐管(LL-1,LL-2)の分岐部(6C-B)の
位置を、上記第1の冷媒循環動作において一部の受熱流
路(5b)が熱源(A)から冷熱を受け且つ他の受熱流路(5b)
が冷熱を受けていない状況で、上記一部の受熱流路(5b)
を流れる冷媒の圧力損失に起因して下降する他の受熱流
路(5b)での冷媒液面よりも低い位置に設定する。一方、
上記ガス配管(LG)の各分岐管(LG-1,LG-2)の分岐部(6C-
A)の位置を、上記第2の冷媒循環動作において一部の受
熱流路(5b)が熱源(A)から温熱を受け且つ他の受熱流路
(5b)が温熱を受けていない状況で、上記一部の受熱流路
(5b)を流れる冷媒の圧力損失に起因して上昇する他の受
熱流路(5b)での冷媒液面よりも高い位置に設定した構成
としている。
The invention according to claim 3 is the above-mentioned claim 1.
And the structure according to the invention described in 2.
That is, the transfer means (10), the heat exchanger on the use side (13), and the heat source
Intermediate heat exchange means (5A, 5) that receives cold or warm heat from (A, B)
The heat receiving part (5b, 5b) of (B) is provided with a use side refrigerant circuit (C) which is connected by a liquid pipe (LL) and a gas pipe (LG), and an intermediate heat exchange means (5A) from the gas pipe (LG). , 5B) the gas refrigerant flowing into the heat receiving part (5b, 5b) is condensed by the cold heat from the heat source (A, B), and then the liquid refrigerant is passed through the liquid pipe (LL) to the heat exchanger on the use side.
A first refrigerant circulation operation for supplying heat to the use side heat exchanger (13) so as to absorb heat to the use side heat exchanger (13) and an intermediate heat exchange means from the liquid pipe (LL).
(5A, 5B) heat receiving part (5b, 5b) liquid refrigerant flowing into the heat source (A, B)
A second refrigerant that is vaporized by warm heat from the user and is then supplied to the use side heat exchanger (13) via the gas pipe (LG) to cause the use side heat exchanger (13) to radiate heat. It is premised on a refrigeration system capable of switching between circulating operation. The heat receiving flow paths (5b, 5b) of the intermediate heat exchange means (5A, 5B), the liquid pipe (LL) and the gas pipe (LG) are branched pipes (LL-1 ~ LG-
2) consists of multiple passages connected in parallel to each other. At the position of the branch portion (6C-B) of each branch pipe (LL-1, LL-2) of the liquid pipe (LL), a part of the heat receiving flow path (5b) is a heat source in the first refrigerant circulation operation. (A) receives cold heat and another heat receiving channel (5b)
Part of the heat receiving channel (5b)
It is set at a position lower than the liquid level of the refrigerant in the other heat receiving channel (5b) that descends due to the pressure loss of the refrigerant flowing through. on the other hand,
Branch part (6C- of each branch pipe (LG-1, LG-2) of the above gas pipe (LG)
In the position of A), in the second refrigerant circulation operation, part of the heat receiving passages (5b) receives heat from the heat source (A) and other heat receiving passages
In the situation where (5b) is not receiving heat, part of the above heat receiving flow path
The structure is set to a position higher than the liquid level of the refrigerant in the other heat receiving flow path (5b) that rises due to the pressure loss of the refrigerant flowing through (5b).

【0020】この特定事項により、上述した請求項1記
載の発明に係る発明の作用と請求項2記載の発明に係る
発明の作用とが共に得られることになる。
Due to this specific matter, the action of the invention according to the first aspect of the invention and the action of the invention according to the second aspect of the invention can both be obtained.

【0021】請求項4記載の発明は、上記請求項1また
は3記載の発明の具体構成を特定したものである。つま
り、液配管(LL)の分岐部(6C-B)を中間熱交換手段(5A,5
B)よりも下方に位置させ、液配管(LL)の分岐管(LL-1,LL
-2)に、中間熱交換手段(5A,5B)に対する接続位置から分
岐部(6C-B)に向かって下方に延びる下方延長部(LL-1b,L
L-2b)を備えさせた構成としている。
The invention according to claim 4 specifies the specific constitution of the invention according to claim 1 or 3 above. That is, the branch portion (6C-B) of the liquid pipe (LL) is connected to the intermediate heat exchange means (5A, 5
It is located below B), and the branch pipe (LL-1, LL) of the liquid pipe (LL)
-2), the downward extension (LL-1b, L) extending downward from the connection position for the intermediate heat exchange means (5A, 5B) toward the branch (6C-B).
L-2b) is provided.

【0022】請求項5記載の発明は、上記請求項2また
は3記載の発明の具体構成を特定したものである。つま
り、ガス配管(LG)の分岐部(6C-A)を中間熱交換手段(5A,
5B)よりも上方に位置させ、ガス配管(LG)の分岐管(LG-
1,LG-2)に、中間熱交換器(5A,5B)に対する接続位置から
分岐部(6C-A)に向かって上方に延びる上方延長部(LG-1
b,LG-2b)を備えさせた構成としている。
The invention according to claim 5 specifies the specific constitution of the invention according to claim 2 or 3 above. That is, the branch part (6C-A) of the gas pipe (LG) is connected to the intermediate heat exchange means (5A,
5B) above the gas pipe (LG) branch pipe (LG-
1, LG-2), the upper extension (LG-1) extending upward from the connection position to the intermediate heat exchanger (5A, 5B) toward the branch (6C-A).
b, LG-2b).

【0023】これら特定事項により、配管の形状を変更
するといった比較的簡単な改良のみで、液配管(LL)にガ
ス冷媒が流れ出てしまったり、ガス配管(LG)に液冷媒が
流れ出てしまったりすることはなくなる。
Due to these specific matters, the gas refrigerant may flow out to the liquid pipe (LL) or the liquid refrigerant may flow out to the gas pipe (LG) with a relatively simple improvement such as changing the shape of the pipe. There is nothing to do.

【0024】以下の請求項6〜9記載の発明は、利用側
冷媒回路(C)に熱を与える熱源(A,B)の構成を特定したも
のである。請求項6記載の発明は、上記請求項1〜3の
うち1つに記載の冷凍装置において、複数の受熱流路(5
b),(5b)のそれぞれに対応した複数の熱源(A,B)を個別に
配設し、各熱源(A,B)の動作を個別に調整することで、
一部の受熱流路(5b)に対してのみ熱の供給を可能にして
いる。
The inventions described in claims 6 to 9 below specify the constitution of the heat sources (A, B) for giving heat to the utilization side refrigerant circuit (C). The invention according to claim 6 is the refrigerating apparatus according to any one of claims 1 to 3, wherein a plurality of heat receiving channels (5
b), by arranging a plurality of heat sources (A, B) corresponding to each of (5b) individually and adjusting the operation of each heat source (A, B) individually,
The heat can be supplied only to a part of the heat receiving channel (5b).

【0025】請求項7記載の発明は、上記請求項1〜3
のうち1つに記載の冷凍装置において、熱源(A,B)を、
各受熱流路(5b),(5b)との間で熱交換可能な複数の熱供
給部(5a),(5a)を備え各熱供給部(5a),(5a)が互いに並列
に接続されて成る冷媒回路としている。
The invention according to claim 7 is the above-mentioned claims 1 to 3.
In the refrigerating apparatus according to one of the above, the heat source (A, B) is
A plurality of heat supply parts (5a), (5a) capable of exchanging heat with the heat receiving channels (5b), (5b) are provided, and the heat supply parts (5a), (5a) are connected in parallel with each other. It is used as a refrigerant circuit.

【0026】請求項8記載の発明は、上記請求項1〜3
のうち1つに記載の冷凍装置において、熱源(A,B)を、
蒸気圧縮式冷凍サイクルを行う冷凍回路としている。
The invention according to claim 8 is the same as claims 1 to 3 above.
In the refrigerating apparatus according to one of the above, the heat source (A, B) is
The refrigeration circuit performs a vapor compression refrigeration cycle.

【0027】請求項9記載の発明は、上記請求項1〜3
のうち1つに記載の冷凍装置において、熱源(A,B)を、
吸収式冷凍サイクルを行う冷凍回路としている。
The invention according to claim 9 is the above-mentioned claims 1 to 3.
In the refrigerating apparatus according to one of the above, the heat source (A, B) is
It is a refrigeration circuit that performs an absorption refrigeration cycle.

【0028】これら特定事項により、熱源(A,B)の構成
を具体化でき装置の実用化が図れる。つまり、請求項6
記載の発明では、各熱源(A,B)の動作を個別調整(例え
ば個別発停)することにより、また、請求項7記載の発
明では、熱供給部(5a),(5a)での冷媒流通量を調整する
ことにより利用側冷媒回路(C)へ与える熱量が調整され
ることになる。
By these specific matters, the constitution of the heat sources (A, B) can be embodied and the device can be put into practical use. That is, claim 6
In the invention described, the operation of each heat source (A, B) is individually adjusted (for example, individual start / stop), and in the invention of claim 7, the refrigerant in the heat supply parts (5a), (5a) By adjusting the flow rate, the amount of heat given to the use side refrigerant circuit (C) is adjusted.

【0029】以下の請求項10〜13記載の発明は、利
用側冷媒回路(C)での冷媒循環駆動力を得る搬送手段の
構成を特定したものである。請求項10記載の発明は、
上記請求項1〜3のうち1つに記載の冷凍装置におい
て、搬送手段を、液配管に設けられた機械式ポンプ(10)
としている。
The following inventions according to claims 10 to 13 specify the constitution of the conveying means for obtaining the refrigerant circulation driving force in the use side refrigerant circuit (C). The invention according to claim 10 is
The refrigerating apparatus according to any one of claims 1 to 3, wherein the transport means is a mechanical pump (10) provided in a liquid pipe.
I am trying.

【0030】この特定事項により、冷媒循環駆動力が確
実に得られることになる。
This specific matter ensures that the refrigerant circulation driving force can be obtained.

【0031】請求項11記載の発明は、上記請求項1〜
3のうち1つに記載の冷凍装置において、搬送手段を、
液配管(LL)に設けられ液冷媒を加熱することによって高
圧を生じさせる加圧手段(30A)及びガス冷媒を冷却する
ことによって低圧を生じさせる減圧手段(30B)の少なく
とも一方を備えさせて成し、この手段によって生じる圧
力と利用側冷媒回路(C) 内の圧力との差により冷媒の循
環駆動力を発生させるものとしている。
The invention according to claim 11 is the above-mentioned claim 1
In the refrigeration apparatus according to one of the items 3,
The liquid pipe (LL) is provided with at least one of a pressurizing means (30A) for generating a high pressure by heating the liquid refrigerant and a pressure reducing means (30B) for generating a low pressure by cooling the gas refrigerant. However, the circulation driving force of the refrigerant is generated by the difference between the pressure generated by this means and the pressure in the use side refrigerant circuit (C).

【0032】請求項12記載の発明は、上記請求項11
記載の冷凍装置において、加圧手段を、液冷媒を貯留可
能な容器(T) に接続し且つ冷媒を貯留した駆動源熱交換
器(30A)とし、該駆動源熱交換器(30A)内の液冷媒を加熱
し、該冷媒の蒸発に伴って上昇する圧力を容器(T) 内に
作用させて、該容器(T) から液冷媒を押し出すようにし
ている。
The invention according to claim 12 is the above-mentioned claim 11.
In the refrigeration apparatus described, the pressurizing means is a drive source heat exchanger (30A) that is connected to a container (T) capable of storing a liquid refrigerant and stores the refrigerant, and the drive source heat exchanger (30A) The liquid refrigerant is heated, and the pressure that rises with the evaporation of the refrigerant is applied to the inside of the container (T) to push the liquid refrigerant out of the container (T).

【0033】請求項13記載の発明は、上記請求項11
記載の冷凍装置において、減圧手段を、液冷媒を貯留可
能な容器(T) に接続し且つ冷媒を貯留した駆動源熱交換
器(30B)とし、該駆動源熱交換器(30B)内のガス冷媒を冷
却し、該ガス冷媒の凝縮に伴って下降する圧力を容器
(T) 内に作用させて、該容器(T) へ冷媒を吸引するよう
にしている。
The invention according to claim 13 is the above-mentioned claim 11.
In the refrigerating apparatus according to the description, the decompression means is a drive source heat exchanger (30B) connected to a container (T) capable of storing a liquid refrigerant and storing the refrigerant, and the gas in the drive source heat exchanger (30B) The refrigerant is cooled, and the pressure that drops with the condensation of the gas refrigerant is applied to the container.
The refrigerant is sucked into the container (T) by acting in the (T).

【0034】これら特定事項により、ポンプ等の機械的
手段を使用することなく、熱を利用することによって冷
媒の搬送駆動力を得ることができ、信頼性の高い冷媒搬
送動作が得られる。
Due to these specified matters, the refrigerant driving force can be obtained by utilizing the heat without using a mechanical means such as a pump, and a highly reliable refrigerant carrying operation can be obtained.

【0035】[0035]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。本形態は、本発明に係る冷凍装置
を空気調和装置の冷媒回路に適用した場合である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The present embodiment is a case where the refrigeration apparatus according to the present invention is applied to a refrigerant circuit of an air conditioner.

【0036】−冷媒回路の説明− 先ず、本実施形態に係る冷媒回路の回路構成について図
1を用いて説明する。本形態の冷媒回路は、熱源として
第1及び第2の2つの1次側冷媒回路(A,B)と利用側冷
媒回路としての2次側冷媒回路(C)とを備えた2次冷媒
システムでなる。この1次側冷媒回路(A,B)と2次側冷
媒回路(C)との間で熱搬送を行うことにより、室内の冷
暖房を行うようになっている。
-Description of Refrigerant Circuit-First, the circuit configuration of the refrigerant circuit according to the present embodiment will be described with reference to FIG. The refrigerant circuit of the present embodiment is a secondary refrigerant system including first and second two primary side refrigerant circuits (A, B) as heat sources and a secondary side refrigerant circuit (C) as a use side refrigerant circuit. It consists of Heat is transferred between the primary side refrigerant circuit (A, B) and the secondary side refrigerant circuit (C) to cool and heat the room.

【0037】以下、各冷媒回路について説明する。第1
及び第2の1次側冷媒回路(A,B)は互いに同一の構成で
あって、圧縮機(1A),(1B)、四路切換弁(2A),(2B)、室外
熱交換器(3A),(3B)、1次側電動膨張弁(4A),(4B)及び後
述する第1及び第2の中間熱交換器(5A),(5B)の熱供給
部としての1次側冷媒流路(5a),(5a)が冷媒配管(6A),(6
B)によって接続されて成っている。
Each refrigerant circuit will be described below. First
The second primary side refrigerant circuit (A, B) has the same configuration as each other, and the compressors (1A), (1B), the four-way switching valves (2A), (2B), the outdoor heat exchanger ( 3A), (3B), primary-side electric expansion valves (4A), (4B) and a primary-side refrigerant as a heat supply unit for first and second intermediate heat exchangers (5A), (5B) described later. Flow paths (5a), (5a) are refrigerant pipes (6A), (6
B) made up of connected.

【0038】これにより、四路切換弁(2A),(2B)が図中
実線側の切り換え状態になると、室外熱交換器(3A),(3
B)が凝縮器となり、中間熱交換器(5A),(5B)の1次側冷
媒流路(5a),(5a)が蒸発器となる。逆に、四路切換弁(2
A),(2B)が図中破線側の切り換え状態になると、冷媒の
循環方向が切り換わり、中間熱交換器(5A),(5B)の1次
側冷媒流路(5a),(5a)が凝縮器となり、室外熱交換器(3
A),(3B)が蒸発器となる構成である。
As a result, when the four-way switching valves (2A), (2B) are switched to the solid line side in the figure, the outdoor heat exchangers (3A), (3
B) serves as a condenser, and the primary side refrigerant passages (5a), (5a) of the intermediate heat exchangers (5A), (5B) serve as evaporators. On the contrary, the four-way switching valve (2
When A) and (2B) are switched to the broken line side in the figure, the circulation direction of the refrigerant switches, and the primary side refrigerant flow paths (5a) and (5a) of the intermediate heat exchangers (5A) and (5B) Becomes a condenser, and the outdoor heat exchanger (3
A) and (3B) are the evaporators.

【0039】一方、2次側冷媒回路(C)は、搬送手段と
してのポンプ(10)、四路切換弁(11)、各室内電動弁(12,
12)、室内ファン(F,F)が近接配置された利用側熱交換器
としての室内熱交換器(13,13)、中間熱交換器(5A),(5B)
の受熱流路としての2次側冷媒流路(5b),(5b)が冷媒配
管(6C)によって接続されている。室内熱交換器(13,13)
の上端部から中間熱交換器(5A),(5B)の上端部に亘る冷
媒配管はガス配管(LG)であり、室内熱交換器(13,13)の
下端部から中間熱交換器(5A),(5B)の下端部に亘る冷媒
配管は液配管(LL)である。
On the other hand, the secondary side refrigerant circuit (C) includes a pump (10) as a conveying means, a four-way switching valve (11), each indoor motor-operated valve (12, 12).
12), indoor heat exchangers (13, 13) as indoor heat exchangers (F, F) arranged close to each other, and intermediate heat exchangers (5A), (5B)
The secondary side refrigerant flow paths (5b), (5b) as the heat receiving flow paths of are connected by the refrigerant pipe (6C). Indoor heat exchanger (13,13)
The refrigerant pipe from the upper end of the intermediate heat exchanger (5A) to the upper end of the (5B) is a gas pipe (LG), from the lower end of the indoor heat exchanger (13, 13) to the intermediate heat exchanger (5A ), (5B) the refrigerant pipe extending to the lower end is the liquid pipe (LL).

【0040】これにより、四路切換弁(11)が図中実線側
の切り換え状態になると、室内熱交換器(13,13)で冷媒
が蒸発して吸熱動作(室内の冷房)が行われ、中間熱交
換器(5A),(5B)の2次側冷媒流路(5b),(5b)で冷媒が凝縮
して放熱動作が行われる。逆に、四路切換弁(11)が図中
破線側の切り換え状態になると、冷媒の循環方向が切り
換わり、中間熱交換器(5A),(5B)の2次側冷媒流路(5b),
(5b)で冷媒が蒸発して吸熱動作が行われ、室内熱交換器
(13,13)で冷媒が凝縮して吸熱動作(室内の暖房)が行
われる構成である。
As a result, when the four-way selector valve (11) is switched to the solid line side in the figure, the refrigerant evaporates in the indoor heat exchanger (13, 13) and the heat absorption operation (indoor cooling) is performed. The refrigerant is condensed in the secondary side refrigerant flow paths (5b) and (5b) of the intermediate heat exchangers (5A) and (5B) to perform the heat radiation operation. On the contrary, when the four-way switching valve (11) is switched to the broken line side in the figure, the circulation direction of the refrigerant is switched and the secondary side refrigerant flow path (5b) of the intermediate heat exchangers (5A), (5B) ,
In (5b), the refrigerant evaporates and an endothermic operation is performed, and the indoor heat exchanger is
The refrigerant is condensed at (13, 13) to perform the heat absorbing operation (heating of the room).

【0041】上記2次側冷媒流路(5b),(5b)は互いに並
列に接続されている。つまり、2次側冷媒回路(C)のガ
ス配管(LG)及び液配管(LL)はそれぞれ分岐部(6C-A,6C-
B)において分岐されており、ガス配管(LG)の各分岐管(L
G-1,LG-2)が2次側冷媒流路(5b),(5b)の上側(ガス側)
に、液配管(LL)の各分岐管(LL-1,LL-2)が2次側冷媒流
路(5b),(5b)の下側(液側)にそれぞれ接続されてい
る。
The secondary side refrigerant channels (5b), (5b) are connected in parallel with each other. That is, the gas piping (LG) and the liquid piping (LL) of the secondary side refrigerant circuit (C) are respectively branched (6C-A, 6C-
B), and each branch pipe (L) of the gas pipe (LG)
G-1, LG-2) is above the secondary side refrigerant flow paths (5b), (5b) (gas side)
Further, each branch pipe (LL-1, LL-2) of the liquid pipe (LL) is connected to the lower side (liquid side) of the secondary side refrigerant flow paths (5b), (5b).

【0042】このような構成により、各中間熱交換器(5
A),(5B)では、1次側冷媒流路(5a)及び2次側冷媒流路
(5b)の間で熱交換が可能となっている。即ち、第1の1
次側冷媒回路(A)を循環する冷媒と第1中間熱交換器(5
A)の2次側冷媒流路(5b)を流通する冷媒との間で熱交換
が行われ、また、第2の1次側冷媒回路(B)を循環する
冷媒と第2中間熱交換器(5B)の2次側冷媒流路(5b)を流
通する冷媒との間で熱交換が行われる構成である。つま
り、本冷媒回路は、2次側冷媒回路(C)において互いに
並列に接続された第1及び第2の中間熱交換器(5A,5B)
を介して、複数の1次側冷媒回路(A,B)と2次側冷媒回
路(C)とが熱搬送可能に接続されて成るいわゆる2次冷
媒システムにより構成されている。
With this structure, each intermediate heat exchanger (5
In A) and (5B), the primary side refrigerant channel (5a) and the secondary side refrigerant channel
Heat exchange is possible between (5b). That is, the first one
The refrigerant circulating in the secondary side refrigerant circuit (A) and the first intermediate heat exchanger (5
Heat is exchanged with the refrigerant flowing through the secondary refrigerant passage (5b) of A), and the refrigerant circulating through the second primary refrigerant circuit (B) and the second intermediate heat exchanger. (5B) is a configuration in which heat exchange is performed with the refrigerant flowing through the secondary side refrigerant flow path (5b). That is, the present refrigerant circuit includes the first and second intermediate heat exchangers (5A, 5B) connected in parallel to each other in the secondary side refrigerant circuit (C).
It is constituted by a so-called secondary refrigerant system in which a plurality of primary side refrigerant circuits (A, B) and a secondary side refrigerant circuit (C) are connected via heat transfer via heat transfer.

【0043】また、上記各1次側冷媒回路(A,B)に備え
られている圧縮機(1A,1B)のうち第1の1次側冷媒回路
(A)の圧縮機(1A)はインバータ制御により容量可変に構
成されている。一方、第2の1次側冷媒回路(B)の圧縮
機(1B)は容量一定のものである。
Further, the first primary side refrigerant circuit of the compressors (1A, 1B) provided in each of the primary side refrigerant circuits (A, B)
The compressor (1A) of (A) is configured to have a variable capacity by inverter control. On the other hand, the compressor (1B) of the second primary side refrigerant circuit (B) has a constant capacity.

【0044】−中間熱交換器の配設状態の説明− 本形態の特徴は、各中間熱交換器(5A,5B)の配設状態に
ある。図2に示すように、本形態における各中間熱交換
器(5A,5B)はプレート式熱交換器であって、積層された
複数枚のプレート同士の間に各冷媒流路(5a,5b)が形成
されており、互いに隣り合う冷媒流路(5a,5b)の一方が
1次側冷媒流路(5a)であり、他方が2次側冷媒流路(5b)
となるように構成されている。つまり、各冷媒流路(5
a),(5b)を流れる冷媒同士が1枚のプレートを介して熱
交換を行う構成である。
-Description of Arrangement State of Intermediate Heat Exchanger-The feature of this embodiment is the arrangement state of each intermediate heat exchanger (5A, 5B). As shown in FIG. 2, each intermediate heat exchanger (5A, 5B) in the present embodiment is a plate heat exchanger, and each refrigerant flow path (5a, 5b) is provided between a plurality of stacked plates. Is formed, one of the refrigerant channels (5a, 5b) adjacent to each other is the primary side refrigerant channel (5a), and the other is the secondary side refrigerant channel (5b)
Is configured to be. That is, each refrigerant flow path (5
In this configuration, the refrigerants flowing through a) and (5b) perform heat exchange via one plate.

【0045】図2において、各中間熱交換器(5A,5B)の
上端右隅角部及び下端右隅角部には1次側冷媒回路(A,
B)の冷媒配管(6A,6B)が接続されており、この冷媒配管
(6A,6B)が中間熱交換器(5A,5B)の1次側冷媒流路(5a,5
a)に連通している。
In FIG. 2, the primary side refrigerant circuit (A, 5A, 5B) is provided at the upper right corner and the lower right corner of each intermediate heat exchanger (5A, 5B).
Refrigerant piping (6A, 6B) of B) is connected.
(6A, 6B) is the primary side refrigerant flow path (5a, 5B) of the intermediate heat exchanger (5A, 5B)
It communicates with a).

【0046】一方、中間熱交換器(5A,5B)の上端左隅角
部及び下端左隅角部には2次側冷媒回路(C)の各分岐管
(LL-1〜LG-2)が接続している。具体的には、上端左隅角
部にはガス配管(LG)の各分岐管(LG-1,LG-2)が、下端左
隅角部には液配管(LL)の各分岐管(LL-1,LL-2)がそれぞ
れ接続している。各ガス側分岐管(LG-1,LG-2)同士は、
中間熱交換器(5A,5B)の上側に位置する分岐部(6C-A)で
接続している。一方、各液側分岐管(LL-1,LL-2)同士
は、中間熱交換器(5A,5B)の下側に位置する分岐部(6C-
B)で接続している。以下、これら分岐管(LL-1〜LG-2)の
配設状態、特に接続位置について詳述する。
On the other hand, the branch pipes of the secondary side refrigerant circuit (C) are provided at the upper left corner and the lower left corner of the intermediate heat exchanger (5A, 5B).
(LL-1 to LG-2) are connected. Specifically, each branch pipe (LG-1, LG-2) of the gas pipe (LG) is located at the upper left corner, and each branch pipe (LL-1) of the liquid pipe (LL) is located at the lower left corner. , LL-2) are connected respectively. For each gas side branch pipe (LG-1, LG-2),
The intermediate heat exchangers (5A, 5B) are connected at the branch (6C-A) located above. On the other hand, the liquid side branch pipes (LL-1, LL-2) are connected to each other by the branch part (6C-) located below the intermediate heat exchanger (5A, 5B).
Connected in B). Hereinafter, the arrangement state of these branch pipes (LL-1 to LG-2), particularly the connection position, will be described in detail.

【0047】各ガス側の分岐管(LG-1,LG-2)は、熱交換
器(5A,5B)の上端左隅角部への接続部から一旦水平方向
(紙面手前側)に延びる第1水平部(LG-1a,LG-2a)を経
て上方へ折れ曲がり、この上方延長部(LG-1b,LG-2b)を
経た後、相手側の分岐管(LG-2,LG-1)に向かって水平方
向に延びる第2水平部(LG-1c,LG-2c)により互いに接続
される。
The branch pipes (LG-1, LG-2) on each gas side first extend in the horizontal direction (front side of the drawing) from the connecting portion to the upper left corner of the heat exchanger (5A, 5B). Bend upwards through the horizontal parts (LG-1a, LG-2a), and after passing through the upward extensions (LG-1b, LG-2b), head toward the branch pipe (LG-2, LG-1) on the other side. Are connected to each other by second horizontal portions (LG-1c, LG-2c) that extend in the horizontal direction.

【0048】一方、各液側の分岐管(LL-1,LL-2)は、熱
交換器(5A,5B)の下端左隅角部への接続部から一旦水平
方向(紙面手前側)に延びる第1水平部(LL-1a,LL-2a)
を経て下方へ折れ曲がり、この下方延長部(LL-1b,LL-2
b)を経た後、相手側の分岐管(LL-2,LL-1)に向かって水
平方向に延びる第2水平部(LL-1c,LL-2c)により互いに
接続される。
On the other hand, the branch pipes (LL-1, LL-2) on each liquid side temporarily extend in the horizontal direction (front side of the drawing) from the connection part to the lower left corner of the heat exchanger (5A, 5B). First horizontal part (LL-1a, LL-2a)
Bend downwards through this downward extension (LL-1b, LL-2
After passing through b), they are connected to each other by a second horizontal portion (LL-1c, LL-2c) extending horizontally toward the other branch pipe (LL-2, LL-1).

【0049】以下、上記上方延長部(LG-1b,LG-2b)及び
下方延長部(LL-1b,LL-2b)の高さ寸法(H1),(H2)について
説明する。
The height dimensions (H1) and (H2) of the upper extension portions (LG-1b, LG-2b) and the lower extension portions (LL-1b, LL-2b) will be described below.

【0050】先ず、上方延長部(LG-1b,LG-2b)の高さ寸
法(H1)は以下のように設定されている。つまり、今、例
えば第1の1次側冷媒回路(A)のみが駆動していて、各
中間熱交換器(5A,5B)のうち第1中間熱交換器(5A)では
熱交換動作が行われて冷媒が流通している一方、第2中
間熱交換器(5B)では熱交換動作が行われていない状態を
考える。この際、各中間熱交換器(5A,5B)の2次側冷媒
流路(5b,5b)のうち第1中間熱交換器(5A)の2次側冷媒
流路(5b)においてのみ冷媒の流通に伴う圧力損失が発生
している。そして、冷媒循環動作として液配管(LL)から
中間熱交換器(5A)に液冷媒が流入し、この冷媒が蒸発し
てガス配管(LG)に流出する場合(室内の暖房運転の場
合)、上記圧力損失により、第1中間熱交換器(5A)の2
次側冷媒流路(5b)では冷媒液面が下降し、圧力損失の生
じていない第2中間熱交換器(5B)の2次側冷媒流路(5b)
では冷媒液面が上昇することになる(図2の破線参
照)。この液面の差は上記圧力損失に応じて変化する。
また、圧力損失は冷媒流速が高いほど大きくなる。つま
り、冷媒流速が高いほど第2中間熱交換器(5B)の2次側
冷媒流路(5b)における冷媒液面は上昇する。そして、上
方延長部(LG-2b)の上端位置(分岐部(6C-A)の高さ位
置)は、この冷媒流速が最大である場合の第2中間熱交
換器(5B)の2次側冷媒流路(5b)での冷媒液面よりも高い
位置に設定されている。つまり、冷媒流速が最大になっ
たとしても第2中間熱交換器(5B)の2次側冷媒流路(5b)
の冷媒液面が分岐部(6C-A)に達しない位置に設定されて
いる。
First, the height dimension (H1) of the upward extension portions (LG-1b, LG-2b) is set as follows. That is, for example, only the first primary side refrigerant circuit (A) is currently driven, and the heat exchange operation is performed in the first intermediate heat exchanger (5A) among the intermediate heat exchangers (5A, 5B). Let us consider a state in which the refrigerant is being circulated and the second intermediate heat exchanger (5B) is not performing heat exchange operation. At this time, among the secondary side refrigerant flow paths (5b, 5b) of each intermediate heat exchanger (5A, 5B), only the secondary side refrigerant flow path (5b) of the first intermediate heat exchanger (5A) There is a pressure loss due to distribution. Then, when the liquid refrigerant flows from the liquid pipe (LL) into the intermediate heat exchanger (5A) as a refrigerant circulation operation, and this refrigerant evaporates and flows out to the gas pipe (LG) (in the case of indoor heating operation), Due to the above pressure loss, 2 of the first intermediate heat exchanger (5A)
In the secondary side refrigerant flow path (5b), the liquid level of the refrigerant is lowered and the secondary side refrigerant flow path (5b) of the second intermediate heat exchanger (5B) in which no pressure loss occurs
Then, the liquid level of the refrigerant rises (see the broken line in FIG. 2). This difference in liquid level changes according to the pressure loss.
Further, the pressure loss increases as the refrigerant flow velocity increases. That is, the higher the flow velocity of the refrigerant, the higher the liquid level of the refrigerant in the secondary side refrigerant flow path (5b) of the second intermediate heat exchanger (5B). And, the upper end position of the upward extension part (LG-2b) (the height position of the branch part (6C-A)) is the secondary side of the second intermediate heat exchanger (5B) when this refrigerant flow velocity is the maximum. It is set at a position higher than the liquid surface of the refrigerant in the refrigerant channel (5b). That is, even if the refrigerant flow velocity becomes maximum, the secondary side refrigerant flow path (5b) of the second intermediate heat exchanger (5B)
Is set at a position where the liquid level of the refrigerant does not reach the branch portion (6C-A).

【0051】言い換えると、今、冷媒流速が最大である
場合に、上昇液面の高さが第2中間熱交換器(5B)の2次
側冷媒流路(5b)での上側開口まで達する場合、熱交換を
行っている第1中間熱交換器(5A)の2次側冷媒通路(5b)
の圧力損失をΔPVeとし、仮に上方延長部(LG-2b)に液冷
媒が満たされた場合の該上方延長部(LG-2b)の位置水頭
をΔPh1とすると、 ΔPh1>ΔPVe …(1) の関係が成り立つように上方延長部(LG-1b,LG-2b)の高
さ寸法(H1)を設定している。
In other words, when the flow velocity of the refrigerant is maximum and the height of the rising liquid level reaches the upper opening of the secondary side refrigerant flow path (5b) of the second intermediate heat exchanger (5B). , The secondary side refrigerant passage (5b) of the first intermediate heat exchanger (5A) performing heat exchange
Let ΔPVe be the pressure loss of ΔPh, and if the position head of the upper extension (LG-2b) when the upper extension (LG-2b) is filled with liquid refrigerant is ΔPh1, then ΔPh1> ΔPVe (1) The height dimension (H1) of the upper extension (LG-1b, LG-2b) is set so that the relationship holds.

【0052】一方、下方延長部(LL-1b,LL-2b)の高さ寸
法(H2)は以下のように設定されている。つまり、上記と
同様に、例えば第1の1次側冷媒回路(A)のみが駆動し
ていて、各中間熱交換器(5A,5B)のうち第1中間熱交換
器(5A)では熱交換動作が行われて冷媒が流通している一
方、第2中間熱交換器(5B)では熱交換動作が行われてい
ない状態を考える。この際にも、各中間熱交換器(5A,5
B)の2次側冷媒流路(5b,5b)のうち第1中間熱交換器(5
A)の2次側冷媒流路(5b)においてのみ冷媒の流通に伴う
圧力損失が発生している。そして、冷媒循環動作として
ガス配管(LG)から中間熱交換器(5A)にガス冷媒が流入
し、この冷媒が凝縮して液配管(LL)に流出する場合(室
内の冷房運転の場合)、上記圧力損失により、第1中間
熱交換器(5A)の2次側冷媒流路(5b)では冷媒液面が上昇
し、圧力損失の生じていない第2中間熱交換器(5B)の2
次側冷媒流路(5b)では冷媒液面が下降することになる
(図2の一点鎖線参照)。この液面の差も上記圧力損失
に応じて変化する。また、圧力損失は冷媒流速が高いほ
ど大きくなる。つまり、冷媒流速が高いほど第2中間熱
交換器(5B)の2次側冷媒流路(5b)における冷媒液面は下
降する。そして、下方延長部(LL-2b)の下端位置(分岐
部(6C-B)の高さ位置)は、この冷媒流速が最大である場
合の第2中間熱交換器(5B)の2次側冷媒流路(5b)での冷
媒液面よりも低い位置に設定されている。つまり、冷媒
流速が最大になったとしても第2中間熱交換器(5B)の2
次側冷媒流路(5b)の冷媒液面が分岐部(6C-B)に達しない
位置に設定されている。
On the other hand, the height dimension (H2) of the downward extension portions (LL-1b, LL-2b) is set as follows. That is, similar to the above, for example, only the first primary side refrigerant circuit (A) is driven, and in the first intermediate heat exchanger (5A) of the intermediate heat exchangers (5A, 5B), heat exchange is performed. Consider a state in which the operation is performed and the refrigerant is flowing, but the heat exchange operation is not performed in the second intermediate heat exchanger (5B). Also in this case, each intermediate heat exchanger (5A, 5A
Of the secondary side refrigerant flow paths (5b, 5b) of (B), the first intermediate heat exchanger (5
Only in the secondary side refrigerant flow path (5b) of A), a pressure loss occurs due to the circulation of the refrigerant. Then, as a refrigerant circulation operation, the gas refrigerant flows from the gas pipe (LG) to the intermediate heat exchanger (5A), and when this refrigerant condenses and flows out to the liquid pipe (LL) (in the case of indoor cooling operation), Due to the pressure loss, the refrigerant liquid level rises in the secondary side refrigerant flow path (5b) of the first intermediate heat exchanger (5A), and there is no pressure loss in the second intermediate heat exchanger (5B).
The liquid surface of the refrigerant descends in the secondary side refrigerant channel (5b) (see the alternate long and short dash line in FIG. 2). This difference in liquid level also changes according to the pressure loss. Further, the pressure loss increases as the refrigerant flow velocity increases. That is, the higher the flow velocity of the refrigerant, the lower the liquid level of the refrigerant in the secondary side refrigerant flow path (5b) of the second intermediate heat exchanger (5B). And the lower end position of the downward extension part (LL-2b) (the height position of the branch part (6C-B)) is the secondary side of the second intermediate heat exchanger (5B) when this refrigerant flow velocity is the maximum. It is set at a position lower than the liquid level of the refrigerant in the refrigerant channel (5b). In other words, even if the refrigerant flow velocity is maximized, the second intermediate heat exchanger (5B)
The liquid level of the refrigerant in the secondary side refrigerant channel (5b) is set at a position that does not reach the branch portion (6C-B).

【0053】言い換えると、今、冷媒流速が最大である
場合に、下降液面の高さが第2中間熱交換器(5B)の2次
側冷媒流路(5b)での下側開口まで達する場合、熱交換を
行っている中間熱交換器(5A)の2次側冷媒通路(5b)の圧
力損失をΔPVcとし、仮に下方延長部(LL-2b)に液冷媒が
満たされた場合の該下方延長部(LL-2b)の位置水頭をΔP
h2とすると、 ΔPh2>ΔPVc …(2) の関係が成り立つように下方延長部(LL-1b,LL-2b)の高
さ寸法(H2)を設定している。
In other words, when the flow velocity of the refrigerant is maximum, the height of the descending liquid surface reaches the lower opening of the secondary refrigerant passage (5b) of the second intermediate heat exchanger (5B). In this case, the pressure loss of the secondary side refrigerant passage (5b) of the intermediate heat exchanger (5A) which is performing heat exchange is ΔPVc, and if the lower extension (LL-2b) is filled with liquid refrigerant, Position of the downward extension (LL-2b) ΔP
When h2 is set, the height dimension (H2) of the downward extension portions (LL-1b, LL-2b) is set so that the relationship of ΔPh2> ΔPVc (2) holds.

【0054】以上の説明は、第1の1次側冷媒回路(A)
のみが駆動している場合について考えたが、第2の1次
側冷媒回路(B)のみが駆動している場合でも同様であ
る。また、一方の1次側冷媒回路の能力を低下させて中
間熱交換器での熱交換量を変化させる際も同様の現象に
なる。
The above description is based on the first primary side refrigerant circuit (A).
Although the case where only the second primary side refrigerant circuit (B) is driven has been considered, the same applies to the case where only the second primary side refrigerant circuit (B) is driven. The same phenomenon occurs when the capacity of one of the primary side refrigerant circuits is reduced and the amount of heat exchange in the intermediate heat exchanger is changed.

【0055】−冷媒循環動作の説明− 次に、本形態の冷媒循環動作について説明する。先ず、
室内の冷房運転時、各1次側冷媒回路(A,B)では、四路
切換弁(2A,2B)が図中実線側の切り換え状態となると共
に、各圧縮機(1A,1B)が駆動する。一方、2次側冷媒回
路(C)では、四路切換弁(11)が図中実線側の切り換え状
態となると共にポンプ(10)が駆動する。これにより各回
路(A,B,C)での冷媒循環が行われる。
-Description of Refrigerant Circulation Operation-Next, the refrigerant circulation operation of the present embodiment will be described. First,
At the time of indoor cooling operation, in each primary side refrigerant circuit (A, B), the four-way switching valve (2A, 2B) is switched to the solid line side in the figure, and each compressor (1A, 1B) is driven. To do. On the other hand, in the secondary-side refrigerant circuit (C), the four-way switching valve (11) is switched to the solid line side in the figure, and the pump (10) is driven. As a result, the refrigerant circulation in each circuit (A, B, C) is performed.

【0056】各1次側冷媒回路(A,B)では、図3に実線
の矢印で示すように、圧縮機(1A,1B)から吐出した冷媒
が室外熱交換器(3A,3B)で凝縮し、1次側電動膨張弁(4
A,4B)で減圧した後、中間熱交換器(5A,5B)の1次側冷媒
流路(5a,5a)において2次側冷媒回路(C)を循環する冷媒
との間で熱交換を行って蒸発し、圧縮機(1A,1B)に吸入
されるといった冷媒循環動作を繰り返す。
In each primary side refrigerant circuit (A, B), the refrigerant discharged from the compressor (1A, 1B) is condensed in the outdoor heat exchanger (3A, 3B) as shown by the solid arrow in FIG. The primary electric expansion valve (4
After decompressing with A, 4B), heat exchange with the refrigerant circulating in the secondary side refrigerant circuit (C) in the primary side refrigerant flow path (5a, 5a) of the intermediate heat exchanger (5A, 5B) The refrigerant circulation operation is repeated, in which the refrigerant is evaporated to be sucked into the compressor (1A, 1B).

【0057】一方、2次側冷媒回路(C)では、図3に破
線の矢印で示すように、中間熱交換器(5A,5B)の2次側
冷媒流路(5b,5b)において1次側冷媒回路(A,B)を循環す
る冷媒との間で熱交換を行って凝縮した冷媒がポンプ(1
0)及び室内電動弁(12,12)を経て室内熱交換器(13,13)に
流入し、該室内熱交換器(13,13)において室内空気との
間で熱交換を行って蒸発する。これにより室内空気を冷
却する。その後、この冷媒は各ガス側の分岐管(LG-1,LG
-2)を経て中間熱交換器(5A,5B)の2次側冷媒流路(5b,5
b)に戻る。このような冷媒循環動作が2次側冷媒回路
(C)において行われる。
On the other hand, in the secondary side refrigerant circuit (C), as shown by the broken line arrow in FIG. 3, in the secondary side refrigerant flow paths (5b, 5b) of the intermediate heat exchangers (5A, 5B), the primary side Refrigerant condensed by exchanging heat with the refrigerant circulating in the side refrigerant circuit (A, B)
0) and the indoor motor-operated valve (12, 12) to flow into the indoor heat exchanger (13, 13), where heat is exchanged with the indoor air in the indoor heat exchanger (13, 13) to evaporate. . This cools the indoor air. After that, this refrigerant is distributed to each gas side branch pipe (LG-1, LG
-2) through the secondary side refrigerant flow path (5b, 5B) of the intermediate heat exchanger (5A, 5B)
Return to b). Such a refrigerant circulation operation is the secondary side refrigerant circuit.
(C).

【0058】このような各回路(A,B,C)での冷媒循環動
作において、冷房負荷の変化によって冷房能力を低下さ
せる際には、例えば、第2の1次側冷媒回路(B)の圧縮
機(1B)を停止させる。これにより、第2中間熱交換器(5
B)では熱交換が行われなくなり、第1中間熱交換器(5A)
のみの熱交換によって2次側冷媒回路(C)に冷熱が与え
られることになる。
In the refrigerant circulating operation in each of the circuits (A, B, C) as described above, when the cooling capacity is reduced by the change of the cooling load, for example, the second primary side refrigerant circuit (B) is Stop the compressor (1B). As a result, the second intermediate heat exchanger (5
In B), heat exchange is not performed, and the first intermediate heat exchanger (5A)
Cold heat is given to the secondary side refrigerant circuit (C) by only heat exchange.

【0059】このような状況では、各中間熱交換器(5A,
5B)の2次側冷媒流路(5b,5b)のうち第1中間熱交換器(5
A)の2次側冷媒流路(5b)のみに冷媒が流れる。つまり、
この第1中間熱交換器(5A)の2次側冷媒流路(5b)のみに
おいて冷媒に圧力損失が生じる。このため、図2に一点
鎖線で示すように、第1中間熱交換器(5A)の2次側冷媒
流路(5b)では冷媒液面が上昇し、一方、第2中間熱交換
器(5B)の2次側冷媒流路(5b)では冷媒液面が下降する。
この状態で互いに液面がバランスすることになる。そし
て、第2中間熱交換器(5B)の2次側冷媒流路(5b)では、
分岐管(LL-2)に下方延長部(LL-2b)があり、この部分に
液冷媒が存在することで、ガス冷媒が該2次側冷媒流路
(5b)を流れてポンプ(10)に戻るといったことはなくな
る。従って、分岐管(LG-2)に電磁弁や電動弁を設けるこ
となしに、熱交換を行っていない中間熱交換器(5B)での
冷媒の流通を阻止することができ、2次側冷媒回路(C)
で循環する冷媒の全てを第2中間熱交換器(5B)において
熱交換させることができる。
In such a situation, each intermediate heat exchanger (5A,
5B) of the secondary side refrigerant flow paths (5b, 5b), the first intermediate heat exchanger (5
The refrigerant flows only in the secondary side refrigerant passage (5b) of A). That is,
Pressure loss occurs in the refrigerant only in the secondary side refrigerant flow path (5b) of the first intermediate heat exchanger (5A). Therefore, as shown by the alternate long and short dash line in FIG. 2, the refrigerant liquid level rises in the secondary side refrigerant flow path (5b) of the first intermediate heat exchanger (5A), while the second intermediate heat exchanger (5B) In the secondary side refrigerant flow path (5b) of (1), the liquid level of the refrigerant is lowered.
In this state, the liquid surfaces will be balanced with each other. And in the secondary side refrigerant flow path (5b) of the second intermediate heat exchanger (5B),
The branch pipe (LL-2) has a downward extension (LL-2b), and the presence of the liquid refrigerant in this portion allows the gas refrigerant to flow into the secondary side refrigerant flow path.
It no longer flows through (5b) and returns to the pump (10). Therefore, it is possible to prevent the refrigerant from flowing in the intermediate heat exchanger (5B) that does not perform heat exchange without providing a solenoid valve or a motor-operated valve in the branch pipe (LG-2). Circuit (C)
All the refrigerant circulated in 2 can be heat-exchanged in the second intermediate heat exchanger (5B).

【0060】次に、室内の暖房運転時について説明す
る。この場合、各1次側冷媒回路(A,B)では各四路切換
弁(2A,2B)が図中破線側の切り換え状態となる。これに
より、各1次側冷媒回路(A,B)では、上述とは反対方向
に冷媒が循環する。つまり、この1次側冷媒回路(A,B)
を循環する冷媒は、中間熱交換器(5A,5B)の1次側冷媒
流路(5a,5a)において、2次側冷媒回路(C)を循環する冷
媒との間で熱交換を行って凝縮し、室外熱交換器(5A,5
B)で蒸発することになる。
Next, the heating operation of the room will be described. In this case, in each primary side refrigerant circuit (A, B), each four way switching valve (2A, 2B) will be in the switching state of the broken line side in the figure. As a result, in each of the primary side refrigerant circuits (A, B), the refrigerant circulates in the opposite direction to the above. That is, this primary side refrigerant circuit (A, B)
The refrigerant circulating in the intermediate heat exchanger (5A, 5B) in the primary side refrigerant flow path (5a, 5a) performs heat exchange with the refrigerant circulating in the secondary side refrigerant circuit (C). After condensation, the outdoor heat exchanger (5A, 5A
It will be evaporated in B).

【0061】一方、2次側冷媒回路(C)では、四路切換
弁(11)が図中破線の切り換え状態となる。これにより、
中間熱交換器(5A,5B)の2次側冷媒流路(5b,5b)を流れる
液冷媒が1次側冷媒回路(A,B)を循環する冷媒との間で
熱交換を行って加熱されて蒸発し、室内熱交換器(13,1
3)において室内空気との間で熱交換を行って凝縮する。
これにより室内空気を加熱する。その後、この冷媒は液
配管(LL)及びポンプ(10)を経て、再び中間熱交換器(5A,
5B)の2次側冷媒流路(5b,5b)に戻る。
On the other hand, in the secondary side refrigerant circuit (C), the four-way switching valve (11) is in the switching state indicated by the broken line in the figure. This allows
Liquid refrigerant flowing in the secondary side refrigerant flow paths (5b, 5b) of the intermediate heat exchanger (5A, 5B) heats by exchanging heat with the refrigerant circulating in the primary side refrigerant circuit (A, B). And evaporate, and the indoor heat exchanger (13,1
In 3), heat is exchanged with room air to condense.
This heats the indoor air. Thereafter, this refrigerant is passed through the liquid pipe (LL) and the pump (10), and again the intermediate heat exchanger (5A,
It returns to the secondary side refrigerant flow path (5b, 5b) of 5B).

【0062】この暖房運転時においても、暖房負荷の変
化によって暖房能力を低下させる際には、第2の1次側
冷媒回路(B)の圧縮機(1B)を停止させる。これにより、
第2中間熱交換器(5B)では熱交換が行われなくなり、第
1中間熱交換器(5A)のみの熱交換によって2次側冷媒回
路(C)に温熱が与えられることになる。
Even during this heating operation, when the heating capacity is reduced due to a change in heating load, the compressor (1B) of the second primary side refrigerant circuit (B) is stopped. This allows
The second intermediate heat exchanger (5B) does not perform heat exchange, and the secondary side refrigerant circuit (C) is heated by the heat exchange of only the first intermediate heat exchanger (5A).

【0063】このような状況では、各中間熱交換器(5A,
5B)の2次側冷媒流路(5b,5b)のうち第1中間熱交換器(5
A)の2次側冷媒流路(5b)のみに冷媒が流れる。つまり、
この第1中間熱交換器(5A)の2次側冷媒流路(5b)のみに
おいて冷媒に圧力損失が生じる。このため、図2に破線
で示すように、第1中間熱交換器(5A)の2次側冷媒流路
(5b)では冷媒液面が下降し、一方、第2中間熱交換器(5
B)の2次側冷媒流路(5b)では冷媒液面が上昇する。この
状態で互いに液面がバランスすることになる。そして、
第2中間熱交換器(5B)の2次側冷媒流路(5b)では、分岐
管(LG-2)に上方延長部(LG-2b)があるために、液冷媒が
該2次側冷媒流路(5b)を流れてガス配管(LG)に流出する
といったことはなくなる。従って、分岐管(LG-2)に電磁
弁や電動弁を設けることなしに、熱交換を行っていない
中間熱交換器(5B)での冷媒の流通を阻止することがで
き、2次側冷媒回路(C)で循環する冷媒の全てを第2中
間熱交換器(5B)において熱交換させることができる。
In such a situation, each intermediate heat exchanger (5A,
5B) of the secondary side refrigerant flow paths (5b, 5b), the first intermediate heat exchanger (5
The refrigerant flows only in the secondary side refrigerant passage (5b) of A). That is,
Pressure loss occurs in the refrigerant only in the secondary side refrigerant flow path (5b) of the first intermediate heat exchanger (5A). Therefore, as shown by the broken line in FIG. 2, the secondary side refrigerant flow path of the first intermediate heat exchanger (5A).
In (5b), the liquid level of the refrigerant drops, while the second intermediate heat exchanger (5
In the secondary side refrigerant flow path (5b) of B), the refrigerant liquid level rises. In this state, the liquid surfaces will be balanced with each other. And
In the secondary side refrigerant flow path (5b) of the second intermediate heat exchanger (5B), since the branch pipe (LG-2) has the upward extension (LG-2b), the liquid refrigerant is the secondary side refrigerant. It does not flow through the flow path (5b) to the gas pipe (LG). Therefore, it is possible to prevent the refrigerant from flowing in the intermediate heat exchanger (5B) that does not perform heat exchange without providing a solenoid valve or a motor-operated valve in the branch pipe (LG-2). All the refrigerant circulating in the circuit (C) can be heat-exchanged in the second intermediate heat exchanger (5B).

【0064】以上のように、本形態によれば、冷房運転
及び暖房運転共に、熱交換動作を行っていない中間熱交
換器(5B)の利用側熱交換部(5b)に冷媒が流れてしまって
冷凍能力が必要以上に低下するといった状況の発生を回
避することができる。また、冷房運転時に、ガス冷媒が
第2中間熱交換器(5B)を通過してガス相のままポンプ(1
0)に吸入されてしまうといった不具合も回避できる。つ
まり、分岐管(LG-2)に電磁弁や電動弁を設ける場合に
は、回路全体としての部品点数の増大を招き、且つ運転
状態に応じた弁の開度調整動作が必要になってしまう
が、本形態の構成によれば、この弁を設けることなし
に、弁を設けた場合と同様の効果を奏することができ
る。
As described above, according to the present embodiment, the refrigerant has flowed to the use side heat exchange section (5b) of the intermediate heat exchanger (5B) which is not performing the heat exchange operation in both the cooling operation and the heating operation. Therefore, it is possible to avoid a situation where the refrigerating capacity is lowered more than necessary. Further, during the cooling operation, the gas refrigerant passes through the second intermediate heat exchanger (5B) and remains in the gas phase while being pumped (1
It is possible to avoid the problem of being inhaled by 0). That is, when a solenoid valve or a motorized valve is provided in the branch pipe (LG-2), the number of parts in the circuit as a whole is increased, and the valve opening adjustment operation according to the operating state is required. However, according to the configuration of the present embodiment, it is possible to achieve the same effect as when the valve is provided without providing the valve.

【0065】−搬送手段を改良した実施形態− 次に、2次側冷媒回路(C)での冷媒循環駆動力を得るた
めの搬送手段を改良した実施形態について説明する。上
述した実施形態では、ポンプ(10)により循環駆動力を得
るようにしたが、以下の実施形態は、液冷媒の加熱やガ
ス冷媒の冷却による相変化に伴う圧力変化を利用して搬
送駆動力を得るようにしたものである。
-Embodiment in which the conveying means is improved-Next, an embodiment in which the conveying means for obtaining the refrigerant circulation driving force in the secondary side refrigerant circuit (C) is improved will be described. In the above-described embodiment, the circulation driving force is obtained by the pump (10), but in the following embodiments, the transport driving force is utilized by utilizing the pressure change accompanying the phase change due to the heating of the liquid refrigerant or the cooling of the gas refrigerant. Is to get.

【0066】(第2実施形態)第2実施形態について図
4を用いて説明する。本図4に示すように、液ライン(L
L)に、液冷媒を貯留した容器としてのタンク(T)を接続
し、このタンク(T)に配管(25)を介して駆動用熱交換器
(30)を接続する。この駆動用熱交換器(30)には液冷媒が
貯留されている。また、この駆動用熱交換器(30)は図示
しない熱源により加熱或いは冷却されるようになってい
る。この状態で、駆動用熱交換器(30)を加熱すると、内
部の冷媒が蒸発し熱交換器(30)内の圧力が上昇してこの
圧力がタンク(T)内の冷媒の液面に作用する。これによ
って、液面が押し下げられ、タンク(T)内の液冷媒は液
ライン(LL)に押し出されることになる。逆に、駆動用熱
交換器(30)を冷却すると、該熱交換器(30)の冷媒が凝縮
しその内部圧力が下降してこの圧力がタンク(T)内に作
用する。これによって、回路内の液冷媒がタンク(T)内
に回収されることになる。このような動作を交互に繰り
返すことにより、回路での冷媒の循環を行うことができ
る。また、本形態の場合、2次側冷媒回路(B)での冷媒
の循環方向を一方向に設定するために、液ライン(LL)に
は逆止弁(CV,CV)が設けられている。
(Second Embodiment) A second embodiment will be described with reference to FIG. As shown in Fig. 4, the liquid line (L
The tank (T) as a container storing the liquid refrigerant is connected to (L), and the driving heat exchanger is connected to this tank (T) through the pipe (25).
Connect (30). Liquid refrigerant is stored in the drive heat exchanger (30). The drive heat exchanger (30) is heated or cooled by a heat source (not shown). In this state, when the driving heat exchanger (30) is heated, the internal refrigerant evaporates, the pressure in the heat exchanger (30) rises, and this pressure acts on the liquid surface of the refrigerant in the tank (T). To do. As a result, the liquid surface is pushed down, and the liquid refrigerant in the tank (T) is pushed out to the liquid line (LL). On the contrary, when the driving heat exchanger (30) is cooled, the refrigerant in the heat exchanger (30) is condensed, the internal pressure of the refrigerant is lowered, and this pressure acts in the tank (T). As a result, the liquid refrigerant in the circuit is recovered in the tank (T). By repeating such operations alternately, it is possible to circulate the refrigerant in the circuit. Further, in the case of this embodiment, in order to set the circulation direction of the refrigerant in the secondary side refrigerant circuit (B) to one direction, the liquid line (LL) is provided with a check valve (CV, CV). .

【0067】(第3実施形態)次に、第3実施形態につ
いて説明する。本形態は、図5に示すように、加圧手段
としての加圧専用の駆動用熱交換器(30A)及び減圧手段
としての減圧専用の駆動用熱交換器(30B)を備え、これ
らを配管(25)及び電磁弁(SV-1,SV-2)により、タンク(T)
に対する接続状態を切り換え可能に構成したものであ
る。つまり、タンク(T)から液冷媒を押し出す際には加
圧専用の駆動用熱交換器(30A)をタンク(T)に連通させ、
逆に、タンク(T)へ液冷媒を回収する際には減圧専用の
駆動用熱交換器(30B)をタンク(T)に連通させるように各
電磁弁(SV-1,SV-2)を切り換える。これにより、弁の切
り換え動作のみで冷媒の循環動作を得ることができる。
(Third Embodiment) Next, a third embodiment will be described. As shown in FIG. 5, the present embodiment is provided with a drive heat exchanger (30A) dedicated to pressurization as a pressurizing unit and a drive heat exchanger (30B) dedicated to depressurization as a depressurizing unit, and these pipes are connected to each other. (25) and solenoid valve (SV-1, SV-2), tank (T)
Is configured so that the connection state can be switched. That is, when pushing the liquid refrigerant from the tank (T), the drive heat exchanger (30A) dedicated to pressurization is communicated with the tank (T),
On the contrary, when collecting the liquid refrigerant to the tank (T), each solenoid valve (SV-1, SV-2) is connected so that the drive heat exchanger (30B) for decompression is connected to the tank (T). Switch. Thereby, the circulation operation of the refrigerant can be obtained only by the switching operation of the valve.

【0068】(第4実施形態)次に、第4実施形態につ
いて説明する。本形態は、図6に示すように、複数のタ
ンク(T1,T2)を備えさせて、一方のタンク(T1)からは冷
媒の押し出しを、他方のタンク(T2)では冷媒の回収を行
うようにし、これを交互に繰り返すことで、連続的な冷
媒の循環を可能にするものである。つまり、液ライン(L
L)の一部を分岐し、この各分岐管(LL-1,LL-2)にそれぞ
れ個別に各タンク(T1,T2)を接続する。各タンク(T1,T2)
には、第3実施形態の場合と同様に、加圧専用の駆動用
熱交換器(30A)と減圧専用の駆動用熱交換器(30B)とが電
磁弁(SV-1〜SV-4)により選択的に切り換え可能となって
いる。
(Fourth Embodiment) Next, a fourth embodiment will be described. In this embodiment, as shown in FIG. 6, a plurality of tanks (T1, T2) are provided so that the refrigerant is extruded from one tank (T1) and the refrigerant is recovered in the other tank (T2). By repeating this alternately, it is possible to continuously circulate the refrigerant. That is, the liquid line (L
Part of L) is branched, and each tank (T1, T2) is connected to each branch pipe (LL-1, LL-2) individually. Each tank (T1, T2)
In the same manner as in the third embodiment, the drive heat exchanger (30A) dedicated to pressurization and the drive heat exchanger (30B) dedicated to depressurization are solenoid valves (SV-1 to SV-4). It is possible to switch selectively.

【0069】この構成により、一方のタンク(T1)を加圧
専用の駆動用熱交換器(30A)に接続し、他方のタンク(T
2)を減圧専用の駆動用熱交換器(30B)に接続すること
で、一方のタンク(T1)から押し出された冷媒は、2次側
冷媒回路(B)を循環した後、他方のタンク(T2)に回収さ
れることになる。この状態を所定時間継続した後、電磁
弁(SV-1〜SV-4)を切り換えて、他方のタンク(T2)を加圧
専用の駆動用熱交換器(30A)に接続し、一方のタンク(T
1)を減圧専用の駆動用熱交換器(30B)に接続する。これ
により、冷媒を押し出すタンクと回収するタンクとが切
り換えられることになる。このような動作を繰り返して
行うことにより、2次側回路(B)での連続的な冷媒の循
環が可能になり、室内の連続冷房が行える。
With this configuration, one tank (T1) is connected to the drive heat exchanger (30A) dedicated to pressurization, and the other tank (T1) is connected.
By connecting 2) to the drive heat exchanger (30B) exclusively for decompression, the refrigerant extruded from one tank (T1) circulates in the secondary side refrigerant circuit (B), and then the other tank (T It will be collected at T2). After maintaining this state for a predetermined time, switch the solenoid valves (SV-1 to SV-4) and connect the other tank (T2) to the drive heat exchanger (30A) dedicated to pressurization. (T
Connect 1) to the drive heat exchanger (30B) dedicated to decompression. As a result, the tank for pushing out the refrigerant and the tank for collecting the refrigerant are switched. By repeating such an operation, it becomes possible to continuously circulate the refrigerant in the secondary side circuit (B), and it is possible to continuously cool the room.

【0070】尚、上述した実施形態では、本発明を空気
調和装置に適用した場合について説明したが、これに限
らず、その他の冷凍装置に対しても適用可能である。
In the above-described embodiment, the case where the present invention is applied to the air conditioner has been described, but the present invention is not limited to this and can be applied to other refrigeration systems.

【0071】また、熱源(A,B)としては、互いに個別の
閉回路を備えたものに限らず、各2次側冷媒流路(5b),
(5b)との間で熱交換可能な複数の1次側冷媒流路(5a),
(5a)を備え、この各1次側冷媒流路(5a),(5a)が互いに
並列に接続されて成る冷媒回路により構成するようにし
てもよい。
Further, the heat sources (A, B) are not limited to those having individual closed circuits, and each of the secondary side refrigerant flow paths (5b),
A plurality of primary side refrigerant flow paths (5a) capable of exchanging heat with (5b),
(5a) may be provided, and the primary side refrigerant flow paths (5a), (5a) may be configured by a refrigerant circuit that is connected in parallel with each other.

【0072】また、各1次側冷媒回路(A,B)としては、
蒸気圧縮式冷凍サイクルを行うものとしたが、吸収式冷
凍サイクルを行うものなどを適用してもよい。
Further, for each primary side refrigerant circuit (A, B),
Although the vapor compression refrigeration cycle is performed, the absorption refrigeration cycle or the like may be applied.

【0073】[0073]

【発明の効果】以上のように、本発明によれば、以下の
ような効果が発揮される。請求項1記載の発明では、複
数の熱源(A,B)と利用側冷媒回路(C)とを備え、複数の中
間熱交換器(5A,5B)によって熱源(A,B)と利用側冷媒回路
(C)との間で熱搬送を行うと共に、熱源(A,B)から利用側
冷媒回路(C)への冷熱供給量を調整することによって冷
凍能力を調整するようにした冷凍装置に対し、利用側冷
媒回路(C)の液配管(LL)において中間熱交換器(5A,5B)に
繋がる各分岐管(LL-1,LL-2)の分岐部(6C-B)の位置を、
一部の中間熱交換器(5A)の受熱流路(5b)が熱源(A)から
冷熱を受け且つ他の中間熱交換器(5B)の受熱流路(5b)が
冷熱を受けていない状況で、上記一部の受熱流路(5b)を
流れる冷媒の圧力損失に起因して下降する他の受熱流路
(5b)での冷媒液面よりも低い位置に設定した。これによ
り、冷熱を受けている受熱流路(5b)での圧力損失よりも
冷熱を受けていない受熱流路(5b)での圧力水頭が大きく
なって、液配管(LL)にガス冷媒が流れ出ることはない。
このため、熱交換動作を行っていない受熱流路(5b)に冷
媒が流れてしまって冷凍能力が必要以上に低下するとい
った状況の発生を回避することができる。また、搬送手
段としてポンプ(10)を使用した場合、ガス冷媒が熱交換
動作を行っていない受熱流路(5b)を経てガス相のままポ
ンプ(10)に吸入されてしまうといった不具合も回避でき
る。
As described above, according to the present invention, the following effects are exhibited. In the invention according to claim 1, a plurality of heat sources (A, B) and a use side refrigerant circuit (C) are provided, and the heat sources (A, B) and the use side refrigerant are provided by a plurality of intermediate heat exchangers (5A, 5B). circuit
While performing heat transfer with (C), to the refrigerating device to adjust the refrigerating capacity by adjusting the amount of cold heat supplied from the heat source (A, B) to the use side refrigerant circuit (C), The position of the branch portion (6C-B) of each branch pipe (LL-1, LL-2) connected to the intermediate heat exchanger (5A, 5B) in the liquid pipe (LL) of the use side refrigerant circuit (C),
The situation where the heat receiving passage (5b) of some intermediate heat exchangers (5A) receives cold heat from the heat source (A) and the heat receiving passage (5b) of other intermediate heat exchangers (5B) does not receive cold heat. In the other heat receiving passages that descend due to the pressure loss of the refrigerant flowing through the part of the heat receiving passages (5b).
It was set at a position lower than the liquid level of the refrigerant in (5b). As a result, the pressure head in the heat receiving passage (5b) not receiving the cold heat becomes larger than the pressure loss in the heat receiving passage (5b) receiving the cold heat, and the gas refrigerant flows out to the liquid pipe (LL). There is no such thing.
Therefore, it is possible to avoid a situation in which the refrigerant flows into the heat receiving channel (5b) that is not performing the heat exchange operation and the refrigerating capacity is reduced more than necessary. Further, when the pump (10) is used as the transfer means, it is possible to avoid the problem that the gas refrigerant is sucked into the pump (10) in the gas phase as it is through the heat receiving passage (5b) which is not performing the heat exchange operation. .

【0074】請求項2記載の発明では、熱源(A,B)から
利用側冷媒回路(C)への温熱供給量を調整することによ
って冷凍能力を調整するようにした冷凍装置に対し、利
用側冷媒回路(C)のガス配管(LG)において中間熱交換器
(5A,5B)に繋がる各分岐管(LG-1,LG-2)の分岐部(6C-A)の
位置を、一部の中間熱交換器(5A)の受熱流路(5b)が熱源
(A)から温熱を受け且つ他の中間熱交換器(5B)の受熱流
路(5b)が温熱を受けていない状況で、上記一部の受熱流
路(5b)を流れる冷媒の圧力損失に起因して上昇する他の
受熱流路(5b)での冷媒液面よりも高い位置に設定した。
これにより、温熱を受けている受熱流路(5b)での圧力損
失よりも温熱を受けていない受熱流路(5b)での圧力水頭
が大きくなって、ガス配管(LG)に液冷媒が流れ出ること
はない。この場合にも、熱交換動作を行っていない受熱
流路(5b)に冷媒が流れてしまって冷凍能力が必要以上に
低下するといった状況の発生を回避することができる。
According to the second aspect of the present invention, the refrigerating device is configured so that the refrigerating capacity is adjusted by adjusting the amount of heat supply from the heat sources (A, B) to the use side refrigerant circuit (C). Intermediate heat exchanger in the gas pipe (LG) of the refrigerant circuit (C)
At the position of the branch part (6C-A) of each branch pipe (LG-1, LG-2) connected to (5A, 5B), the heat receiving flow path (5b) of some intermediate heat exchangers (5A) is the heat source.
In a situation where the heat receiving passage (5b) of the other intermediate heat exchanger (5B) receives the heat from (A) and does not receive the heat, the pressure loss of the refrigerant flowing through the part of the heat receiving passages (5b) is caused. It was set at a position higher than the liquid level of the refrigerant in the other heat receiving flow path (5b) that rises due to it.
As a result, the pressure head in the heat receiving passage (5b) not receiving the heat becomes larger than the pressure loss in the heat receiving passage (5b) receiving the heat, and the liquid refrigerant flows out to the gas pipe (LG). There is no such thing. Also in this case, it is possible to avoid a situation in which the refrigerant flows into the heat receiving channel (5b) that is not performing the heat exchange operation and the refrigerating capacity is lowered more than necessary.

【0075】請求項3記載の発明では、上述した請求項
1及び2記載の発明に係る構成を兼ね備えさせている。
これにより、利用側熱交換器(13)の吸熱動作時及び放熱
動作時共に、熱交換動作を行っていない受熱流路(5b)に
冷媒が流れてしまって冷凍能力が必要以上に低下すると
いった状況の発生を回避することができる。
According to the third aspect of the present invention, the configuration according to the above-mentioned first and second aspects of the present invention is combined.
As a result, during both the heat absorbing operation and the heat radiating operation of the use side heat exchanger (13), the refrigerant flows into the heat receiving passage (5b) that is not performing the heat exchanging operation, and the refrigerating capacity is lowered more than necessary. The situation can be avoided.

【0076】請求項4及び5記載の発明では、中間熱交
換手段(5A,5B)に接続する各分岐管(LL-1,LL-2),(LG-1,L
G-2)の形状を改良することによって上記請求項1〜3に
記載の発明に係る効果を得ることができ、比較的簡単な
構成で、上記各効果を得ることができる。
In the inventions according to claims 4 and 5, the branch pipes (LL-1, LL-2), (LG-1, L) connected to the intermediate heat exchange means (5A, 5B) are connected.
By improving the shape of G-2), the effects according to the invention described in claims 1 to 3 can be obtained, and the above effects can be obtained with a relatively simple configuration.

【0077】請求項6及び7記載の発明では、各受熱流
路(5b),(5b)に対して熱を与える熱源(A,B)の構成を具体
化している。また、請求項8記載の発明では、熱源(A,
B)を蒸気圧縮式冷凍サイクルを行う冷凍回路とし、請求
項9記載の発明では、熱源(A,B)を吸収式冷凍サイクル
を行う冷凍回路としている。これら発明により、装置の
実用性の向上を図ることができる。
In the sixth and seventh aspects of the invention, the constitution of the heat sources (A, B) for giving heat to the heat receiving passages (5b), (5b) is embodied. In the invention according to claim 8, the heat source (A,
B) is a refrigeration circuit that performs a vapor compression refrigeration cycle, and the heat source (A, B) is a refrigeration circuit that performs an absorption refrigeration cycle. According to these inventions, the practicality of the device can be improved.

【0078】請求項10記載の発明では、利用側冷媒回
路(C)での冷媒循環駆動力を得る搬送手段を、液配管に
設けられた機械式ポンプ(10)としている。このため、冷
媒循環駆動力が確実に得られることになり装置の信頼性
の向上が図れる。
According to the tenth aspect of the present invention, the mechanical pump (10) provided in the liquid pipe is used as the conveying means for obtaining the refrigerant circulation driving force in the utilization side refrigerant circuit (C). Therefore, the refrigerant circulation driving force can be reliably obtained, and the reliability of the device can be improved.

【0079】請求項11記載の発明は、冷媒の加熱や冷
却により高圧または低圧を発生させ、これによって利用
側冷媒回路(C)での冷媒の循環駆動力を得るようにし
た。また、請求項12記載の発明は、液冷媒を貯留可能
な容器(T)に接続した駆動源熱交換器(30A)内の液冷媒を
加熱して容器(T)内に高圧を作用させるようにした。逆
に、請求項13記載の発明は、液冷媒を貯留可能な容器
(T)に接続した駆動源熱交換器(30B)内のガス冷媒を冷却
して容器(T) 内に低圧を作用させるようにした。これら
構成により、ポンプ等の機械的な手段を使用することな
く、熱を利用することによって冷媒の搬送駆動力を得る
ことができ、信頼性の高い冷媒搬送動作が得られ利用側
冷媒回路(C)での冷媒循環動作を円滑に行うことができ
る。
In the eleventh aspect of the present invention, a high pressure or a low pressure is generated by heating or cooling the refrigerant, and thereby the circulation driving force of the refrigerant in the use side refrigerant circuit (C) is obtained. The invention according to claim 12 heats the liquid refrigerant in the drive source heat exchanger (30A) connected to the container (T) capable of storing the liquid refrigerant so that a high pressure is applied to the container (T). I chose On the contrary, the invention according to claim 13 is a container capable of storing a liquid refrigerant.
The gas refrigerant in the drive source heat exchanger (30B) connected to (T) was cooled so that a low pressure was applied in the container (T). With these configurations, without using a mechanical means such as a pump, it is possible to obtain a driving force for carrying the refrigerant by utilizing heat, and a highly reliable refrigerant carrying operation can be obtained. It is possible to smoothly perform the refrigerant circulation operation in ().

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態に係る空気調和装置の冷媒配管系統図
である。
FIG. 1 is a refrigerant piping system diagram of an air conditioner according to an embodiment.

【図2】各中間熱交換器の配設状態及び分岐管の接続状
態を示す斜視図である。
FIG. 2 is a perspective view showing an arrangement state of each intermediate heat exchanger and a connection state of branch pipes.

【図3】冷暖房運転時の冷媒循環動作を説明するための
図である。
FIG. 3 is a diagram for explaining a refrigerant circulation operation during a cooling / heating operation.

【図4】第2実施形態の搬送手段の構成を示す図であ
る。
FIG. 4 is a diagram showing a configuration of a carrying unit according to a second embodiment.

【図5】第3実施形態の搬送手段の構成を示す図であ
る。
FIG. 5 is a diagram showing a configuration of a transport unit according to a third exemplary embodiment.

【図6】第4実施形態の搬送手段の構成を示す図であ
る。
FIG. 6 is a diagram showing a configuration of a transport unit according to a fourth exemplary embodiment.

【図7】従来技術における図1相当図である。FIG. 7 is a view corresponding to FIG. 1 in the prior art.

【図8】他の従来技術における図1相当図である。FIG. 8 is a view corresponding to FIG. 1 in another conventional technique.

【符号の説明】[Explanation of symbols]

(A,B) 1次側冷媒回路(熱源) (C) 2次側冷媒回路 (5A,5B) 中間熱交換器(中間熱交換手段) (5a) 1次側冷媒流路 (5b) 2次側冷媒流路 (6C-1,6C-2)分岐管 (10) ポンプ(搬送手段) (13) 室内熱交換器(利用側熱交換器) (LL) 液配管 (LG) ガス配管 (LL-1〜LG-2) 分岐管 (LL-1b〜LG-2b) 延長部 (30) 駆動用熱交換器 (T) タンク(容器) (A, B) Primary side refrigerant circuit (heat source) (C) Secondary side refrigerant circuit (5A, 5B) Intermediate heat exchanger (intermediate heat exchange means) (5a) Primary side refrigerant flow path (5b) Secondary side refrigerant flow path (6C-1,6C-2) Branch pipe (10) Pump (transportation means) (13) Indoor heat exchanger (use side heat exchanger) (LL) Liquid piping (LG) Gas pipe (LL-1 ~ LG-2) Branch pipe (LL-1b ~ LG-2b) Extension (30) Drive heat exchanger (T) Tank (container)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竿尾 忠 大阪府堺市金岡町1304番地 ダイキン工 業株式会社堺製作所 金岡工場内 (56)参考文献 特開 平3−236536(JP,A) 特開 昭63−116053(JP,A) 特開 平8−132857(JP,A) 特開 平9−178217(JP,A) 特開 平3−260531(JP,A) 特開 平3−236535(JP,A) 特開 平9−196490(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 F25B 13/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Sao 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industrial Co., Ltd., Kanaoka Plant, Sakai Manufacturing Co., Ltd. (56) Reference JP-A-3-236536 (JP, A) Kai 63-116053 (JP, A) JP 8-132857 (JP, A) JP 9-178217 (JP, A) JP 3-260531 (JP, A) JP 3-236535 ( JP, A) JP-A-9-196490 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F24F 5/00 F25B 13/00

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 搬送手段(10)と、利用側熱交換器(13)
と、熱源(A,B)から冷熱を受ける中間熱交換手段(5A,5B)
の受熱流路(5b,5b)とが液配管(LL)及びガス配管(LG)に
よって接続されて成る利用側冷媒回路(C)を備え、ガス
配管(LG)より中間熱交換手段(5A,5B)の受熱流路(5b,5b)
に流入したガス冷媒を熱源(A,B)からの冷熱により凝縮
させた後、その液冷媒を液配管(LL)を経て利用側熱交換
器(13)に供給して該利用側熱交換器(13)に吸熱動作を行
わせる冷凍装置において、 上記中間熱交換手段(5A,5B)の受熱流路(5b,5b)は、液配
管(LL)及びガス配管(LG)がそれぞれ分岐されて成る分岐
管(LL-1〜LG-2)により互いに並列に接続された複数の通
路で成り、 上記液配管(LL)の各分岐管(LL-1,LL-2)の分岐部(6C-B)
の位置は、一部の受熱流路(5b)が熱源(A)から冷熱を受
け且つ他の受熱流路(5b)が冷熱を受けていない状況で、
上記一部の受熱流路(5b)を流れる冷媒の圧力損失に起因
して下降する他の受熱流路(5b)での冷媒液面よりも低い
位置に設定されていることを特徴とする冷凍装置。
1. A transfer means (10) and a utilization side heat exchanger (13)
And an intermediate heat exchange means (5A, 5B) that receives cold heat from the heat source (A, B)
The heat receiving flow path of (5b, 5b) is provided with a use side refrigerant circuit (C) which is connected by a liquid pipe (LL) and a gas pipe (LG), and an intermediate heat exchange means (5A, from the gas pipe (LG). 5B) Heat receiving channel (5b, 5b)
After condensing the gas refrigerant that has flowed into the heat source (A, B) by cold heat from the heat source, the liquid refrigerant is supplied to the use side heat exchanger (13) through the liquid pipe (LL) and the use side heat exchanger. In the refrigerating device for causing the endothermic operation in (13), the heat receiving flow paths (5b, 5b) of the intermediate heat exchange means (5A, 5B) are divided into liquid pipes (LL) and gas pipes (LG). Consists of a plurality of passages connected in parallel with each other by the branch pipes (LL-1 to LG-2), and the branch portion (6C- B)
The position of is in a situation where some heat receiving channels (5b) receive cold heat from the heat source (A) and other heat receiving channels (5b) do not receive cold heat,
Refrigeration characterized in that it is set at a position lower than the liquid level of the refrigerant in the other heat receiving passage (5b) that descends due to the pressure loss of the refrigerant flowing through the part of the heat receiving passage (5b). apparatus.
【請求項2】 搬送手段(10)と、利用側熱交換器(13)
と、熱源(A,B)から温熱を受ける中間熱交換手段(5A,5B)
の受熱流路(5b,5b)とが液配管(LL)及びガス配管(LG)に
よって接続されて成る利用側冷媒回路(C)を備え、液配
管(LL)より中間熱交換手段(5A,5B)の受熱流路(5b,5b)に
流入した液冷媒を熱源(A,B)からの温熱により蒸発させ
た後、そのガス冷媒をガス配管(LG)を経て利用側熱交換
器(13)に供給して該利用側熱交換器(13)に放熱動作を行
わせる冷凍装置において、 上記中間熱交換手段(5A,5B)の受熱流路(5b,5b)は、液配
管(LL)及びガス配管(LG)がそれぞれ分岐されて成る分岐
管(LL-1〜LG-2)により互いに並列に接続された複数の通
路で成り、 上記ガス配管(LG)の各分岐管(LG-1,LG-2)の分岐部(6C-
A)の位置は、一部の受熱流路(5b)が熱源(A)から温熱を
受け且つ他の受熱流路(5b)が温熱を受けていない状況
で、上記一部の受熱流路(5b)を流れる冷媒の圧力損失に
起因して上昇する他の受熱流路(5b)での冷媒液面よりも
高い位置に設定されていることを特徴とする冷凍装置。
2. A transfer means (10) and a utilization side heat exchanger (13)
And intermediate heat exchange means (5A, 5B) that receives heat from the heat sources (A, B)
The heat receiving flow path (5b, 5b) of the liquid side (LL) and a gas pipe (LG) is provided with a utilization side refrigerant circuit (C) which is connected, intermediate heat exchange means from the liquid pipe (LL) (5A, After the liquid refrigerant flowing into the heat receiving flow path (5b, 5b) of (5B) is evaporated by the heat from the heat sources (A, B), the gas refrigerant is passed through the gas pipe (LG) to the heat exchanger (13) on the utilization side. In the refrigerating device for supplying heat to the use side heat exchanger (13) to radiate heat, the heat receiving passages (5b, 5b) of the intermediate heat exchange means (5A, 5B) are liquid pipes (LL). And a plurality of passages connected in parallel with each other by branch pipes (LL-1 to LG-2) formed by branching the gas pipes (LG). , LG-2) branch (6C-
The position (A) is such that a part of the heat receiving passages (5b) receives heat from the heat source (A) and the other heat receiving passages (5b) do not receive heat, and the part of the heat receiving passages ( The refrigeration apparatus is set at a position higher than the liquid level of the refrigerant in the other heat receiving channel (5b) that rises due to the pressure loss of the refrigerant flowing in 5b).
【請求項3】 搬送手段(10)と、利用側熱交換器(13)
と、熱源(A,B)から冷熱または温熱を受ける中間熱交換
手段(5A,5B)の受熱部(5b,5b)とが液配管(LL)及びガス配
管(LG)によって接続されて成る利用側冷媒回路(C)を備
え、ガス配管(LG)より中間熱交換手段(5A,5B)の受熱部
(5b,5b)に流入したガス冷媒を熱源(A,B)からの冷熱によ
り凝縮させた後、その液冷媒を液配管(LL)を経て利用側
熱交換器(13)に供給して該利用側熱交換器(13)に吸熱を
行わせる第1の冷媒循環動作と、液配管(LL)より中間熱
交換手段(5A,5B)の受熱部(5b,5b)に流入した液冷媒を熱
源(A,B)からの温熱により蒸発させた後、そのガス冷媒
をガス配管(LG)を経て利用側熱交換器(13)に供給して該
利用側熱交換器(13)に放熱を行わせる第2の冷媒循環動
作とが切り換え可能な冷凍装置において、 上記中間熱交換手段(5A,5B)の受熱流路(5b,5b)は、液配
管(LL)及びガス配管(LG)がそれぞれ分岐されて成る分岐
管(LL-1〜LG-2)により互いに並列に接続された複数の通
路で成り、 上記液配管(LL)の各分岐管(LL-1,LL-2)の分岐部(6C-B)
の位置は、上記第1の冷媒循環動作において一部の受熱
流路(5b)が熱源(A)から冷熱を受け且つ他の受熱流路(5
b)が冷熱を受けていない状況で、上記一部の受熱流路(5
b)を流れる冷媒の圧力損失に起因して下降する他の受熱
流路(5b)での冷媒液面よりも低い位置に設定されている
一方、 上記ガス配管(LG)の各分岐管(LG-1,LG-2)の分岐部(6C-
A)の位置は、上記第2の冷媒循環動作において一部の受
熱流路(5b)が熱源(A)から温熱を受け且つ他の受熱流路
(5b)が温熱を受けていない状況で、上記一部の受熱流路
(5b)を流れる冷媒の圧力損失に起因して上昇する他の受
熱流路(5b)での冷媒液面よりも高い位置に設定されてい
ることを特徴とする冷凍装置。
3. A transport means (10) and a utilization side heat exchanger (13)
And a heat receiving part (5b, 5b) of the intermediate heat exchange means (5A, 5B) that receives cold or hot heat from the heat source (A, B) are connected by a liquid pipe (LL) and a gas pipe (LG) Heat receiving part of the intermediate heat exchange means (5A, 5B) from the gas pipe (LG) with the side refrigerant circuit (C)
(5b, 5b) after the gas refrigerant flowing into the heat source (A, B) is condensed by cold heat from the heat source, the liquid refrigerant is supplied to the use side heat exchanger (13) via the liquid pipe (LL) to The first refrigerant circulation operation that causes the use side heat exchanger (13) to absorb heat, and the liquid refrigerant that has flowed into the heat receiving section (5b, 5b) of the intermediate heat exchange means (5A, 5B) from the liquid pipe (LL) After evaporating by the heat from the heat sources (A, B), the gas refrigerant is supplied to the use side heat exchanger (13) via the gas pipe (LG) to radiate heat to the use side heat exchanger (13). In the refrigerating apparatus capable of switching between the second refrigerant circulation operation to be performed, the heat receiving flow paths (5b, 5b) of the intermediate heat exchange means (5A, 5B) are the liquid piping (LL) and the gas piping (LG). Each of the branch pipes (LL-1, LL-2) of the liquid pipe (LL) is made up of a plurality of passages connected in parallel with each other by branch pipes (LL-1 to LG-2). Part (6C-B)
Is located at a position where a part of the heat receiving passages (5b) receives cold heat from the heat source (A) and the other heat receiving passages (5b) in the first refrigerant circulation operation.
In the situation where b) is not receiving cold heat, part of the above heat receiving flow path (5
While it is set at a position lower than the liquid level of the refrigerant in the other heat receiving flow path (5b) that descends due to the pressure loss of the refrigerant flowing through b), each branch pipe (LG) of the gas pipe (LG) is set. -1, LG-2) branch (6C-
The position of (A) is such that a part of the heat receiving flow paths (5b) receives heat from the heat source (A) and the other heat receiving flow paths in the second refrigerant circulation operation.
In the situation where (5b) is not receiving heat, part of the above heat receiving flow path
A refrigerating apparatus, which is set at a position higher than a liquid level of a refrigerant in another heat receiving channel (5b) which rises due to a pressure loss of a refrigerant flowing through (5b).
【請求項4】 請求項1または3記載の冷凍装置におい
て、 液配管(LL)の分岐部(6C-B)は中間熱交換手段(5A,5B)よ
りも下方に位置しており、液配管(LL)の分岐管(LL-1,LL
-2)は、中間熱交換手段(5A,5B)に対する接続位置から分
岐部(6C-B)に向かって下方に延びる下方延長部(LL-1b,L
L-2b)を備えていることを特徴とする冷凍装置。
4. The refrigeration apparatus according to claim 1 or 3, wherein the branch portion (6C-B) of the liquid pipe (LL) is located below the intermediate heat exchange means (5A, 5B). (LL) Branch pipe (LL-1, LL
-2) is a downward extension portion (LL-1b, L) extending downward from the connection position for the intermediate heat exchange means (5A, 5B) toward the branch portion (6C-B).
L-2b) is provided.
【請求項5】 請求項2または3記載の冷凍装置におい
て、 ガス配管(LG)の分岐部(6C-A)は中間熱交換手段(5A,5B)
よりも上方に位置しており、ガス配管(LG)の分岐管(LG-
1,LG-2)は、中間熱交換器(5A,5B)に対する接続位置から
分岐部(6C-A)に向かって上方に延びる上方延長部(LG-1
b,LG-2b)を備えていることを特徴とする冷凍装置。
5. The refrigeration apparatus according to claim 2 or 3, wherein the branch portion (6C-A) of the gas pipe (LG) is an intermediate heat exchange means (5A, 5B).
Is located above the gas pipe (LG) branch pipe (LG-
1, LG-2) is an upper extension (LG-1 that extends upward from the connection position to the intermediate heat exchangers (5A, 5B) toward the branch (6C-A).
b, LG-2b).
【請求項6】 請求項1〜3のうち1つに記載の冷凍装
置において、 複数の受熱流路(5b),(5b)のそれぞれに対応した複数の
熱源(A,B)が個別に配設されており、 各熱源(A,B)の動作を個別に調整することで、一部の受
熱流路(5b)に対してのみ熱の供給が可能になっているこ
とを特徴とする冷凍装置。
6. The refrigerating apparatus according to claim 1, wherein a plurality of heat sources (A, B) respectively corresponding to the plurality of heat receiving passages (5b), (5b) are individually arranged. Refrigeration characterized by being able to supply heat only to some heat receiving channels (5b) by adjusting the operation of each heat source (A, B) individually. apparatus.
【請求項7】 請求項1〜3のうち1つに記載の冷凍装
置において、 熱源(A,B)は、各受熱流路(5b),(5b)との間で熱交換可能
な複数の熱供給部(5a),(5a)を備え、各熱供給部(5a),(5
a)が互いに並列に接続されて成る冷媒回路であることを
特徴とする冷凍装置。
7. The refrigerating apparatus according to claim 1, wherein the heat source (A, B) is a plurality of heat exchange channels (5b), (5b) capable of exchanging heat. Equipped with heat supply parts (5a), (5a), each heat supply part (5a), (5
Refrigerating device characterized in that a) is a refrigerant circuit which is connected in parallel with each other.
【請求項8】 請求項1〜3のうち1つに記載の冷凍装
置において、 熱源(A,B)は、蒸気圧縮式冷凍サイクルを行う冷凍回路
で成ることを特徴とする冷凍装置。
8. The refrigerating apparatus according to claim 1, wherein the heat source (A, B) is a refrigerating circuit that performs a vapor compression refrigerating cycle.
【請求項9】 請求項1〜3のうち1つに記載の冷凍装
置において、 熱源(A,B)は、吸収式冷凍サイクルを行う冷凍回路で成
ることを特徴とする冷凍装置。
9. The refrigerating apparatus according to claim 1, wherein the heat source (A, B) is a refrigerating circuit that performs an absorption refrigerating cycle.
【請求項10】 請求項1〜3のうち1つに記載の冷凍
装置において、 搬送手段は、液配管に設けられた機械式ポンプ(10)であ
ることを特徴とする冷凍装置。
10. The refrigerating apparatus according to claim 1, wherein the conveying means is a mechanical pump (10) provided in the liquid pipe.
【請求項11】 請求項1〜3のうち1つに記載の冷凍
装置において、 搬送手段は、液配管(LL)に設けられ、液冷媒を加熱する
ことによって高圧を生じさせる加圧手段(30A)及びガス
冷媒を冷却することによって低圧を生じさせる減圧手段
(30B)の少なくとも一方を備えて成り、この手段によっ
て生じる圧力と利用側冷媒回路(C) 内の圧力との差によ
り冷媒の循環駆動力を発生させるものであることを特徴
とする冷凍装置。
11. The refrigerating apparatus according to claim 1, wherein the conveying means is provided in the liquid pipe (LL), and a pressurizing means (30A) for generating a high pressure by heating the liquid refrigerant. ) And a pressure reducing means for producing a low pressure by cooling the gas refrigerant.
A refrigerating apparatus comprising at least one of (30B), which generates a circulating driving force of a refrigerant by a difference between a pressure generated by this means and a pressure in the utilization side refrigerant circuit (C).
【請求項12】 請求項11記載の冷凍装置において、 加圧手段は、液冷媒を貯留可能な容器(T) に接続し且つ
冷媒を貯留した駆動源熱交換器(30A)であって、該駆動
源熱交換器(30A)内の液冷媒を加熱し、該冷媒の蒸発に
伴って上昇する圧力を容器(T) 内に作用させて、該容器
(T) から液冷媒を押し出すことを特徴とする冷凍装置。
12. The refrigeration apparatus according to claim 11, wherein the pressurizing means is a drive source heat exchanger (30A) connected to a container (T) capable of storing a liquid refrigerant and storing the refrigerant, The liquid refrigerant in the drive source heat exchanger (30A) is heated, and the pressure that rises as the refrigerant evaporates acts on the inside of the container (T).
A refrigeration system characterized in that a liquid refrigerant is pushed out from (T).
【請求項13】 請求項11記載の冷凍装置において、 減圧手段は、液冷媒を貯留可能な容器(T) に接続し且つ
冷媒を貯留した駆動源熱交換器(30B)であって、該駆動
源熱交換器(30B)内のガス冷媒を冷却し、該ガス冷媒の
凝縮に伴って下降する圧力を容器(T) 内に作用させて、
該容器(T) へ冷媒を吸引することを特徴とする冷凍装
置。
13. The refrigerating apparatus according to claim 11, wherein the depressurizing means is a drive source heat exchanger (30B) connected to a container (T) capable of storing liquid refrigerant and storing the refrigerant, Cool the gas refrigerant in the source heat exchanger (30B), and apply a pressure that decreases with the condensation of the gas refrigerant in the container (T),
A refrigerating device which sucks a refrigerant into the container (T).
JP26122797A 1997-09-26 1997-09-26 Refrigeration equipment Expired - Fee Related JP3427695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26122797A JP3427695B2 (en) 1997-09-26 1997-09-26 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26122797A JP3427695B2 (en) 1997-09-26 1997-09-26 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH1194301A JPH1194301A (en) 1999-04-09
JP3427695B2 true JP3427695B2 (en) 2003-07-22

Family

ID=17358916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26122797A Expired - Fee Related JP3427695B2 (en) 1997-09-26 1997-09-26 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3427695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187353A (en) * 2006-01-12 2007-07-26 Hitachi Ltd Freezer

Also Published As

Publication number Publication date
JPH1194301A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
KR100441307B1 (en) Heat transport system
JP2001289465A (en) Air conditioner
EP1686323B1 (en) Heat exchanger of air conditioner
US6237356B1 (en) Refrigerating plant
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2006292313A (en) Geothermal unit
CN102449411A (en) Refrigeration cycle device and air-conditioning device
JP3259273B2 (en) Air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2011052038A1 (en) Air conditioning device
JP3582185B2 (en) Heat transfer device
JP3598604B2 (en) Heat transfer device
JP2997504B2 (en) Air conditioner
JP3427695B2 (en) Refrigeration equipment
JP3543448B2 (en) Heat transfer device
JP3858354B2 (en) Refrigeration equipment
JPH1183234A (en) Combined heat transfer equipment
JP2009281595A (en) Refrigerating device
JP3994512B2 (en) Refrigeration equipment
JP2002174465A (en) Refrigerating apparatus
JP3785796B2 (en) Heat transfer device
JP2000179992A (en) Air conditioner
WO2020235052A1 (en) Heat exchanger and air conditioner
JP2022052743A (en) Multi-air conditioner for heating, cooling and ventilation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees