JP3422511B2 - Fuel cell stack - Google Patents

Fuel cell stack

Info

Publication number
JP3422511B2
JP3422511B2 JP05435293A JP5435293A JP3422511B2 JP 3422511 B2 JP3422511 B2 JP 3422511B2 JP 05435293 A JP05435293 A JP 05435293A JP 5435293 A JP5435293 A JP 5435293A JP 3422511 B2 JP3422511 B2 JP 3422511B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell
cell stack
cells
packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05435293A
Other languages
Japanese (ja)
Other versions
JPH06267567A (en
Inventor
俊宏 谷
達雄 加幡
長生 久留
聡 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05435293A priority Critical patent/JP3422511B2/en
Publication of JPH06267567A publication Critical patent/JPH06267567A/en
Application granted granted Critical
Publication of JP3422511B2 publication Critical patent/JP3422511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は燃料電池用スタックに
関し、特に燃料電池セルの周辺に改良を施して、固体高
分子電解質を用いる燃料電池用スタックに関する。 【0002】 【従来の技術】燃料電池は、資源の枯渇問題を有する化
石燃料を使う必要がない上、騒音をほとんど発生せず、
エネルギの回収効率も他のエネルギ機関と比べて非常に
高くできる等の優れた特徴を持っているため、例えばビ
ルディング単位や工場単位の比較的小型の発電プラント
として利用されている。近年、この燃料電池を車載用の
内燃機関に代えてモータの電源として利用し、このモー
タにより車両等を駆動することが考えられている。この
場合に重要なことは、反応によって生成する物質をでき
るだけ再利用することは当然のこととして、全ての付帯
設備と共に可能な限り小型であることが望ましい。この
ような点からイオン交換膜を使用する燃料電池、特に固
体高分子電解質燃料電池が注目されている。 【0003】図1は、固体高分子電解質燃料電池本体
(燃料電池用セル)の一例を示す。図中の1は、固体高
分子電解質膜2の両側にガス拡散電極3,4が接合され
た電極接合体である。ここで、前記ガス拡散電極3は前
記電解質膜2の表面と接触した反応膜3a,ガス拡散膜
3bが接合されたものであり、前記ガス拡散電極4は前
記電解質膜2の表面と接触した反応膜4a,ガス拡散膜
4bが接合されたものである。前記電極接合体1は、固
体高分子電解質膜2の両側にガス拡散電極3,4を合わ
せた後、ホットプレス等することにより製造される。電
池反応は主に電解質膜2と反応膜3a,4aとの間の接
触面で起こる。また、前記ガス拡散電極3の表面には酸
素供給溝5を有するガスセパレータ6が、他方のガス拡
散電極4の表面には水素供給溝7を有するガスセパレー
タ8が夫々接合されており、酸素極と水素極を構成して
いる。なお、図中の9は負荷である。 【0004】こうした構成の燃料電池用セルは、従来、
図2に示すような燃料電池用スタックの集電部に組み込
まれている。図中の11は、両側にパッキング12,12が配
置された燃料電池用セルである。このセル11の片面側に
はバイポーラセパレータ13が配置され、これらセル11,
バイポーラセパレータ13が多数積層されて積層体14を構
成している。前記バイポーラセパレータ13の片面にはガ
ス供給溝15が付けられ、反対面には冷却水供給溝(図示
せず)が付けられている。また、前記バイポーラセパレ
ータ13の両側には、ガスや冷却水を通過させるヘッダ孔
16が設けられている。前記積層体14は、エンドセパレー
タ17a,17bを夫々介してフランジ18a,18b間に配置
される。前記エンドセパレータ17a,17bの片面には、
冷却水供給溝(図示せず)が付けられている。また、エ
ンドセパレータ17a,17bの両側にも、ガスや冷却水を
通過させるヘッダ孔16が設けられている。前記フランジ
18a,18bにはガスや冷却水を通過させる孔19が設けら
れ、縁部には複数のボルト穴20が設けられている。これ
らのボルト穴20には一方のフランジ18a側からボルト21
が挿入され、ナット22を他方のフランジ18bからボルト
21に螺合させることにより積層体14がフランジ18a,18
b間に締め付けられる。 【0005】 【発明が解決しようとする課題】しかしながら、従来の
燃料電池用スタックにおいては、パッキング12とセル11
を同時に挟み込んでいるため、パッキングをつぶし、シ
ール性を得る際の締め付け力が大きくなり、セル11をつ
ぶしてしまう可能性があった。そのため、パッキング12
の弾性を次のように選定する必要があった。即ち、集電
部がセル11と接し接触抵抗が十分小さくなり、かつセル
をつぶしすぎることなく締め付けしろがあり、その締め
付けしろによってシール性を得られるようなパッキング
の弾性である。しかし、このようなパッキングを用いて
もセルとセパレータを多数積層しスタックとした場合、
制作上の問題により(例えば、積層時のねじれ)一部的
に締め付けすぎてしまい、発電性能が落ちてしまうセル
が発生することがあった。 【0006】この発明はこうした事情を考慮してなされ
たもので、セルのつぶれ過ぎを防止するとともに、シー
ル性を保つことができる燃料電池用スタックを提供する
ことを目的とする。 【0007】 【課題を解決するための手段】この発明は、両端部にパ
ッキングを配置した複数の燃料電池用セルと、この燃料
電池用セル間に積層され、片面にガス供給溝が付けられ
るとともに反対面に冷却水供給溝が付けられて前記セル
とともに積層体を構成する複数のバイポーラセパレータ
と、前記積層体を両主面側からエンドセパレータを介し
て挟み込むフランジとを具備する燃料電池用スタックに
おいて、前記セルを最適な締め付けで締め付けた時の厚
さと等しい厚さでかつ締め付け力によっても変化しない
厚さをもつスペーサを、前記セルと前記パッキング間に
セルと同一層となるように設けたことを特徴とする燃料
電池用スタックである。 【0008】 【作用】従来の燃料電池用スタックにおいては、セパレ
ータはパッキングを挟んでいるため、シール性を向上さ
せようとすると、必然的にセルをも圧縮してしまう。し
かし、この発明においては、セル保護のためのスペーサ
を導入し、積層することによって、セルの締め付けを考
慮しなくてもスタックの制作が可能となる。また、従来
より厚めのパッキングを使用し強い力で締め付ければ、
シール部は高い面圧となり、高いシール性が得られると
ともに、集電部においては締め付け過ぎることないため
セルを損傷することはない。 【0009】 【実施例】以下、この発明の一実施例を図3を参照して
説明する。 【0010】図中の31は、両側にパッキング32,32が配
置され、これらパッキング間にスペーサ33,33が配置さ
れた燃料電池用セルである。ここで、前記スペーサ33
は、セル31を最適な締め付けを行なった時の厚さと等し
い厚さとし、締め付け力によっても変化しない厚さを持
ったもので作られている。このセル31の片面側にはバイ
ポーラセパレータ34が配置され、これらセル31,バイポ
ーラセパレータ34が多数積層されて積層体35を構成して
いる。前記バイポーラセパレータ34の片面にはガス供給
溝36が付けられ、反対面には冷却水供給溝(図示せず)
が付けられている。また、前記バイポーラセパレータ34
の両側には、ガスや冷却水を通過させるヘッダ孔37が設
けられている。前記積層体35は、エンドセパレータ38
a,38bを夫々介してフランジ39a,39b間に配置され
る。前記エンドセパレータ38a,38bの片面には、冷却
水供給溝(図示せず)が付けられている。また、エンド
セパレータ38a,38bの両側にも、ガスや冷却水を通過
させるヘッダ孔37が設けられている。前記フランジ39
a,39bにはガスや冷却水を通過させる孔40が設けら
れ、縁部には複数のボルト穴41が設けられている。これ
らのボルト穴41には一方のフランジ39a側からボルト42
が挿入され、ナット43を他方のフランジ32bからボルト
42に螺合させることにより積層体35がフランジ39a,39
b間に締め付けられる。 【0011】上記実施例によれば、燃料電池用セル31と
両側のパッキング32,32間にスペーサ33,33が配置さ
れ、かつ前記スペーサ33はセル31を最適な締め付けを行
なった時の厚さと等しい厚さで、締め付け力によっても
変化しない厚さを持ったもので作られているため、セル
の締め付けを考慮しなくてもスタックの制作が可能とな
る。また、従来より厚めのパッキングを使用し、ボルト
42及びナット43を用いて積層体35等を強い力で締め付け
れば、シール部は高い面圧となり、高いシール性が得ら
れる。一方、燃料電池用セル31はスペーサで保護されて
いるため、集電部においては締め付け過ぎることなく、
前記セル31を損傷することはない。 【0012】 【発明の効果】以上詳述したようにこの発明によれば、
セルとパッキング間につぶれ量を調節するスペーサを配
置することにより、セルのつぶれ過ぎを防止するととも
に、シール性を保ち、更に積層工程を容易にしえる信頼
性の高い燃料電池用スタックを提供できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell stack, and more particularly to a fuel cell stack using a solid polymer electrolyte by improving the periphery of a fuel cell. 2. Description of the Related Art A fuel cell does not need to use fossil fuel which has a problem of resource depletion, and generates almost no noise.
Since it has excellent features such as an extremely high energy recovery efficiency as compared with other energy engines, it is used as a relatively small power plant, for example, in a building unit or a factory unit. In recent years, it has been considered to use this fuel cell as a power source for a motor instead of a vehicle-mounted internal combustion engine, and drive a vehicle or the like with this motor. It is important to note that in this case, it is desirable that the substance produced by the reaction be recycled as much as possible, and that it be as small as possible together with all the auxiliary equipment. From such a point, a fuel cell using an ion exchange membrane, in particular, a solid polymer electrolyte fuel cell has attracted attention. FIG. 1 shows an example of a polymer electrolyte fuel cell body (cell for a fuel cell). Reference numeral 1 in the figure denotes an electrode assembly in which gas diffusion electrodes 3 and 4 are joined to both sides of a solid polymer electrolyte membrane 2. Here, the gas diffusion electrode 3 is formed by joining a reaction film 3a and a gas diffusion film 3b in contact with the surface of the electrolyte membrane 2, and the gas diffusion electrode 4 is formed by a reaction in contact with the surface of the electrolyte membrane 2. The film 4a and the gas diffusion film 4b are joined. The electrode assembly 1 is manufactured by, for example, hot-pressing the gas diffusion electrodes 3 and 4 on both sides of the solid polymer electrolyte membrane 2. The battery reaction mainly occurs at the contact surface between the electrolyte membrane 2 and the reaction membranes 3a and 4a. A gas separator 6 having an oxygen supply groove 5 is joined to the surface of the gas diffusion electrode 3, and a gas separator 8 having a hydrogen supply groove 7 is joined to the surface of the other gas diffusion electrode 4. And constitute the hydrogen electrode. In addition, 9 in a figure is a load. Conventionally, a fuel cell having such a structure is
It is incorporated in a current collector of a fuel cell stack as shown in FIG. Numeral 11 in the figure denotes a fuel cell in which packings 12, 12 are arranged on both sides. On one side of the cell 11, a bipolar separator 13 is arranged.
A large number of bipolar separators 13 are laminated to form a laminate 14. A gas supply groove 15 is provided on one surface of the bipolar separator 13, and a cooling water supply groove (not shown) is provided on the other surface. Header holes for passing gas and cooling water are provided on both sides of the bipolar separator 13.
16 are provided. The laminate 14 is disposed between the flanges 18a and 18b via end separators 17a and 17b, respectively. On one side of the end separators 17a and 17b,
A cooling water supply groove (not shown) is provided. Header holes 16 are provided on both sides of the end separators 17a and 17b to allow gas and cooling water to pass therethrough. The flange
Holes 19 for passing gas and cooling water are provided in 18a and 18b, and a plurality of bolt holes 20 are provided at the edge. These bolt holes 20 are provided with bolts 21 from one flange 18a side.
Is inserted, and the nut 22 is bolted from the other flange 18b.
By screwing the laminated body 14 to the flanges 21,
It is tightened between b. However, in the conventional fuel cell stack, the packing 12 and the cell 11
Are sandwiched at the same time, so that the packing is crushed, the tightening force for obtaining the sealing property is increased, and the cell 11 may be crushed. Therefore, packing 12
Had to be selected as follows. That is, the packing elasticity is such that the current collector contacts the cell 11 so that the contact resistance is sufficiently reduced, and the cell has a tight clamping without excessively crushing the cell, and a sealing property can be obtained by the tight clamping. However, even if such a packing is used, if a large number of cells and separators are stacked to form a stack,
Due to a problem in production (for example, a twist during lamination), there were cases where cells were overtightened partially, resulting in reduced power generation performance. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fuel cell stack which can prevent the cells from being excessively crushed and can maintain the sealing performance. SUMMARY OF THE INVENTION The present invention is directed to a fuel cell having a plurality of fuel cells having packings arranged at both ends, stacked between the fuel cells, and provided with a gas supply groove on one side. A fuel cell stack comprising: a plurality of bipolar separators each having a cooling water supply groove formed on the opposite surface thereof and forming a stacked body together with the cells; and a flange sandwiching the stacked body from both main surfaces via end separators. , Thickness when the cell is tightened with optimal tightening
Thickness equal to and not changed by tightening force
A spacer having a thickness is placed between the cell and the packing.
A fuel cell stack provided so as to be in the same layer as a cell . In the conventional fuel cell stack, since the separator sandwiches the packing, if the sealing performance is to be improved, the cells are necessarily compressed. However, in the present invention, by introducing spacers for cell protection and stacking them, a stack can be produced without considering the tightening of cells. Also, if you use thicker packing than before and tighten it with strong force,
The sealing portion has a high surface pressure, provides high sealing performance, and does not damage the cell because the current collecting portion is not overtightened. An embodiment of the present invention will be described below with reference to FIG. Reference numeral 31 in the drawing denotes a fuel cell in which packings 32, 32 are arranged on both sides, and spacers 33, 33 are arranged between these packings. Here, the spacer 33
Is made of a material having a thickness equal to the thickness when the cell 31 is optimally tightened, and having a thickness that does not change even with the tightening force. On one side of the cell 31, a bipolar separator 34 is arranged, and a large number of these cells 31 and the bipolar separator 34 are stacked to form a stacked body 35. A gas supply groove 36 is provided on one surface of the bipolar separator 34, and a cooling water supply groove (not shown) is provided on the other surface.
Is attached. Further, the bipolar separator 34
Header holes 37 for passing gas and cooling water are provided on both sides of the hole. The laminate 35 includes an end separator 38
a, 38b are disposed between the flanges 39a, 39b, respectively. A cooling water supply groove (not shown) is provided on one surface of the end separators 38a and 38b. Header holes 37 are provided on both sides of the end separators 38a and 38b to allow gas and cooling water to pass therethrough. The flange 39
The holes 40a and 39b are provided with holes 40 for passing gas and cooling water, and a plurality of bolt holes 41 are provided at the edge. These bolt holes 41 are provided with bolts 42 from one flange 39a side.
Is inserted, and the nut 43 is bolted from the other flange 32b.
By screwing to the 42, the laminated body 35 is
It is tightened between b. According to the above embodiment, the spacers 33, 33 are arranged between the fuel cell 31 and the packings 32, 32 on both sides, and the spacer 33 has a thickness when the cells 31 are optimally tightened. Since the stacks are made of the same thickness and have a thickness that does not change even with the tightening force, the stack can be manufactured without considering the tightening of the cells. Also, use thicker packing than before, and use bolts
If the laminate 35 or the like is tightened with a strong force using the nut 42 and the nut 43, the sealing portion has a high surface pressure, and high sealing properties can be obtained. On the other hand, since the fuel cell 31 is protected by the spacer, it is not over-tightened in the current collector,
The cell 31 is not damaged. As described in detail above, according to the present invention,
By arranging a spacer for adjusting the amount of crushing between the cell and the packing, it is possible to provide a highly reliable fuel cell stack that prevents the cells from being crushed too much, maintains the sealing property, and further facilitates the lamination process.

【図面の簡単な説明】 【図1】固体高分子電解質燃料電池本体(燃料電池用セ
ル)の説明図。 【図2】従来に係る燃料電池用スタックの展開図。 【図3】この発明に係る燃料電池用スタックの展開図。 【符号の説明】 31…燃料電池用セル、 32…パッキング、 33
…スペーサ、34…バイポーラセパレータ、35…積層体、
36…ガス供給溝、37…ヘッダ孔、
38a,38b…エンドセパレータ、39a,39b…フラン
ジ、 40…孔、 41…ボルト穴、42…ボ
ルト、 43…ナット。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a solid polymer electrolyte fuel cell body (cell for a fuel cell). FIG. 2 is a development view of a conventional fuel cell stack. FIG. 3 is a development view of a fuel cell stack according to the present invention. [Explanation of Signs] 31 ... cell for fuel cell, 32 ... packing, 33
... spacer, 34 ... bipolar separator, 35 ... laminate,
36 ... gas supply groove, 37 ... header hole,
38a, 38b: End separator, 39a, 39b: Flange, 40: Hole, 41: Bolt hole, 42: Bolt, 43: Nut.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 聡 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 平4−106876(JP,A) 特開 昭63−125863(JP,A) 実開 平3−37257(JP,U) 実開 昭57−162933(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Satoshi Uchida 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-4-106876 (JP, A) JP 63-125863 (JP, A) JP-A 3-37257 (JP, U) JP-A 57-162933 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8 / 00-8/24

Claims (1)

(57)【特許請求の範囲】 【請求項1】 両端部にパッキングを配置した複数の燃
料電池用セルと、この燃料電池用セル間に積層され、片
面にガス供給溝が付けられるとともに反対面に冷却水供
給溝が付けられて前記セルとともに積層体を構成する複
数のバイポーラセパレータと、前記積層体を両主面側か
らエンドセパレータを介して挟み込むフランジとを具備
する燃料電池用スタックにおいて、前記セルを最適な締め付けで締め付けた時の厚さと等し
い厚さでかつ締め付け力によっても変化しない厚さをも
つスペーサを、前記セルと前記パッキング間にセルと同
一層となるように設けた ことを特徴とする燃料電池用ス
タック。
(57) [Claims 1] A plurality of fuel cell cells having packings arranged at both ends, stacked between the fuel cell cells, and provided with a gas supply groove on one surface and an opposite surface. a plurality of bipolar separator and the fuel cell stack and a flange sandwich through the end separator the laminate from both main surface sides constituting the laminate cooling water supply grooves attached together with the cell, the Equal to the thickness when the cell is tightened with optimal tightening
Thickness that does not change with tightening force.
Spacer between the cell and the packing
A fuel cell stack, which is provided as a single layer.
JP05435293A 1993-03-15 1993-03-15 Fuel cell stack Expired - Lifetime JP3422511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05435293A JP3422511B2 (en) 1993-03-15 1993-03-15 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05435293A JP3422511B2 (en) 1993-03-15 1993-03-15 Fuel cell stack

Publications (2)

Publication Number Publication Date
JPH06267567A JPH06267567A (en) 1994-09-22
JP3422511B2 true JP3422511B2 (en) 2003-06-30

Family

ID=12968245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05435293A Expired - Lifetime JP3422511B2 (en) 1993-03-15 1993-03-15 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP3422511B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064167B2 (en) * 1993-09-01 2000-07-12 三菱重工業株式会社 Solid electrolyte fuel cell
JP3580917B2 (en) * 1995-08-30 2004-10-27 本田技研工業株式会社 Fuel cell
CN100444443C (en) * 2004-04-09 2008-12-17 上海神力科技有限公司 Guiding polar plate for improving running stability of fuel battery
JP5075462B2 (en) 2007-04-18 2012-11-21 本田技研工業株式会社 Fuel cell

Also Published As

Publication number Publication date
JPH06267567A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
EP0981174B1 (en) Polymer electrolyte fuel cell
CA2400015C (en) Membrane electrode assembly and fuel cell
US7892695B2 (en) Fuel cell stack
US8091868B2 (en) WVT design for reduced mass and improved sealing reliability
CA2636055C (en) Fuel cell and laminate comprising high-rigidity member surrounding seal member
CA2549555C (en) Fuel cell stack structure with an adhesive layer
JPH0888018A (en) Solid polymer fuel cell
WO2003050905A3 (en) Fuel cell with polymer electrolyte
JP5145623B2 (en) Fuel cell stack
JP2001283893A (en) Solid polymer fuel cell stack
JP2566757B2 (en) Fuel cell
JP3422511B2 (en) Fuel cell stack
JP2004207074A (en) Fuel cell
JP2005100755A (en) Fuel cell stack
JP2004214123A (en) Layer-built fuel cell and its maintenance method
JP3420508B2 (en) Polymer electrolyte fuel cell
JPH0878044A (en) Fuel cell stack
JP3383319B2 (en) Fuel cell
JP3354699B2 (en) Fuel cell fastening structure
JP2569361Y2 (en) Fuel cell separator
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
US20040115508A1 (en) Stacked fuel cell, stacked fuel cell manufacturing method and manufacturing device thereof
JPS5975576A (en) Fuel cell
JP2009037834A (en) Fuel cell
JP2007048553A (en) Fuel cell stack

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10