JP3423130B2 - Method for producing hydrogen storage alloy electrode for alkaline storage battery - Google Patents

Method for producing hydrogen storage alloy electrode for alkaline storage battery

Info

Publication number
JP3423130B2
JP3423130B2 JP32397595A JP32397595A JP3423130B2 JP 3423130 B2 JP3423130 B2 JP 3423130B2 JP 32397595 A JP32397595 A JP 32397595A JP 32397595 A JP32397595 A JP 32397595A JP 3423130 B2 JP3423130 B2 JP 3423130B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
ribbon
alloy
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32397595A
Other languages
Japanese (ja)
Other versions
JPH09147852A (en
Inventor
光造 野上
義典 松浦
衛 木本
信幸 東山
光紀 徳田
隆博 礒野
育郎 米津
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32397595A priority Critical patent/JP3423130B2/en
Priority to US08/749,531 priority patent/US6110304A/en
Priority to KR1019960054682A priority patent/KR100348954B1/en
Priority to CN96123334A priority patent/CN1095207C/en
Priority to DE69626464T priority patent/DE69626464T2/en
Priority to EP96118457A priority patent/EP0774792B1/en
Publication of JPH09147852A publication Critical patent/JPH09147852A/en
Application granted granted Critical
Publication of JP3423130B2 publication Critical patent/JP3423130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
の水素吸蔵合金電極の製造方法に係わり、詳しくは、低
温での高率放電特性に優れた水素吸蔵合金電極の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a hydrogen storage alloy electrode for an alkaline storage battery, and more particularly, to a method of manufacturing a hydrogen storage alloy electrode excellent in high rate discharge characteristics at low temperature.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
正極に水酸化ニッケルなどの金属化合物を使用し、負極
に新素材の水素吸蔵合金を使用したアルカリ蓄電池が、
単位重量及び単位体積当たりのエネルギー密度が高く、
高容量化が可能であることから、ニッケル・カドミウム
蓄電池に代わる次世代のアルカリ蓄電池として注目され
ている。
2. Description of the Related Art In recent years,
An alkaline storage battery that uses a metal compound such as nickel hydroxide for the positive electrode and a new material hydrogen storage alloy for the negative electrode
High energy density per unit weight and unit volume,
Because of its high capacity, it is attracting attention as a next-generation alkaline storage battery that replaces the nickel-cadmium storage battery.

【0003】アルカリ蓄電池用の水素吸蔵合金として
は、通常、鋳型内の合金溶湯を水冷凝固させた後、粉砕
して得た水素吸蔵合金粉末(以下、この水素吸蔵合金粉
末を「通常凝固品」と称する)が使用されている。
As a hydrogen storage alloy for alkaline storage batteries, usually, a hydrogen storage alloy powder obtained by water-cooling and solidifying an alloy melt in a mold and then crushing it (hereinafter, this hydrogen storage alloy powder is referred to as "normally solidified product"). Is used).

【0004】しかしながら、通常凝固品には偏析(成分
元素濃度の偏り)が多く存在するために、充放電時に水
素を吸蔵又は放出する際に合金粒子に割れが生じて、比
表面積が増加し易い。このため、通常凝固品を水素吸蔵
材として使用したアルカリ蓄電池は、充放電サイクル初
期の高率放電特性には優れる反面、偏析部分が酸化劣化
(腐食)の起点になり易いことからサイクル寿命が一般
に短いという問題を有していた。
However, since a solidified product usually has a large amount of segregation (deviation of concentration of component elements), alloy particles are cracked when hydrogen is occluded or released during charging / discharging, and the specific surface area is apt to increase. . For this reason, an alkaline storage battery that normally uses a solidified product as a hydrogen storage material has excellent high-rate discharge characteristics at the beginning of a charge / discharge cycle, but on the other hand, the segregation portion is likely to be the starting point of oxidative deterioration (corrosion). It had the problem of being short.

【0005】サイクル寿命を改善する方法として、通常
凝固品にアニール処理(加熱処理)を施すことが提案さ
れている(特開昭60−89066号公報)。しかし、
通常凝固品にアニール処理を施すと、偏析が少なくなる
ため、未処理のものに比べてサイクル寿命は長くなる反
面、アニール処理により、偏析が少なくなるとともに、
結晶粒の大きさ(希土類元素などの特定の元素の濃度が
高い層と同濃度が低い層とが交互に出現する層状構造に
於ける隣接する二層の厚みの和)が大きくなるため、粒
子に割れが生じにくくなり、充放電サイクル初期の高率
放電特性、特に低温での高率放電特性が未処理のものに
比べて著しく低下する。
As a method of improving the cycle life, it has been proposed to subject a solidified product to an annealing treatment (heating treatment) (Japanese Patent Laid-Open No. 60-89066). But,
Normally, when solidified products are annealed, segregation is reduced, so the cycle life is longer than that of untreated products, but annealing treatment reduces segregation and
Since the size of the crystal grain (the sum of the thicknesses of two adjacent layers in a layered structure in which a layer having a high concentration of a specific element such as a rare earth element and a layer having a low concentration of the rare earth element alternately appear) becomes large, Cracks are less likely to occur, and the high rate discharge characteristics at the initial stage of the charge / discharge cycle, particularly the high rate discharge characteristics at low temperature, are significantly deteriorated as compared with the untreated one.

【0006】通常凝固品に上述の二律背反的な問題があ
ることに鑑み、高速回転するロールの周面に合金溶湯を
流し込んで急冷凝固させる所謂ロール法により作製した
薄帯状の水素吸蔵合金を粉砕して得た水素吸蔵合金粉末
が新しい水素吸蔵材として提案されている(特開昭63
−291363号公報)。
In view of the above-mentioned trade-off between normally solidified products, a ribbon-shaped hydrogen storage alloy produced by a so-called roll method in which a molten alloy is poured onto the peripheral surface of a roll rotating at a high speed and rapidly solidified is crushed. The hydrogen-absorbing alloy powder obtained in this way has been proposed as a new hydrogen-absorbing material (Japanese Patent Laid-Open No. Sho 63-63)
-291363).

【0007】ロール法による水素吸蔵合金は、合金溶湯
を急冷凝固させて得たものであるので、合金溶湯が凝固
する際に重力場の影響を受けにくく、通常凝固品に比べ
て、偏析が少ない。
Since the hydrogen storage alloy by the roll method is obtained by rapidly solidifying the molten alloy, it is less affected by the gravitational field when the molten alloy is solidified, and the segregation is less than that of the normally solidified product. .

【0008】しかしながら、ロール法により作製した薄
帯状の水素吸蔵合金のロール側の面(ロールの周面に当
接していた面)及び開放側の面(単ロール法により作製
した薄帯状の水素吸蔵合金のロール側の面と反対側の
面)は、微細な凹凸が少なく、しかも大なり小なり酸化
されているので、これを粉砕して得た水素吸蔵合金粉末
をそのまま水素吸蔵材として用いると、水素吸蔵合金の
活性が低いことに起因して、とりわけ低温での高率放電
特性が良くない。
However, the roll-side surface (the surface that was in contact with the peripheral surface of the roll) and the open-side surface (the ribbon-shaped hydrogen storage alloy prepared by the single roll method) of the ribbon-shaped hydrogen storage alloy prepared by the roll method. The surface of the alloy opposite to the roll side) has few fine irregularities and is oxidized to a greater or lesser extent, so if hydrogen absorbing alloy powder obtained by crushing this is used as it is as a hydrogen absorbing material. However, due to the low activity of the hydrogen storage alloy, the high rate discharge characteristics at low temperatures are not good.

【0009】そこで、低温での高率放電特性を改善する
べく、ロール法により作製した薄帯状の水素吸蔵合金を
粉砕して粉末とした後、さらにこれを酸又はアルカリで
表面処理することが提案されている(特開昭63−14
6353号公報及び特開平3−152868号公報)。
Therefore, in order to improve the high rate discharge characteristics at low temperature, it is proposed to pulverize the ribbon-shaped hydrogen storage alloy produced by the roll method into powder, and then further surface-treat this with acid or alkali. (Japanese Patent Laid-Open No. 63-14
6353 and JP-A-3-152868).

【0010】しかしながら、上記の方法では、表面処理
時に、粉砕により生じた新生面から合金成分元素が溶出
して、水素吸蔵合金の水素吸蔵量(容量)が減少してし
まうことが分かった。
However, it has been found that, in the above-mentioned method, the alloy component elements are eluted from the nascent surface generated by the pulverization during the surface treatment, and the hydrogen storage amount (capacity) of the hydrogen storage alloy is reduced.

【0011】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、水素吸蔵量
が多く、しかも低温での高率放電特性に優れる水素吸蔵
合金電極を得ることが可能な製造方法を提供するにあ
る。
The present invention has been made to solve this problem, and an object thereof is to obtain a hydrogen storage alloy electrode which has a large amount of hydrogen storage and which is excellent in high rate discharge characteristics at low temperatures. To provide a manufacturing method capable of

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池用の水素吸蔵合金電極の
製造方法(本発明方法)は、合金溶湯をロール法により
凝固させて薄帯状の水素吸蔵合金を作製する工程と、該
薄帯状の水素吸蔵合金を酸又はアルカリ又は強酸と強ア
ルカリとの塩で表面処理した後、粉砕して、水素吸蔵材
としての水素吸蔵合金粉末を作製する工程と、該水素吸
蔵合金粉末と結着剤との混練物を芯体に塗布又は充填し
た後、乾燥する工程とを有してなる。
In order to achieve the above object, a method for producing a hydrogen storage alloy electrode for an alkaline storage battery according to the present invention (a method of the present invention) is a method of solidifying a molten alloy by a roll method to form a ribbon. A step of producing a hydrogen storage alloy, and the ribbon-shaped hydrogen storage alloy is surface-treated with a salt of an acid or an alkali or a strong acid and a strong alkali, and then pulverized to produce a hydrogen storage alloy powder as a hydrogen storage material. And a step of applying or kneading the kneaded material of the hydrogen-absorbing alloy powder and the binder to the core and then drying.

【0013】ロール法は、単ロール法及び双ロール法の
いずれの方法を用いてもよい。薄帯状の水素吸蔵合金の
表面処理は、例えば、塩酸、硫酸、硝酸、水酸化カリウ
ム水溶液、塩化カリウム水溶液等の処理液に、薄帯状の
水素吸蔵合金を所定時間浸漬することにより行う。処理
時間(浸漬時間)は、処理液の種類及び濃度によって異
なるが、一般に、1N−塩酸の場合は1〜3時間、3N
−水酸化カリウム水溶液の場合は30分〜1時間、3N
−塩化カリウム水溶液の場合は1〜10日間である。酸
又はアルカリで表面処理する場合は、処理時間を長くし
過ぎると、水素吸蔵合金の酸化が始まるので、注意する
必要がある。
As the roll method, either a single roll method or a twin roll method may be used. The surface treatment of the strip-shaped hydrogen storage alloy is performed by immersing the strip-shaped hydrogen storage alloy in a treatment liquid such as hydrochloric acid, sulfuric acid, nitric acid, an aqueous solution of potassium hydroxide or an aqueous solution of potassium chloride for a predetermined time. The treatment time (immersion time) varies depending on the type and concentration of the treatment liquid, but in the case of 1N-hydrochloric acid, it is generally 1 to 3 hours and 3N.
-30 minutes to 1 hour in the case of aqueous potassium hydroxide solution, 3N
-For potassium chloride aqueous solution, it is 1 to 10 days. In the case of surface treatment with acid or alkali, if the treatment time is set too long, the hydrogen storage alloy will start to oxidize, so care must be taken.

【0014】芯体の具体例としては、発泡状金属多孔
体、金属繊維、炭素繊維、金属メッシュ、パンチングメ
タルが挙げられる。
Specific examples of the core include foamed metal porous bodies, metal fibers, carbon fibers, metal meshes, and punching metals.

【0015】薄帯状の水素吸蔵合金として、表面処理す
る前に不活性ガス又は真空中にて加熱処理(アニール)
したものを用いてもよい。加熱処理することにより、薄
帯の厚み方向の結晶粒の大きさのバラツキが緩和され
て、充放電サイクル時の微粉化を抑制することができ
る。加熱処理温度を合金の融点(一般に1200°C程
度)に近づけ過ぎると、水素吸蔵合金が結晶粒界で一部
再溶解して極めて割れにくくなり、不活性化するので、
注意する必要がある。加熱処理は、一般に1〜10時間
程度行う。
Surface treatment as a ribbon-shaped hydrogen storage alloy
Heat treatment (annealing) in inert gas or vacuum before heating
You may use what was done. By the heat treatment, the variation in the size of the crystal grains in the thickness direction of the ribbon can be mitigated, and the pulverization during the charge / discharge cycle can be suppressed. If the heat treatment temperature is brought too close to the melting point of the alloy (generally about 1200 ° C.), the hydrogen storage alloy is partially re-dissolved at the grain boundaries and becomes extremely difficult to crack, and is inactivated.
You need to be careful. The heat treatment is generally performed for about 1 to 10 hours.

【0016】本発明方法では、ロール法により作製した
薄帯状の水素吸蔵合金の表面処理を粉砕前に行うことと
しているので、表面処理時に合金成分元素(希土類元素
など)が処理液中に溶出しにくい。したがって、本発明
方法によれば、薄帯状の水素吸蔵合金の水素吸蔵量を減
少させることなく、ロール側の面及び開放側の面の活性
を高めることができる。
In the method of the present invention, the surface treatment of the ribbon-shaped hydrogen storage alloy produced by the roll method is carried out before the pulverization, so that alloying component elements (rare earth elements, etc.) are eluted into the treatment liquid during the surface treatment. Hateful. Therefore, according to the method of the present invention, the activity of the roll side surface and the open side surface can be enhanced without reducing the hydrogen storage amount of the ribbon-shaped hydrogen storage alloy.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0018】(実施例1) 〔水素吸蔵合金粉末の作製〕合金成分金属(いずれも純
度99.9%以上)を秤取して混合し、Arガス中に
て、高周波溶解炉にて溶解し、溶湯を単ロール法(ロー
ル径:350mm)により凝固させて、組成式MmNi
3.4 Co0.8 Al0.3 Mn0.5 で表される薄帯状の水素
吸蔵合金(厚み:約0.1mm)を作製した。この薄帯
状の水素吸蔵合金を、2倍の重量の1N−塩酸に1時間
浸漬して表面処理した後、Arガス中にて機械的に粉砕
して、平均粒径が50μmの水素吸蔵合金粉末を作製し
た。なお、表面処理後の薄帯状の水素吸蔵合金のBET
法による比表面積は、0.31m2 /gであった。
(Example 1) [Preparation of hydrogen storage alloy powder] Alloy component metals (each having a purity of 99.9% or more) were weighed and mixed, and melted in a high frequency melting furnace in Ar gas. , The molten metal is solidified by the single roll method (roll diameter: 350 mm), and the composition formula MmNi
A thin strip hydrogen storage alloy (thickness: about 0.1 mm) represented by 3.4 Co 0.8 Al 0.3 Mn 0.5 was produced. This ribbon-shaped hydrogen storage alloy was immersed in twice the weight of 1N-hydrochloric acid for 1 hour for surface treatment, and then mechanically pulverized in Ar gas to obtain a hydrogen storage alloy powder having an average particle size of 50 μm. Was produced. In addition, the BET of the strip-shaped hydrogen storage alloy after surface treatment
The specific surface area by the method was 0.31 m 2 / g.

【0019】〔水素吸蔵合金電極の作製〕上記の水素吸
蔵合金粉末90重量部と、2.5重量%ポリエチレンオ
キシド水溶液10重量部とを混合して、スラリーを調製
し、このスラリーを鉄にニッケルめっきしてなるパンチ
ングメタルの両面に塗布し、乾燥して、水素吸蔵合金電
極を作製した。
[Preparation of Hydrogen Storage Alloy Electrode] 90 parts by weight of the above hydrogen storage alloy powder and 10 parts by weight of a 2.5% by weight aqueous solution of polyethylene oxide are mixed to prepare a slurry. It applied on both surfaces of the punching metal formed by plating, and dried, and the hydrogen storage alloy electrode was produced.

【0020】〔アルカリ蓄電池の作製〕上記の水素吸蔵
合金電極を負極として、負極容量が正極容量に比べて大
きいAAサイズ(単3型)のアルカリ蓄電池(電池容
量:約1200mAh)A1を作製した。なお、正極と
しては従来公知の非焼結式ニッケル極を、セパレータと
してはポリアミド製の不織布を、アルカリ電解液として
は30重量%水酸化カリウム水溶液を、それぞれ使用し
た。
[Preparation of Alkaline Storage Battery] Using the above hydrogen storage alloy electrode as a negative electrode, an AA size (AA type) alkaline storage battery (battery capacity: about 1200 mAh) A1 having a larger negative electrode capacity than the positive electrode capacity was prepared. A conventionally known non-sintered nickel electrode was used as the positive electrode, a polyamide nonwoven fabric was used as the separator, and a 30 wt% potassium hydroxide aqueous solution was used as the alkaline electrolyte.

【0021】(実施例2)表面処理する前に、薄帯状の
水素吸蔵合金に加熱処理を施したこと以外は実施例1と
同様にして、アルカリ蓄電池A2を作製した。加熱処理
は、800°Cで3時間行った。なお、表面処理後の薄
帯状の水素吸蔵合金のBET法による比表面積は、0.
32m2 /gであった。
Example 2 An alkaline storage battery A2 was produced in the same manner as in Example 1 except that the ribbon-shaped hydrogen storage alloy was heat-treated before the surface treatment. The heat treatment was performed at 800 ° C. for 3 hours. The specific surface area of the strip-shaped hydrogen storage alloy after the surface treatment by the BET method is 0.
It was 32 m 2 / g.

【0022】(実施例3)表面処理を、薄帯状の水素吸
蔵合金を2倍の重量の3N−水酸化カリウム水溶液に3
0分間浸漬して行ったこと以外は実施例1と同様にし
て、アルカリ蓄電池A3を作製した。なお、表面処理後
の薄帯状の水素吸蔵合金のBET法による比表面積は、
0.29m2 /gであった。
(Embodiment 3) A surface treatment is carried out by applying 3 times the weight of a thin strip hydrogen storage alloy to an aqueous solution of 3N-potassium hydroxide.
An alkaline storage battery A3 was produced in the same manner as in Example 1 except that the immersion was performed for 0 minutes. The specific surface area of the strip-shaped hydrogen storage alloy after the surface treatment by the BET method is
It was 0.29 m 2 / g.

【0023】(実施例4)表面処理を、薄帯状の水素吸
蔵合金を100°Cに加熱保持した2倍の重量の3N−
塩化カリウム水溶液に1日浸漬して行ったこと以外は実
施例1と同様にして、アルカリ蓄電池A4を作製した。
なお、表面処理後の薄帯状の水素吸蔵合金のBET法に
よる比表面積は、0.21m2 /gであった。
(Embodiment 4) The surface treatment was carried out by heating a ribbon-shaped hydrogen storage alloy at 100 ° C. and holding it at twice the weight of 3N−.
An alkaline storage battery A4 was produced in the same manner as in Example 1 except that the alkaline storage battery A4 was immersed in an aqueous solution of potassium chloride for 1 day.
The specific surface area of the strip-shaped hydrogen storage alloy after the surface treatment by the BET method was 0.21 m 2 / g.

【0024】(実施例5)単ロール法に代えて双ロール
法(ロール径:250mm)を用いたこと以外は実施例
1と同様にして、アルカリ蓄電池A5を作製した。な
お、表面処理後の薄帯状の水素吸蔵合金のBET法によ
る比表面積は、0.31m2 /gであった。
Example 5 An alkaline storage battery A5 was produced in the same manner as in Example 1 except that the twin roll method (roll diameter: 250 mm) was used instead of the single roll method. The specific surface area of the strip-shaped hydrogen storage alloy after the surface treatment by the BET method was 0.31 m 2 / g.

【0025】(比較例1) 薄帯状の水素吸蔵合金を表面処理しなかったこと以外は
実施例1と同様にして、アルカリ蓄電池B1を作製し
た。なお、薄帯状の水素吸蔵合金のBET法による比表
面積は、0.16m2 /gであった。
Comparative Example 1 An alkaline storage battery B1 was produced in the same manner as in Example 1 except that the ribbon-shaped hydrogen storage alloy was not surface-treated. The specific surface area of the thin strip hydrogen storage alloy by the BET method was 0.16 m 2 / g.

【0026】(比較例2)薄帯状の水素吸蔵合金に加熱
処理を施したこと、及び、表面処理しなかったこと以外
は実施例1と同様にして、アルカリ蓄電池B2を作製し
た。加熱処理は、800°Cで3時間行った。なお、加
熱処理後の薄帯状の水素吸蔵合金のBET法による比表
面積は、0.15m2 /gであった。
Comparative Example 2 An alkaline storage battery B2 was produced in the same manner as in Example 1 except that the ribbon-shaped hydrogen storage alloy was subjected to heat treatment and was not surface-treated. The heat treatment was performed at 800 ° C. for 3 hours. The specific surface area of the strip-shaped hydrogen storage alloy after heat treatment by the BET method was 0.15 m 2 / g.

【0027】(比較例3) 薄帯状の水素吸蔵合金に表面処理を施さなかったこと以
外は実施例5と同様にして、アルカリ蓄電池B3を作製
した。なお、薄帯状の水素吸蔵合金のBET法による比
表面積は、0.12m2 /gであった。
Comparative Example 3 An alkaline storage battery B3 was produced in the same manner as in Example 5 except that the ribbon-shaped hydrogen storage alloy was not surface-treated. The specific surface area of the thin strip hydrogen storage alloy by the BET method was 0.12 m 2 / g.

【0028】〔各電池の低温での高率放電特性〕各電池
を、室温(約25°C)にて120mAで16時間充電
した後、60°Cにて120mAで0.95Vまで放電
して、活性化した。
[High Rate Discharge Characteristics of Each Battery at Low Temperature] Each battery was charged at room temperature (about 25 ° C.) at 120 mA for 16 hours, and then discharged at 60 ° C. at 120 mA to 0.95 V. , Activated.

【0029】次いで、各電池を、1200mAで1.1
時間充電し、−10°Cに2時間保持した後、−10°
Cにて、1200mAで0.85Vまで放電して、各電
池の低温での高率放電容量を求めた。結果を表1に示
す。
Then, each battery was set to 1.1 at 1200 mA.
After charging for 2 hours and holding at -10 ° C for 2 hours, -10 ° C
At C, the battery was discharged at 1200 mA to 0.85 V to obtain the high rate discharge capacity at low temperature of each battery. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】表1より、電池A1〜A5は、電池B1〜
B3に比べて、低温での高率放電容量が大きく、低温で
の高率放電特性に優れていることが分かる。
From Table 1, the batteries A1 to A5 are the same as the batteries B1 to B5.
It can be seen that, as compared with B3, the high rate discharge capacity at low temperature is large and the high rate discharge characteristic at low temperature is excellent.

【0032】上記実施例では、Mm・Ni・Co・Al
・Mn系の水素吸蔵合金を用いたが、使用する水素吸蔵
合金の種類は、特に限定されない。
In the above embodiment, Mm, Ni, Co, Al
A Mn-based hydrogen storage alloy was used, but the type of hydrogen storage alloy used is not particularly limited.

【0033】[0033]

【発明の効果】ロール法により作製した薄帯状の水素吸
蔵合金の表面処理を粉砕前に行う本発明方法によれば、
表面処理時に合金成分元素(希土類元素など)が処理液
中に溶出しにくいので、薄帯状の水素吸蔵合金の水素吸
蔵量を減少させることなく、ロール側の面及び開放側の
面の活性を高めることができ、高容量で、しかも低温で
の高率放電特性に優れた水素吸蔵合金電極を得ることが
可能となる。
According to the method of the present invention, the surface treatment of the ribbon-shaped hydrogen storage alloy produced by the roll method is carried out before pulverization.
Since alloying elements (rare earth elements, etc.) do not easily elute into the treatment liquid during surface treatment, the activity of the roll-side surface and open-side surface is increased without reducing the hydrogen storage capacity of the ribbon-shaped hydrogen storage alloy. It is possible to obtain a hydrogen storage alloy electrode having a high capacity and excellent in high rate discharge characteristics at low temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東山 信幸 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 徳田 光紀 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 礒野 隆博 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平4−26057(JP,A) 特開 平4−106871(JP,A) 特開 平7−54016(JP,A) 特開 平7−65828(JP,A) 特開 平7−73878(JP,A) 特開 平7−245102(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 4/38 B22F 9/00 - 9/30 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobuyuki Higashiyama 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Mitsunori Tokuda 2-5-5 Keihan-hondori, Moriguchi, Osaka Sanyo Denki Co., Ltd. (72) Inventor Takahiro Isono 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Denki Co., Ltd. (72) Inventor Ikuro Yonezu 2-chome, Keihan-hondori, Moriguchi-shi, Osaka No. 5 within Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-4-26057 (JP, A) Japanese Patent Laid-Open No. 4-106871 (JP, A) Japanese Patent Laid-Open No. 7-54016 (JP, A) Japanese Patent Laid-Open No. 7-65828 (JP, A) Japanese Patent Laid-Open No. 7-73878 (JP, A) Japanese Patent Laid-Open No. 7-245102 (JP , A) (58) Fields investigated (Int .Cl. 7 , DB name) H01M 4/24-4/26 H01M 4/38 B22F 9/00-9/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】合金溶湯をロール法により凝固させて薄帯
状の水素吸蔵合金を作製する工程と、該薄帯状の水素吸
蔵合金を酸又はアルカリ又は強酸と強アルカリとの塩で
表面処理した後、粉砕して、水素吸蔵材としての水素吸
蔵合金粉末を作製する工程と、該水素吸蔵合金粉末と結
着剤との混練物を芯体に塗布又は充填した後、乾燥する
工程とを有してなるアルカリ蓄電池用の水素吸蔵合金電
極の製造方法。
1. A step of producing a ribbon-shaped hydrogen storage alloy by solidifying the molten alloy by a roll method, and after surface-treating the ribbon-shaped hydrogen storage alloy with an acid or an alkali or a salt of a strong acid and a strong alkali. A step of pulverizing to prepare a hydrogen storage alloy powder as a hydrogen storage material, and a step of applying or kneading the kneaded material of the hydrogen storage alloy powder and a binder to a core and then drying. Of producing hydrogen storage alloy electrode for alkaline storage battery.
【請求項2】前記薄帯状の水素吸蔵合金が、表面処理さ
れる前に不活性ガス又は真空中にて加熱処理されたもの
である請求項1記載のアルカリ蓄電池用の水素吸蔵合金
電極の製造方法。
2. The ribbon-shaped hydrogen storage alloy is surface-treated.
The method for producing a hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the electrode is heat-treated in an inert gas or a vacuum before being treated.
JP32397595A 1995-11-17 1995-11-17 Method for producing hydrogen storage alloy electrode for alkaline storage battery Expired - Fee Related JP3423130B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP32397595A JP3423130B2 (en) 1995-11-17 1995-11-17 Method for producing hydrogen storage alloy electrode for alkaline storage battery
US08/749,531 US6110304A (en) 1995-11-17 1996-11-15 Hydrogen-absorbing alloy electrode for alkaline storage batteries
KR1019960054682A KR100348954B1 (en) 1995-11-17 1996-11-16 Hydrogen storage alloy electrode for alkaline secondary battery
CN96123334A CN1095207C (en) 1995-11-17 1996-11-17 Hydrogen-storage alloy electrode for alkaline accumulator and making method
DE69626464T DE69626464T2 (en) 1995-11-17 1996-11-18 Hydrogen-absorbing alloy electrode for alkaline batteries and manufacturing method
EP96118457A EP0774792B1 (en) 1995-11-17 1996-11-18 Hydrogen-absorbing alloy electrode for alkaline storage batteries and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32397595A JP3423130B2 (en) 1995-11-17 1995-11-17 Method for producing hydrogen storage alloy electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09147852A JPH09147852A (en) 1997-06-06
JP3423130B2 true JP3423130B2 (en) 2003-07-07

Family

ID=18160726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32397595A Expired - Fee Related JP3423130B2 (en) 1995-11-17 1995-11-17 Method for producing hydrogen storage alloy electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3423130B2 (en)

Also Published As

Publication number Publication date
JPH09147852A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
JP3432873B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP4033660B2 (en) Nickel-hydrogen storage battery
JPH03191040A (en) Hydrogen storage alloy electrode
JP3423130B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP3054477B2 (en) Hydrogen storage alloy electrode
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP3354365B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
KR100348954B1 (en) Hydrogen storage alloy electrode for alkaline secondary battery
JP3449670B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3432976B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JP3454615B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP2000277106A (en) Hydrogen storage alloy electrode for alkaline storage battery and its manufacture
JP2000345253A (en) Production of hydrogen storage alloy and hydrogen storage alloy electrode
JP3432971B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JP2000182612A (en) Manufacture of hydrogen storage alloy powder and alkaline secondary battery
JPH08180861A (en) Hydrogen storage alloy for battery, its manufacture and nickel-hydrogen secondary battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH08185860A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JPH0982322A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery and manufacture thereof
JPH08185855A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees