JP3425698B2 - Method of controlling the flow rate of blown gas in refining furnace - Google Patents

Method of controlling the flow rate of blown gas in refining furnace

Info

Publication number
JP3425698B2
JP3425698B2 JP34023992A JP34023992A JP3425698B2 JP 3425698 B2 JP3425698 B2 JP 3425698B2 JP 34023992 A JP34023992 A JP 34023992A JP 34023992 A JP34023992 A JP 34023992A JP 3425698 B2 JP3425698 B2 JP 3425698B2
Authority
JP
Japan
Prior art keywords
flow rate
blowing
gas
oxygen
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34023992A
Other languages
Japanese (ja)
Other versions
JPH06184615A (en
Inventor
亮次 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34023992A priority Critical patent/JP3425698B2/en
Publication of JPH06184615A publication Critical patent/JPH06184615A/en
Application granted granted Critical
Publication of JP3425698B2 publication Critical patent/JP3425698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、精錬炉の吹込みガス流
量制御方法に係り、特に上吹き転炉、底吹き転炉、上底
吹き転炉、AOD転炉等の精錬炉に上吹きランスまたは
底吹き羽口を介してガスを吹込むのに好適な精錬炉の吹
込みガス流量制御方法に関するものである。 【0002】 【従来の技術】一般に、転炉等の精錬炉に上吹きランス
または底吹き羽口を介して精錬用吹込みガスを吹込んで
精錬する場合の調節弁によるガス吹込み流量制御では、
プロセス調節計を用いた単なるPID制御あるいは規定
開度制御が知られている。規定開度制御には、例えば特
公昭61−51606 号公報のように、転炉操業における底吹
羽口への吹込みガス切替等におけるガス供給の制御を流
量調節弁の開度制御により行うにあたり、各操業ステー
タスに応じた羽口圧損ΔPy0を転炉数毎に予め計算して
おき、その都度のガス元圧P2 から羽口圧損Py0を減算
し、流量調節弁圧損ΔP4 を得、これから流量調節弁の
Cν値(弁流量係数)を求め、流量調節弁の開度を前記
Cν値に基づく規定開度とする転炉の底吹きガス吹込み
制御方法が提案されている。 【0003】また特開昭61−284514号、特開昭61−2845
15号公報のように、測定ガス流量を調節弁にフィードバ
ックして、設定流量になるようにガス流量を制御する定
流量制御によって、羽口から精錬炉内に吹込まれるガス
流量を制御する精錬炉の吹込みガス流量制御方法におい
て、ガスの吹込み流量値をステップ的に大幅に変更、も
しくはガス種類を変更する際にガス流量を増加させると
きには、まず流量調節弁の開度を大きくするなどして、
流量設定値を変更後の流量設定値より高い過大流量設定
値に切替えて定流量制御し、ガス流量を減少させるとき
にはまず流量調節弁の開度を小さくするなどして流量設
定値を変更後の流量設定値より低い過小流量設定値に切
替えて定流量制御し、次いで、羽口背圧が流量圧力特性
曲線に基づき変更後の流量設定値に関連させて定めた圧
力設定値に達した時に、前記過大流量設定値から前記変
更後の流量設定値へと切替えて定流量制御する精錬炉の
吹込みガス流量制御方法が開示されている。 【0004】 【発明が解決しようとする課題】前記従来技術のうち、
単なるPID制御であると定常時の安定性を確保すれ
ば、ゲインを下げているため、目標の設定値に到達する
まで時間がかかる。又、逆に過渡応答性を確保すれば定
常時の安定性が保たれず、特に大きな外乱が入ると収束
しないこともあるという問題があった。 【0005】また、規定開度制御では過渡応答性は向上
するが急激な吹込みガスの変動を生じて精錬炉内の圧力
変動を招き、特に吹込みガスの急激な減少は炉内圧力を
負圧にするため、炉内への大量の空気混入を生じて未燃
焼酸素の発生や発生COの減少、CO2 の増加を伴うという
問題があった。本発明は前記従来技術の問題点を解消す
るべくなされたもので、ガス吹込み流量を設定した吹込
みパターンに基づいて制御する際に、ガス吹込み流量を
ステップ的に大幅に変更するか、または元のパターンに
大幅に戻す際に、過渡応答性を改善すると共に定常操業
時の安定性が保たれ、急激な炉内圧力の変動を防止する
ことができる精錬炉の吹込みガス流量制御方法を提供す
ることを目的とするものである。 【0006】 【課題を解決するための手段】前記目的を達成するため
の本発明は、測定ガス流量を調節弁にフィードバックし
て設定流量となるようにガス流量を制御する定流量制御
によって、ランスまたは羽口から精錬炉内に吹込まれる
ガス流量を制御する精錬炉の吹込みガス流量制御方法に
おいて、ガスの吹込み流量を吹込みパターンに基づいて
制御している時にサブランスによる計測、スロッピング
発生などの操業要因によってガスの吹込み流量をステッ
プ的に大幅に変更して増加もしくは減少する際に、流量
変更の目的に応じて変更後の吹込みガス流量に到達する
までの時間を予め定めておき、一定の流量変化で変更後
の吹込みガス流量に到達するように、調節弁開度をガス
吹込み流量に見合った開度になるように流量・圧力・弁
開度から成る調節弁特性を操業実績から学習して求めた
開度に基づいて規定開度制御することを特徴とする精錬
炉の吹込みガス流量制御方法である。 【0007】 【実施例】以下、本発明の構成を作用と共に実施例に基
づいて説明する。図1に示すようにプロセスコンピュー
タ(P/C)18の下には計装制御システム(DCS)17
を配置してあり、プロセスコンピュータ18からの操業指
令に基づき計装制御システム17を用いて、まず酸素ホル
ダ1から供給される吹錬用酸素ガスの圧力は1次減圧調
節弁2によって制御され、1次減圧後の酸素圧力は圧力
計3によって測定される。 【0008】1号転炉16への吹錬酸素流量は1号炉吹錬
酸素ライン4に設けた酸素流量計8によって測定される
が、同ライン4上に設けた酸素1次圧力計5および酸素
温度計6によって、それぞれ測定された圧力および温度
によって圧力・温度補正を行って酸素流量調節弁9を調
節して設定流量になるように制御される。この場合、1
号炉吹錬酸素ライン4上に設けられた主管酸素弁7は開
となっている他、東ランス14および西ランス15のうち、
今回の吹錬に使用する転炉16内に挿入された東ランス14
を介して酸素ガスが炉内に吹込まれるので東ランス末端
弁12が開となっており、西ランス末端弁11は閉としてあ
る。なお、東ランス14から1号転炉16内に吹込まれる酸
素ガスの背圧が酸素背圧計10によって測定される。また
東ランス14の上部にはランス振動計13が取り付けてあ
り、ランス振動計13によって吹錬過程における東ランス
14の振動を測定し、これによって造滓状況をキャッチす
るようになっている。図1において4' は他炉への吹錬
酸素ラインを示す。なお、図面では上吹きランスに酸素
ガスを供給する場合について示したが、本発明は底吹き
羽口へ酸素ガスを供給する場合にも適用可能である。 【0009】前記酸素流量調節弁9のCν値(弁流量係
数)は一般的には下記の式で求められる。ΔP>P1
2のとき 【0010】 【数1】 【0011】ΔP<P1 /2のとき 【0012】 【数2】 【0013】ここで、 Q :ガス流量(ランスからの目標ガス吐出流量) G :ガス比重 P1 :流量調節弁前の一次圧力(元圧) P2 :流量調節弁後圧力(背圧) ΔP:P1 −P2 t :ガス温度 ところで酸素流量調節弁9後の圧力は調節弁9以降の条
件にかかわってくる。つまり図1の場合、東ランス14と
西ランス15とでは酸素ラインの長さ等の条件が違ってい
るので圧損に差を生じるからである。なお、前述のよう
に酸素流量調節弁9によって調節した後の酸素ガス圧力
は、前記Cν値(弁流量係数)よりΔP>P1 /2のと
きは、式(1)より吹込みガスの元圧P1 と吹込みガス
流量Qとにより決まり、ΔP<P1 /2のときにも大ま
かには吹込みガスの元圧P1 と吹込みガス流量Qで決ま
ると考えて差し支えない。 【0014】したがって、図2に示すように上吹きラン
ス毎に吹込みガスの元圧と酸素流量およびそのときの調
節弁開度を実操業から常に学習して作成しておくことに
より、ガス吹込み流量に変更があった場合、図2に示す
関係から変更後の吹込みガス流量に制御することができ
る。図3は転炉吹錬中の酸素吹込みパターンに応じてサ
ブランス測定する段階での酸素流量調節弁の開度、酸素
流量および酸素元圧の推移を吹錬に使用した吹錬酸素%
による経時変化を示している。サブランスによる溶鋼の
温度および炭素濃度の測定は、吹止め酸素流量から遡っ
て何Nm3 前からであると設定されているので、吹錬酸素
%がサブランス測定酸素流量に達する前の予め定めた流
量介入時点の吹錬酸素%に到達すると、図3に示すよう
にそれまでのガス吹込み流量設定のための調節弁開度45
°、酸素流量600Nm3/min 、元圧14kg/cm2 Gからサブ
ランス測定開始時点における酸素流量350Nm3/min に至
るまでの過程で一定の酸素流量変化で到達するように流
量調節弁の開度を酸素吹込み流量に見合った開度になる
ように、予め定めておいた流量・圧力・弁開度からなる
調節弁特性を操業実績から学習して求めた開度に基づい
て規定開度制御する。 【0015】到達する過程で元圧が14kg/cm2 Gから図
3に示すように変動すると、調節弁開度を前記図2に示
す調節弁特性に基づいて元圧変動分追従して開度制御を
行い、介入酸素量を供給してサブランス測定開始時には
所定の酸素流量350Nm3/minとしてサブランスによる溶
鋼の温度測定および炭素濃度の測定を行う。サブランス
測定が終了したら同様にして規定開度制御により元のパ
ターンに戻す。 【0016】前記の過程を図4を用いて時系列的に再説
明すると、図4(a)に示すように設定された吹込みパ
ターンによる酸素流量により吹錬中に使用した酸素%が
サブランス測定開始時前の介入酸素量時点に到達したら
サブランスパラメータを加味して図4(b)に示すよう
にサブランス測定段階の酸素流量パターンを設定する。 【0017】次にこの設定した酸素流量パターンに対応
させて図4(c)に示すように調節弁の開度変更パター
ンを作成し、この開度変更パターンに従って酸素調節弁
の開度を制御する。なお途中で元圧が変動したら図2に
示す元圧、酸素流量および調節弁開度との関係を用いて
元圧補正を加えて図4(d)に示す調節弁開度パターン
によりサブランス測定段階を経過させる。 【0018】図5は本発明の方法を実施するためのフロ
ーチャートを示しており、上吹きランスからの酸素吹込
み開始による転炉吹錬のスタートから吹錬終了までの吹
錬過程において、サブランス測定のタイミングを決定す
るかまたはスロッピング発生の有無を判定する。サブラ
ンス測定またはスロッピング発生の場合には、それぞれ
定常吹錬パターンからの酸素流量パラメータの設定変更
を行い、この酸素流量設定変更に対応して調節弁開度変
更パターンを作成する。この調節弁開度パターンによる
酸素流量変化が規定値100Nm3/min 以上であるかどうか
を判定し、100Nm3/min 以上である場合には元圧補正を
行った後、規定開度出力によりサブランス測定またはス
ロッピングが解消するまで規定開度制御を行う。 【0019】図6(b)は本発明の1実施例を示すもの
である。吹錬開始から終了までの過程においてスロッピ
ング時、サブランス測定時に、変更後の吹込みガス流量
設定に到達するまで順次変更する吹込み流量になるよう
に、予め操業から得た調節弁開度に規定開度制御するの
で、設定通りの流量変化で流量制御できるという良好な
結果が得られた。なお図6(a)は、比較のため従来の
PID制御オンリーの操業実績を表しており、この場
合、PID制御オンリーであるため設定からかけ離れた
流量変化を示していることがわかる。 【0020】 【発明の効果】以上説明したように本発明によれば、転
炉等の精錬炉に吹込むガスの流量を大幅に変更するかま
たは元のパターンに大幅に戻す際に、ガス吹込み流量変
更の目的に応じて変更後の吹込みガス流量設定値に到達
するまでの時間を予め定めておき、該到達時間内に一定
の流量変化で到達するように制御する。それと共に吹込
み流量、吹込みガスの元圧、調節弁開度からなる特性を
操業から学習しておき、ガス吹込み流量設定値に見合う
調節弁開度を該特性から求めて規定開度制御するため、
設定通りの流量変化で精錬炉のガス流量制御を行うこと
ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the flow rate of blown gas in a smelting furnace, and more particularly to a top-blowing converter, a bottom-blowing converter, a top-blowing converter, The present invention relates to a method for controlling the flow rate of blown gas in a refining furnace suitable for blowing gas into a refining furnace such as an AOD converter through a top blowing lance or a bottom blowing tuyere. 2. Description of the Related Art In general, in a gas refining furnace such as a converter, a refining blow gas is blown into a refining furnace through an upper blowing lance or a bottom blowing tuyere to perform refining.
Simple PID control or specified opening control using a process controller is known. For example, as in Japanese Patent Publication No. 51606/1986, control of gas supply for switching the blown gas to the bottom blowing tuyere in the converter operation is performed by controlling the opening of the flow control valve. The tuyere pressure loss ΔPy 0 according to each operation status is calculated in advance for each number of converters, and the tuyere pressure loss Py 0 is subtracted from the gas source pressure P 2 at each time to obtain a flow control valve pressure loss ΔP 4 . From this, a Cb value (valve flow coefficient) of the flow control valve is determined, and a bottom blown gas blowing control method for the converter is proposed in which the opening of the flow control valve is set to a specified opening based on the Cv value. Further, Japanese Patent Application Laid-Open Nos. 61-284514 and 61-2845
As disclosed in Japanese Patent Publication No. 15, a refining method controls the flow rate of gas blown from a tuyere into a refining furnace by a constant flow rate control that feeds a measured gas flow rate back to a control valve and controls the gas flow rate to a set flow rate. In the method of controlling the flow rate of gas flowing into the furnace, when the gas flow rate value is changed stepwise significantly or the gas flow rate is increased when changing the gas type, first increase the opening of the flow control valve, etc. do it,
Switching the flow rate set value to the excessive flow rate set value higher than the changed flow rate set value and controlling the constant flow rate, and when reducing the gas flow rate, first reduce the opening of the flow rate control valve and change the flow rate set value. When the tuyere back pressure reaches the pressure set value set in relation to the changed flow set value based on the flow pressure characteristic curve, the constant flow control is performed by switching to the lower flow set value lower than the flow set value. There is disclosed a method of controlling the flow rate of a blown gas in a smelting furnace in which a constant flow rate is controlled by switching from the excessive flow rate set value to the changed flow rate set value. [0004] Among the above prior arts,
If the stability at steady state is assured by simple PID control, since the gain is lowered, it takes time to reach the target set value. Conversely, if transient responsiveness is ensured, stability in a steady state cannot be maintained, and there is a problem that convergence may not be achieved especially when a large disturbance enters. [0005] Further, in the specified opening control, the transient response is improved, but the fluctuation of the blown gas is caused to cause a fluctuation in the pressure in the refining furnace. In particular, a sudden decrease in the blown gas reduces the pressure in the furnace. for pressure, a large amount of reduction in the occurrence and occurrence CO unburned oxygen caused the air mixed into the furnace, there is a problem that with an increase of CO 2. The present invention has been made in order to solve the problems of the prior art, when controlling the gas blowing flow rate based on a set blowing pattern, whether to significantly change the gas blowing flow stepwise, Or a method for controlling the flow rate of blown gas in a refining furnace that can improve transient response and maintain stability during steady operation and prevent rapid fluctuations in furnace pressure when returning to the original pattern significantly. The purpose is to provide. SUMMARY OF THE INVENTION The present invention for achieving the above object provides a lance by a constant flow rate control in which a gas flow rate is controlled to a set flow rate by feeding back a measured gas flow rate to a control valve. Alternatively, in the method of controlling the flow rate of gas blown from the tuyere into the smelting furnace, the gas flow rate of the smelting furnace is controlled by the sub-lance when the gas flow rate is controlled based on the blowing pattern. When the gas flow rate is increased or decreased by a large step change due to operating factors such as generation, the time until the changed gas flow rate is reached is predetermined according to the purpose of the flow rate change. In addition, the flow rate, pressure, and valve opening should be adjusted so that the opening of the control valve matches the gas injection flow rate so that the changed injection gas flow rate is reached with a constant flow rate change. And controlling the specified opening based on the opening obtained by learning the characteristics of the control valve from the operation results. An embodiment of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, an instrumentation control system (DCS) 17 is provided below a process computer (P / C) 18.
The pressure of the blowing oxygen gas supplied from the oxygen holder 1 is first controlled by the primary pressure reducing control valve 2 using the instrumentation control system 17 based on the operation command from the process computer 18. The oxygen pressure after the first pressure reduction is measured by the pressure gauge 3. The flow rate of the blowing oxygen to the No. 1 converter 16 is measured by an oxygen flow meter 8 provided in the blowing oxygen line 4 of the No. 1 furnace. The oxygen thermometer 6 performs pressure / temperature correction based on the measured pressure and temperature, and adjusts the oxygen flow rate control valve 9 to control the flow rate to the set flow rate. In this case, 1
The main pipe oxygen valve 7 provided on the reactor blowing oxygen line 4 is open and the east lance 14 and the west lance 15
East lance 14 inserted in the converter 16 used for this blowing
, The east lance end valve 12 is open and the west lance end valve 11 is closed. The back pressure of the oxygen gas blown into the No. 1 converter 16 from the east lance 14 is measured by the oxygen back pressure gauge 10. A lance vibrometer 13 is mounted on the upper part of the east lance 14, and the lance vibrometer 13 allows the east lance in the blowing process.
Fourteen vibrations were measured, and this was used to catch the slag formation. In FIG. 1, 4 'indicates a blowing oxygen line to another furnace. Although the drawings show a case where oxygen gas is supplied to the upper blowing lance, the present invention is also applicable to a case where oxygen gas is supplied to the bottom blowing tuyere. The Cν value (valve flow coefficient) of the oxygen flow control valve 9 is generally obtained by the following equation. ΔP> P 1 /
In the case of 2, [0011] ΔP <when P 1/2 [0012] [number 2] Here, Q: gas flow rate (target gas discharge flow rate from the lance) G: gas specific gravity P 1 : primary pressure before the flow control valve (source pressure) P 2 : pressure after the flow control valve (back pressure) ΔP : P 1 -P 2 t: At the gas temperature, the pressure after the oxygen flow control valve 9 depends on the conditions after the control valve 9. In other words, in the case of FIG. 1, the east lance 14 and the west lance 15 have different pressure loss due to different conditions such as the length of the oxygen line. As described above, when the oxygen gas pressure after being adjusted by the oxygen flow control valve 9 is ΔP> P 1/2 from the above Cν value (valve flow coefficient), the oxygen gas pressure is calculated from the equation (1). determined by the pressure P 1 and the blowing gas flow rate Q, no problem consider the roughly even when [Delta] P <the P 1/2 determined by the base pressure P 1 and the blowing gas flow rate Q of the blow gas. Therefore, as shown in FIG. 2, by constantly learning and preparing the source pressure and oxygen flow rate of the blown gas and the control valve opening at that time for each upper blowing lance from actual operation, the gas blowing When there is a change in the blow-in flow rate, it is possible to control the blow-in gas flow rate after the change from the relationship shown in FIG. Fig. 3 shows changes in the opening degree of the oxygen flow rate control valve, the oxygen flow rate and the oxygen source pressure at the stage of measuring the sublance according to the oxygen blowing pattern during converter blowing, and the percentage of blowing oxygen used for blowing.
Shows the change over time due to Measurements of temperature and carbon concentration of the molten steel by sub-lance, because back from吹止Me oxygen flow rate is set to be from what Nm 3 before, predetermined flow rate before blowing oxygen% reached sub-lance measurement oxygen flow When the blowing oxygen% at the time of the intervention is reached, as shown in FIG.
°, oxygen flow rate 600 Nm 3 / min, opening degree of the flow control valve so as to reach a constant change in oxygen flow rate in the process from the original pressure 14 kg / cm 2 G to the oxygen flow rate 350 Nm 3 / min at the start of sublance measurement. The specified opening control based on the opening obtained by learning the control valve characteristics consisting of the predetermined flow rate, pressure, and valve opening from the operation results so that the opening can be matched with the oxygen blowing flow rate. I do. When the source pressure fluctuates from 14 kg / cm 2 G as shown in FIG. 3 in the process of reaching, the opening degree of the control valve follows the source pressure fluctuation based on the control valve characteristic shown in FIG. At the start of sublance measurement, the temperature of the molten steel and the carbon concentration are measured by the sublance at a predetermined oxygen flow rate of 350 Nm 3 / min. When the sublance measurement is completed, the original pattern is returned to the original pattern by the prescribed opening control in the same manner. The above-mentioned process will be described again in time series with reference to FIG. 4. As shown in FIG. 4 (a), the oxygen percentage used during blowing is measured by the oxygen flow rate according to the blowing pattern set as shown in FIG. When the intervention oxygen amount reaches the time before the start, the oxygen flow pattern in the sublance measurement step is set as shown in FIG. Next, as shown in FIG. 4C, a pattern for changing the opening of the control valve is created in accordance with the set oxygen flow rate pattern, and the opening of the oxygen control valve is controlled according to the pattern for changing the opening. . If the source pressure fluctuates in the middle, the source pressure is corrected using the relationship between the source pressure, the oxygen flow rate, and the opening degree of the control valve shown in FIG. Let go. FIG. 5 is a flowchart for carrying out the method of the present invention. In the blowing process from the start of converter blowing by the start of oxygen blowing from the upper blowing lance to the end of blowing, the sublance measurement is performed. Is determined, or it is determined whether or not the slopping has occurred. In the case of sublance measurement or occurrence of dropping, the setting of the oxygen flow parameter is changed from the steady blowing pattern, and a control valve opening change pattern is created corresponding to the change in the oxygen flow setting. After oxygen flow rate changes due to the adjustment valve opening pattern is determined whether a specified value 100 Nm 3 / min or more, when it is 100 Nm 3 / min or more is subjected to the source pressure correction, sub-lance pursuant opening Output The specified opening control is performed until the measurement or the slopping is eliminated. FIG. 6B shows an embodiment of the present invention. In the process from the start to the end of blowing, at the time of slopping, at the time of sublance measurement, the control valve opening degree obtained from the operation in advance is adjusted so that the blow flow rate changes sequentially until the changed blow gas flow rate setting is reached. Since the specified opening degree control is performed, a favorable result is obtained in which the flow rate can be controlled with the flow rate change as set. FIG. 6A shows the operation results of the conventional PID control only for comparison. In this case, it can be seen that the flow rate changes far from the setting since the PID control is only used. As described above, according to the present invention, when the flow rate of gas to be blown into a refining furnace such as a converter is largely changed, or when the gas flow is largely returned to the original pattern, the gas blowing is performed. The time required to reach the changed set value of the blown gas flow rate is determined in advance in accordance with the purpose of changing the flow rate of the suction gas, and the flow is controlled so as to reach a constant flow rate change within the arrival time. At the same time, the characteristics consisting of the blow flow rate, the source pressure of the blown gas, and the control valve opening are learned from the operation, and the control valve opening corresponding to the set value of the gas blow flow is determined from the characteristics to determine the specified opening control. To do
The gas flow rate of the refining furnace can be controlled by the flow rate change as set.

【図面の簡単な説明】 【図1】本発明が採用された転炉ランスへの上吹き酸素
ガス制御装置の全体構成を示す説明図である。 【図2】流量調節弁開度、酸素流量および元圧の関係を
示す線図である。 【図3】調節弁開度および酸素流量の推移を吹錬酸素%
を尺度として示す線図である。 【図4】本発明のパターン変更手順を示す説明図であ
る。 【図5】本発明を実施するためのロジッタを示すフロー
チャートである。 【図6】本発明例と従来例の酸素流量の推移を吹錬酸素
%を尺度として示す線図である。 【符号の説明】 1 酸素ホルダ 2 1次減圧調節弁 3 1次減圧後酸素圧力計 4 1号炉吹錬酸素ライン 5 酸素1次圧力計 6 酸素温度計 7 主管酸素弁 8 酸素流量計 9 酸素流量調節弁 10 酸素背圧計 11 西ランス末端弁 12 東ランス末端弁 13 ランス振動計 14 東ランス 15 西ランス 16 1号転炉 17 計装制御システム(DCS) 18 プロセスコンピュータ(P/C)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the overall configuration of a top blown oxygen gas control device for a converter lance employing the present invention. FIG. 2 is a diagram showing a relationship between a flow control valve opening, an oxygen flow rate, and a source pressure. FIG. 3 shows the changes in the control valve opening degree and the oxygen flow rate as blowing oxygen%.
FIG. 3 is a diagram showing as a scale. FIG. 4 is an explanatory diagram showing a pattern changing procedure according to the present invention. FIG. 5 is a flowchart showing a low jitter for implementing the present invention. FIG. 6 is a graph showing changes in the oxygen flow rate of the present invention example and the conventional example with blowing oxygen% as a scale. [Description of Signs] 1 Oxygen holder 2 Primary pressure reducing valve 3 Primary pressure reducing oxygen pressure gauge 4 Unit 1 furnace blowing oxygen line 5 Oxygen primary pressure gauge 6 Oxygen thermometer 7 Main pipe oxygen valve 8 Oxygen flow meter 9 Oxygen Flow control valve 10 Oxygen back pressure gauge 11 West lance terminal valve 12 East lance terminal valve 13 Lance vibrometer 14 East lance 15 West lance 16 Unit 1 converter 17 Instrumentation control system (DCS) 18 Process computer (P / C)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 測定ガス流量を調節弁にフィードバック
して設定流量となるようにガス流量を制御する定流量制
御によって、ランスまたは羽口から精錬炉内に吹込まれ
るガス流量を制御する精錬炉の吹込みガス流量制御方法
において、ガスの吹込み流量を吹込みパターンに基づい
て制御している時にサブランスによる計測、スロッピン
グ発生などの操業要因によって、ガスの吹込み流量をス
テップ的に大幅に変更して増加もしくは減少する際に、
流量変更の目的に応じて変更後の吹込みガス流量に到達
するまでの時間を予め定めておき、一定の流量変化で変
更後の吹込みガス流量に到達するように、調節弁開度を
ガス吹込み流量に見合った開度になるように流量・圧力
・弁開度から成る調節弁特性を操業実績から学習して求
めた開度に基づいて規定開度制御することを特徴とする
精錬炉の吹込みガス流量制御方法。
(57) [Claim 1] Blowing into a refining furnace from a lance or tuyere by a constant flow rate control in which a measured gas flow rate is fed back to a control valve to control a gas flow rate to a set flow rate. In the method of controlling the gas flow rate of a smelting furnace, which controls the gas flow rate, the gas flow rate is controlled by the sublance when the gas flow rate is controlled based on the blowing pattern, and the gas flow rate is controlled by operating factors such as slopping. When the flow rate is increased or decreased by changing the flow rate in large steps,
Depending on the purpose of the flow rate change, the time required to reach the changed blow-in gas flow rate is determined in advance, and the control valve opening is adjusted so that the blow-in gas flow rate after the change is reached at a constant flow rate change. A refining furnace characterized in that a specified opening is controlled based on an opening obtained by learning a control valve characteristic comprising a flow rate, a pressure, and a valve opening from operation results so as to obtain an opening corresponding to a blowing flow rate. Injection gas flow control method.
JP34023992A 1992-12-21 1992-12-21 Method of controlling the flow rate of blown gas in refining furnace Expired - Fee Related JP3425698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34023992A JP3425698B2 (en) 1992-12-21 1992-12-21 Method of controlling the flow rate of blown gas in refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34023992A JP3425698B2 (en) 1992-12-21 1992-12-21 Method of controlling the flow rate of blown gas in refining furnace

Publications (2)

Publication Number Publication Date
JPH06184615A JPH06184615A (en) 1994-07-05
JP3425698B2 true JP3425698B2 (en) 2003-07-14

Family

ID=18335037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34023992A Expired - Fee Related JP3425698B2 (en) 1992-12-21 1992-12-21 Method of controlling the flow rate of blown gas in refining furnace

Country Status (1)

Country Link
JP (1) JP3425698B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956041B (en) * 2010-09-28 2013-06-26 莱芜钢铁集团有限公司 Converter oxygen-blowing control method and device
JP5736858B2 (en) * 2011-03-09 2015-06-17 Jfeスチール株式会社 Secondary cooling water control method for continuous casting machine
KR101321853B1 (en) * 2011-08-05 2013-10-22 주식회사 포스코 Treatment apparatus for molten metal and the method thereof
CN110542308A (en) * 2019-08-19 2019-12-06 广东新生环保科技股份有限公司 Refining smelting furnace DCS control system
CN114671438B (en) * 2022-03-31 2023-05-09 新疆西部合盛硅业有限公司 Weight and temperature interlocking automatic control oxygen blowing refining method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284514A (en) * 1985-06-10 1986-12-15 Kawasaki Steel Corp Method for controlling flow rate of gas to be blown to refining furnace
JPS61284515A (en) * 1985-06-10 1986-12-15 Kawasaki Steel Corp Method for controlling flow rate of gas to be blown to refining furnace
JPH05239524A (en) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd Method for controlling blowing of converter

Also Published As

Publication number Publication date
JPH06184615A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
JP3425698B2 (en) Method of controlling the flow rate of blown gas in refining furnace
CN104073624B (en) A kind of vertical continuous annealing furnace hearth pressure control method
US3533778A (en) Automatic control of pig iron refining
JPH0611277A (en) Method and device for adjusting quantity of combustion air of flue-gas recovery device for metallurgical reaction furnace and recovery device and metallurgical reaction furnace
KR100361246B1 (en) Method for controlling equalized back pressure of blast furnace hot stove
JP3099322B2 (en) Blast furnace heat management method
US4314694A (en) Method for controlling exhaust gases in oxygen blown converter
SU1520110A1 (en) Method of regulation of steel blowing with oxygen
JP2006241500A (en) Method for controlling hot blast stove
KR100804230B1 (en) Combustion control method for hot stove of blast furnace
JP2637529B2 (en) Furnace temperature and NOx control device
JPH079812B2 (en) Fuel cell
JPS61291910A (en) Method for controlling flow rate of gas to be blown to refining furnace
JPS6113531B2 (en)
JPH028213B2 (en)
CN114561510B (en) Method for controlling carbon in refining furnace or tundish of steelmaking on line through gas phase
KR100354212B1 (en) Steelmaking Process Operation Act
JP2872395B2 (en) Converter oxygen flow control method
KR100985238B1 (en) Method for controlling the amount of supplying pulverized coal as to gas using ratio in blast furnace
JP4238603B2 (en) Converter furnace port pressure control method and control apparatus
CN114892019A (en) Top-blown molten pool smelting temperature compensation regulation and control system and temperature compensation regulation and control method
JPH01287224A (en) In-furnace temperature control method for continuous heat treatment furnace
JPH05311216A (en) Method for operating blast furnace
JP2000336419A (en) Method for setting and changing flow rate of bottom- blown gas in converter
KR20000042525A (en) Method of operating melting furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees