JP3420851B2 - Anti-adhesion agent - Google Patents

Anti-adhesion agent

Info

Publication number
JP3420851B2
JP3420851B2 JP34115794A JP34115794A JP3420851B2 JP 3420851 B2 JP3420851 B2 JP 3420851B2 JP 34115794 A JP34115794 A JP 34115794A JP 34115794 A JP34115794 A JP 34115794A JP 3420851 B2 JP3420851 B2 JP 3420851B2
Authority
JP
Japan
Prior art keywords
hyaluronic acid
cross
adhesion
linking
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34115794A
Other languages
Japanese (ja)
Other versions
JPH08157378A (en
Inventor
建男 小原
貴子 磯
敏二郎 山口
利男 梁木
道広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP34115794A priority Critical patent/JP3420851B2/en
Publication of JPH08157378A publication Critical patent/JPH08157378A/en
Application granted granted Critical
Publication of JP3420851B2 publication Critical patent/JP3420851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は癒着防止剤、特にヒアル
ロン酸を架橋して構成した癒着防止剤の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-adhesion agent, and more particularly to an improvement of an anti-adhesion agent formed by crosslinking hyaluronic acid.

【0002】[0002]

【従来の技術】外科手術において、手術中における組織
表面の損傷や乾燥、出血等に起因する術後の組織の癒着
は、外科手術後の合併症のなかでも最も重大なものの一
つである。癒着は腱鞘、腹腔、胸腔、頭蓋内、神経周囲
組織、眼結膜、卵管等で問題となることが多いが、中で
も、腱の手術における癒着は運動障害を来し、また開腹
手術における腸壁や腸管の癒着はイレウス(腸閉塞)の
原因ともなるため、特にこれらを予防するために様々な
試みがなされている。しかしながら、幾多の努力にもか
かわらず、臨床的にはいまだ末解決の問題である。一般
的には、外科手術に際して術後の癒着を防止するために
は、出血を抑え、創面の不要な乾燥、擦過を避け、術
中、術後の感染、炎症を極力防止する等の努力が行われ
ている。しかしながら、これらの処置努力のみでは癒着
は極めて防止しにくく、効果の確実な癒着防止剤の開発
が切望されている。
2. Description of the Related Art In surgical operation, postoperative adhesion of tissue due to damage, dryness, bleeding, etc. on the surface of the tissue during operation is one of the most serious complications after surgery. Adhesions often cause problems in the tendon sheath, abdominal cavity, thoracic cavity, intracranial, perineural tissues, ocular conjunctiva, fallopian tubes, etc. Among them, adhesions in tendon surgery cause movement disorders and intestinal wall in open surgery. Since adhesions in the intestine and ileus also cause ileus (intestinal obstruction), various attempts have been made to prevent them. However, despite numerous efforts, it remains a clinically unsolved problem. Generally, in order to prevent postoperative adhesions during surgery, efforts are made to prevent bleeding, avoid unnecessary drying and abrasion of the wound surface, and prevent infection and inflammation during and after surgery as much as possible. It is being appreciated. However, it is extremely difficult to prevent adhesions only by these treatment efforts, and there is a strong demand for the development of an adhesion preventive agent with a certain effect.

【0003】コンドロイチン硫酸は結合組織の基質を構
成する代表的な多類類の一つで、その構造はへパリンに
類似し、血液凝固阻止作用がある。脇坂らにより、19
59年に腹膜癒着防止作用が初めて報告され(脇坂順一
ほか、久留米医学誌、22、800、1959)、その
後の研究でその効果が確認された。以来、我が国では主
要な腹膜癒着防止剤として臨床で用いられている。ま
た、代用血漿や子宮内灌流液として使用されている高分
子デキストランも術後の癒着防止剤として用いられ、今
日でもよく研究されている(立崎達夫、最新医学、
、645、1989,五味淵秀人、産科と婦人科、
、2225、1991)。ヒアルロン酸も、コンドロ
イチン硫酸と同様な結合組織の基質を構成する重要な多
類類の一つであり、腱の外科手術においてその癒着防止
効果が示されている(Onge R.S. et a
l.,Clin.Orthop.Rel.Res.,
46,269,1980.,後藤幸子ほか、応用薬理、
35、359、1988)。
Chondroitin sulfate acts as a connective tissue substrate.
It is one of the representative multi-species, and its structure is heparin
Similar to the anticoagulant effect. Wakisaka et al., 19
The antiperitoneal adhesion prevention effect was first reported in 1959 (Junichi Wakisaka)
In addition, Kurume medical journal,22, 800, 1959), the
Later studies confirmed the effect. Since then, in Japan
It is used clinically as an important antiperitoneal agent. Well
In addition, high doses used as plasma substitutes and intrauterine perfusates
Dextran pup was also used as an anti-adhesion agent after surgery.
It is well studied even in Japan (Tatsuo Tachisaki, latest medicine,Four
Four, 645, 1989, Hideto Gomibuchi, Obstetrics and Gynecology,l
l, 2225, 1991). Hyaluronic acid, chondro
An important polymorph that constitutes a substrate for connective tissue similar to itin sulfate
It is one of the kind and prevents adhesion in tendon surgery.
The effect has been shown (Onge RS et al.
l. , Clin. Orthop. Rel. Res. ,1
46, 269, 1980. , Sachiko Goto et al., Applied Pharmacology,
35359, 1988).

【0004】しかしながら、上記したこれらの薬剤はあ
る程度の癒着防止効果は有しているものの、何れも水溶
液として用いられることから、生体内局所での滞留性は
低く、効果の持続性を期待できるものではない。
However, although the above-mentioned agents have an adhesion preventing effect to some extent, since all of them are used as an aqueous solution, their retention in the living body is low and the effect can be expected to last. is not.

【0005】一方、癒着防止剤の作用をできるだけ長く
保持させる目的で、液状物ではなく膜状物を損傷部の接
触防止物として試用した例は数多くある。たとえば、ポ
リエチレン膜(Stark,H.H.,J.Bone
& Joint Surg.,59A,908,197
7)、シリコン膜(Helal,B.,Hand,
85,1973)、セルロース膜(Ashley,F.
L.et al.,Plast.Reconst.Su
rg.,23,526,1959)、ゼラチン膜(麻生
弘、日外宝函、22、310、1958)、コラーゲ
ン膜(奥井光敏、日手会誌、、1138、198
9)、へパリンを含有させたコラーゲン膜(川井忠智ほ
か、生体材料、10、193、1992)等がそれであ
る。試みられた材料のうち、ポリエチレン、シリコン、
セルロース等は、生体に存在しない高分子物質であるた
め生体内で分解されず、最終的には再手術による摘出の
必要性がある。また、損傷部位の治癒を遅延させる場合
もある。コラーゲンは天然に存在する物質であって、医
療用成形物としても用いられているが、血小板が接着し
て血小板凝集を引き起こしたり(Muggli,R.e
t a1.,Throm.Res.,,715,19
73)、ハーゲマン因子(血液凝固第XII因子)を活性
化し、血液凝固を促進したり(Wilner,G.D.
et al,J.Clin.Invest.,47,2
608,1968)するなどの欠点がある。ほかにも膜
状物を癒着防止剤として用いた例は多くみうけられるが
何れも満足のいくものではない。
On the other hand, in order to maintain the action of the adhesion preventive agent as long as possible, there are many examples in which a film-like material, rather than a liquid material, is used as a contact-preventing material for a damaged part. For example, polyethylene membranes (Stark, HH, J. Bone).
& Joint Surg. , 59A , 908, 197
7), silicon film (Helal, B., Hand, 5 ,
85, 1973), a cellulose membrane (Ashley, F .;
L. et al. , Plast. Reconst. Su
rg. , 23 , 526, 1959), a gelatin film (Hiro Aso, Hogaibo, 22 , 310, 1958), a collagen film (Mitsutoshi Okui, Nittekai, 5 , 1138, 198).
9), a collagen film containing heparin (Tadatomo Kawai et al., Biomaterials, 10 , 193, 1992) and the like. Among the materials tried, polyethylene, silicone,
Cellulose and the like are high molecular substances that do not exist in the living body, so they are not decomposed in the living body, and eventually need to be removed by re-operation. It may also delay healing of the damaged area. Collagen is a naturally-occurring substance and is also used as a molded article for medical use, but platelets adhere to each other to cause platelet aggregation (Muggli, Re.e.
t a1. , Throm. Res. , 3 , 715, 19
73), activates Hagemann factor (coagulation factor XII) and promotes blood coagulation (Wilner, GD.
et al, J .; Clin. Invest. , 47 , 2
608, 1968). There are many other examples of using a membrane substance as an anti-adhesion agent, but none of them is satisfactory.

【0006】ヒアルロン酸は生体適合性に極めて優れた
素材であり、前述のように癒着防止作用を有することか
ら、効果の持続を目的として液状物ではなく膜状に成形
したもので試みられた例がある(伊藤和生はか、日手会
誌、、438、1991)。この場合、創部局所での
滞留時間は、溶液よりも膜状で用いた場合のほうが長く
なる。しかしながら、膜状に成形されていてもヒアルロ
ン酸は水に溶解しやすいことから、より長い滞留時間、
すなわち優れた効果の持続は期待できない。
Hyaluronic acid is a material having extremely excellent biocompatibility and has an anti-adhesion action as described above. Therefore, an example in which it was tried in the form of a film rather than a liquid for the purpose of sustaining the effect There is (Kazuo Ito, Nikkei Magazine, 8 , 438, 1991). In this case, the residence time at the wound site is longer when it is used in the form of a film than when it is used as a solution. However, even if formed into a film, hyaluronic acid is easily dissolved in water, so that a longer residence time,
That is, it cannot be expected that the excellent effect will last.

【0007】[0007]

【発明が解決しようとする課題】ヒアルロン酸は結合組
織をはじめとする組織中に豊富に存在する高分子量の生
体内成分であり、生体適合性が高いことは勿論、医薬品
として眼科用手術時の補助剤や変形性膝関節症等の治療
薬として利用されているほか、創傷治癒促進作用等の幅
広い作用も有している(Goa,K.L.& Benf
ield,P.,Drugs,47,536,199
4)。さらに、ドラッグデリバリーシステムの担体等と
してもその応用が期待されている。この生体適合性に極
めて優れた素材であるヒアルロン酸を癒着防止の目的で
有効に利用するために、生体内局所における良好な滞留
性を得る工夫、即ち水不溶性で、且つ生体内分解性を有
する物質とすることが以前より望まれていた。
Hyaluronic acid is a high-molecular-weight in-vivo component which is abundantly present in tissues including connective tissue, and it is highly biocompatible, and it is also used as a drug during ophthalmic surgery. In addition to being used as an adjuvant and a therapeutic drug for knee osteoarthritis, it also has a wide range of actions such as a wound healing promoting action (Goa, KL & Benf).
field, P.I. , Drugs, 47 , 536, 199.
4). Further, its application is expected as a carrier for drug delivery system. In order to effectively use hyaluronic acid, which is a material with extremely excellent biocompatibility, for the purpose of preventing adhesion, it has a device to obtain good retention in the living body, that is, it is water-insoluble and has biodegradability. It has long been desired to use it as a substance.

【0008】このような課題を解決するものとして、光
架橋性ムコ多糖を用いた癒着防止技術がある(特開平6
73102,三輪裕通ほか、人工臓器、22、37
6、1993,Matuda,T.et al.,AS
AIO Journal,39,M327,199
3)。この技術は、ムコ多類(ヒアルロン酸またはコン
ドロイチン硫酸)の水酸基に光二量化性基であるケイ皮
酸あるいはチミンを導入し、紫外線照射により光二量化
性基を重合させてムコ多類を架橋するものであり、光架
橋性ヒアルロン酸フイルムが得られている。また、光二
量化性基の導入率を上げることにより水に不溶化させる
ことに成功し、低膨潤性が示されている。しかしなが
ら、ムコ多糖の水酸基間の架橋であり、カルボキシル基
が遊離で残存しているため、水不溶性で、且つ低膨潤性
の性質を得るために、ケイ皮酸あるいはチミンという分
子が数多く導入されており、ヒアルロン酸本来の性質が
失われている。また、製造工程にも複数のステップを要
する等課題を残している。
[0008] As a solution to such a problem, there is an adhesion prevention technique using a photocrosslinkable mucopolysaccharide (Japanese Patent Laid-Open No. Hei 6)
-73102 , Hiromichi Miwa et al., Artificial organs, 22, 37
6, 1993, Matuda, T .; et al. , AS
AIO Journal, 39, M327, 199
3). This technology introduces cinnamic acid or thymine, which is a photodimerizable group, into the hydroxyl group of mucopolynes (hyaluronic acid or chondroitin sulfate) and crosslinks the mucopolynes by polymerizing the photodimerizable group by UV irradiation. Thus, a photocrosslinkable hyaluronic acid film is obtained. Further, it was successfully made insoluble in water by increasing the introduction rate of the photodimerizable group, and low swelling property is shown. However, since it is a cross-link between the hydroxyl groups of mucopolysaccharide and the carboxyl group remains free, many molecules such as cinnamic acid or thymine have been introduced in order to obtain water-insoluble and low swelling properties. However, the original properties of hyaluronic acid are lost. In addition, there are problems such as the manufacturing process requiring a plurality of steps.

【0009】課題を解決する別のものとして、例えば特
開昭60−130601、特開昭61−138601等
に記載されている架橋ヒアルロン酸の利用が考えられ
る。この場合、架橋に用いられる物質は一般に生体内成
分ではないため、その架橋物質の生体内での安全性は重
要で、この点でエポキシ化合物を用いたものが安全性の
面からは好ましい(Polymer Preprint
s Japan 142,938,1993)。エポキ
シ化合物を架橋剤として用いた架橋ヒアルロン酸として
は、特開昭60−233101或いは特開昭61−16
4558に記載されたものなどが知られているが、これ
らは水溶性或いは水膨潤性が極めて大きいという課題が
あった。
As another solution to the problem, use of crosslinked hyaluronic acid described in, for example, JP-A-60-130601 and JP-A-61-138601 can be considered. In this case, the substance used for cross-linking is generally not an in-vivo component, so the safety of the cross-linking substance in vivo is important. From this point of view, using an epoxy compound is preferable from the viewpoint of safety (Polymer). Preprint
s Japan 142 , 938, 1993). Crosslinked hyaluronic acid using an epoxy compound as a crosslinking agent is disclosed in JP-A-60-233101 or JP-A-61-16.
Although those described in 4558 are known, they have a problem that they are extremely water-soluble or water-swellable.

【0010】本発明はこれらの前記従来技術の課題に鑑
みてなされたものであり、その目的はヒアルロン酸の架
橋状態に検討を加え、水溶性及び水膨潤性を調整した架
橋ヒアルロン酸をシート状或いはフイルム状にして用い
る良好な癒着防止剤を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to examine the cross-linked state of hyaluronic acid to obtain a sheet of cross-linked hyaluronic acid whose water solubility and water swelling property are adjusted. Another object is to provide a good anti-adhesion agent which is used in the form of a film.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に本発明者らが鋭意検討を行った結果、0.5〜3質量
%のヒアルロン酸溶液におけるヒアルロン酸のカルボキ
シル基同士をエポキシ化合物により0.5〜5%架橋す
れば、ヒアルロン酸の水に対する溶解性及び膨潤性を調
整しえることで生体内分解性を調節し、組織局所での滞
留性の良好な安全性の高い癒着防止剤が得られることを
見出だし、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies by the present inventors in order to achieve the above object, 0.5 to 3 mass
% Of hyaluronic acid in the hyaluronic acid solution are crosslinked with an epoxy compound at 0.5 to 5% to adjust the biodegradability by adjusting the solubility and swelling property of hyaluronic acid in water, It was found that a highly safe anti-adhesion agent having good retention property in the local tissue can be obtained, and completed the present invention.

【0012】すなわち、本出願の請求項l記載の癒着防
止剤は、製造時のヒアルロン酸濃度が0.5〜3質量%
であり、ヒアルロン酸残基のカルボキシル基が両末端エ
ポキシ化合物系架橋剤により0.5〜5%架橋され、下
記一般式化2で示されることを特徴とする。
That is, the adhesion preventive agent according to claim 1 of the present application has a hyaluronic acid concentration of 0.5 to 3% by mass at the time of production.
And the carboxyl group of the hyaluronic acid residue is crosslinked by 0.5 to 5% with an epoxy compound-based crosslinking agent at both ends, and is represented by the following general formula 2.

【化2】 [Chemical 2]

【0013】以下、本発明を詳細に説明する。本発明の
出発原料に使用されるヒアルロン酸は通常ナトリウム塩
となっているが、塩の種類は特に制約されない。また、
ヒアルロン酸の起原としては、鶏冠、臍帯、微生物、皮
膚等があげられるが、特に制約を受けない。分子量も同
様に制限されない。ただし、あまり低分子量だと、以下
の架橋反応がうまく進行しないため分子量20万以上が
好ましい。
The present invention will be described in detail below. The hyaluronic acid used as the starting material of the present invention is usually a sodium salt, but the type of salt is not particularly limited. Also,
Sources of hyaluronic acid include chicken crown, umbilical cord, microorganisms and skin, but are not particularly limited. The molecular weight is likewise not limited. However, if the molecular weight is too low, the following cross-linking reaction does not proceed well, so the molecular weight is preferably 200,000 or more.

【0014】架橋反応は、ヒアルロン酸、架橋剤である
両末端エポキシ化合物及び中性〜弱酸性溶媒を純水中に
溶解したのち、加熱により水分を蒸発乾固させることで
反応を終了させる。架橋機構を図lに示す。同図より明
らかなように、弱酸性下ではヒアルロン酸のカルボキシ
ル基同士が両末端エポキシ化合物により架橋される。こ
のときのヒアルロン酸濃度は、濃度が高すぎると均一な
架橋ができにくいため、通常0.5〜3質量%で行われ
る。架橋剤の量は、所望の架橋率となるように加えれば
よく、この架橋率の制御により生体内での分解速度が決
定される。即ち、高架橋率であるほど生体内での酵素分
解が遅くなり、組織局所での滞留性が増す。ただし、あ
まり高架橋率であると、後述するように、手術時の操作
性が悪くなったり、組織の治癒を妨げることから適切な
範囲内の架橋率が好ましい。
The cross-linking reaction is terminated by dissolving hyaluronic acid, the epoxy compound at both terminals as a cross-linking agent and a neutral to weakly acidic solvent in pure water, and then evaporating the water to dryness by heating. The crosslinking mechanism is shown in FIG. As is clear from the figure, under weak acidity, the carboxyl groups of hyaluronic acid are crosslinked by the epoxy compounds at both ends. The hyaluronic acid concentration at this time is usually 0.5 to 3% by mass , because if the concentration is too high, uniform cross-linking is difficult to be achieved. The amount of the cross-linking agent may be added so that the desired cross-linking rate is obtained, and the rate of decomposition in vivo is determined by controlling the cross-linking rate. That is, the higher the cross-linking rate, the slower the enzymatic decomposition in the living body, and the longer the retention property in the tissue. However, if the cross-linking rate is too high, the cross-linking rate within an appropriate range is preferable because, as will be described later, the operability during surgery is deteriorated and the healing of the tissue is hindered.

【0015】本反応はヒアルロン酸のカルボキシル基と
架橋剤のエポキシ基が架橋反応するが、反応は水分の蒸
発乾固に伴い進むため、分子問距離が極めて短い状態で
効率よく架橋反応が進行する。更に、静電的反発能を有
するカルボキシル基が架橋点に参加することで、反発能
が封鎖され、水膨潤性をほとんど失い、水不溶性とな
る。例えば、全てのカルボキシル基が架橋点となったと
きを架橋率100%とすると、架橋率0.15%以上で
水不溶性となる。
In this reaction, the carboxyl group of hyaluronic acid and the epoxy group of the cross-linking agent undergo a cross-linking reaction, but since the reaction proceeds with evaporation of water to dryness, the cross-linking reaction proceeds efficiently with a very short molecular distance. . Further, the carboxyl group having the electrostatic repulsion ability participates in the cross-linking point, so that the repulsion ability is blocked, the water swelling property is almost lost, and the compound becomes water-insoluble. For example, if the cross-linking rate is 100% when all the carboxyl groups are cross-linking points, water-insolubility is obtained at the cross-linking rate of 0.15% or more.

【0016】これに対し、従来のヒアルロン酸架橋法
(特開昭60−233101、特開昭61−13860
1)の場合、この程度の架橋率では水溶性を示す。従来
法では塩基性の水溶液下でヒドロキシル基間を架橋反応
させるため、架橋に参加する高分子鎖間の距離が長い状
態で架橋され、更に、静電的反発を引き起こすカルボキ
シル基も無傷で残る。従って、水溶性または水膨関性と
なってしまう。
On the other hand, the conventional hyaluronic acid crosslinking method (JP-A-60-233101, JP-A-61-13860) is used.
In the case of 1), it exhibits water solubility at such a crosslinking rate. In the conventional method, the hydroxyl groups are cross-linked in a basic aqueous solution, so that the polymer chains that participate in the cross-linking are cross-linked and the carboxyl groups that cause electrostatic repulsion remain intact. Therefore, it becomes water-soluble or water-swelling.

【0017】本架橋法に用いられる両末端エポキシ化合
物としては、ジグリシジルエーテル、ジグリシジルエス
テル、ジグリシジルアミン、ジグリシジルアンモニウム
塩等のグリシジル化合物が望ましい。無論、グリシジル
が3個以上でもよい。これらの中で、グリシジルエー
テル化合物は最も入手しやすく、安価であるが、具体例
としてはエチレングリコールジグリシジルエーテル、ブ
ロピレングリコールジグリシジルエーテル、ポリプロピ
レンジグリシジルエーテル、グリセリンジグリシジルエ
ーテル等が挙げられる。また、前述したように、これら
のエポキシ系架橋剤は、他の架橋剤と比べて生体内にお
ける安全性の高いことが報告されている(Polyme
r Preprints Japan 142,93
8,1993)。
As the epoxy compound at both ends used in the present crosslinking method, glycidyl compounds such as diglycidyl ether, diglycidyl ester, diglycidyl amine and diglycidyl ammonium salt are desirable. Of course, glycidyl
The number of groups may be 3 or more. Among these, the glycidyl ether compound is most easily available and inexpensive, but specific examples thereof include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene diglycidyl ether, and glycerin diglycidyl ether. Further, as described above, it is reported that these epoxy-based cross-linking agents have higher safety in vivo than other cross-linking agents (Polyme).
r Preprints Japan 142, 93
8, 1993).

【0018】ヒアルロン酸のカルボキシル基と両末端エ
ポキシ化合物との反応における適当な触媒として、第4
級アンモニウム塩類、第3アミン類、リン酸塩類、イミ
ダゾール化合物類等を挙げることができる。しかし、触
媒そのものの毒性及び塩基性下ではヒアルロン酸塩が分
解されやすいことから考えて、中性〜弱酸性の安全な無
機触媒を用いることが好ましい。例えば、リン酸一アン
モニウム、リン酸一ナトリウム、リン酸一カリウム等、
水溶液のpHが4〜7のリン酸塩が好適である。触媒と
しての濃度は、溶媒である純水100mlに対し、2m
g以上あればよく、通常20mg程度で充分である。
As a suitable catalyst in the reaction between the carboxyl group of hyaluronic acid and the epoxy compound at both ends,
Examples thereof include primary ammonium salts, tertiary amines, phosphates, imidazole compounds and the like. However, considering that the hyaluronate is easily decomposed under the toxicity and basicity of the catalyst itself, it is preferable to use a neutral to weakly acidic safe inorganic catalyst. For example, monoammonium phosphate, monosodium phosphate, monopotassium phosphate, etc.,
A phosphate having a pH of 4 to 7 in the aqueous solution is suitable. The concentration as a catalyst is 2 m with respect to 100 ml of pure water as a solvent.
It should be at least g, and about 20 mg is usually sufficient.

【0019】加熱により水分を蒸発乾固させながら架橋
反応を進行させ、フイルム状の架橋ヒアルロン酸が得ら
れる。得られた架橋ヒアルロン酸は、後述する実施例に
示すように睾丸ヒアルロニダーゼにより酵素分解を受け
ることから、生体内分解性を有することがわかる。ま
た、架橋率が高いほど酵素分解されにくいことから、架
橋率を調節することで組織局所における滞留期間を制御
できる。得られた架橋ヒアルロン酸の投与場所は腹腔内
の各種臓器、腱、結膜下等、癒着の生じ得る組織の表面
であればどこであってもよく、抗生物質や殺菌剤等の水
溶性薬剤を架橋ヒアルロン酸に合有させることも可能で
ある。また、組織に密着させにくい場合には、アロンア
ルファ(商標)等の外科用接着剤を小量使用してもよ
い。
The crosslinking reaction proceeds while evaporating the water content to dryness by heating to obtain a film-like crosslinked hyaluronic acid. The obtained crosslinked hyaluronic acid is enzymatically decomposed by the testicular hyaluronidase as shown in Examples described later, and thus it is understood that it has biodegradability. Further, the higher the cross-linking rate, the more difficult it is to be enzymatically decomposed. Therefore, by controlling the cross-linking rate, it is possible to control the residence time in the local tissue. The administration site of the obtained crosslinked hyaluronic acid may be anywhere on the surface of various organs in the abdominal cavity, tendons, subconjunctiva, etc., as long as it is the surface of the tissue where adhesion may occur, and cross-linked water-soluble drugs such as antibiotics and bactericides It is also possible to combine it with hyaluronic acid. A small amount of surgical adhesive such as Aron Alpha (trademark) may be used when it is difficult to adhere the tissue.

【0020】癒着防止剤の組織局所における滞留期間
は、外科手術後の組織の損傷治癒がある程度進み、近傍
に位置する組織と癒着が生じなくなるまで滞留すればよ
く、その後は速やかに生体内分解を受けるのが望まし
く、一般的にはそれに見合った架橋率のものを用いれば
よい。適用する外科手術の種類や組織の違い、更には投
与されている他材の影響や炎症の程度等により必要とさ
れる滞留期間は異なってくるが、例えば、腹腔内組織間
の癒着防止及び腱の癒着防止に用いた後述する実施例に
あるように、l〜2週間程度の滞留期間があればよく、
その意味から0.5〜5%の架橋率が好ましい。
The retention period of the adhesion preventing agent in the local tissue may be such that the damage and healing of the tissue after the surgical operation progresses to a certain extent and no adhesion occurs with the tissue located in the vicinity, and thereafter the biodegradation is promptly carried out. It is desirable to use a resin having a cross-linking ratio corresponding to that. The required residence time will vary depending on the type of surgery and tissue used, the effect of other materials being administered, the degree of inflammation, etc. As described in the examples described below used for the prevention of adhesion, it is sufficient that the retention period is about 1 to 2 weeks,
From that meaning, a crosslinking rate of 0.5 to 5% is preferable.

【0021】[0021]

【実施例】以下、本発明の具体的な実施例を詳細に説明
する。なお、以下の実施例は、本発明を説明するための
ものであって、本発明をこれに限定するものではない。 実施例1 純水200mlにりん酸−アンモニウム40mg、分子
量80万のヒアルロン酸ナトリウム2gを加えて溶解し
た液6個を用意し、それぞれに4%エチレングリコール
ジグリシジルエーテル水溶液を0.06、0.12、
0.3、0.6、1.2及び2.4ml加えて均一な溶
液とした。各溶液の一定量を平板シャーレに流し込み、
80℃の空気循環式恒温槽に14時間放置して架橋反応
を行わせた。60%エタノール溶液で洗浄、乾燥した
後、それぞれのフイルムを剥離し、厚さ0.06〜0.
08mmの架橋ヒアルロン酸フイルムを調製した。これ
らはいずれも水不溶性で、水中での膨潤も殆ど観察され
なかった。なお、架橋ヒアルロン酸の架橋率は、添加し
た架橋剤の全量がヒアルロン酸のカルボキシル基と反応
すると仮定して算出した。架橋率100%とは、全ての
カルボキシル基が架橋点になっていることを意味する。
上記の添加量の場合、架橋率はそれぞれ0.5、1、
2.5、5、10、及び20%に相当する。
EXAMPLES Specific examples of the present invention will be described in detail below. The following examples are for explaining the present invention, and the present invention is not limited thereto. Example 1 Six liquids prepared by adding 40 mg of ammonium-phosphate 40 mg and 2 g of sodium hyaluronate having a molecular weight of 800,000 to 200 ml of pure water and dissolving them were prepared, and 4% ethylene glycol diglycidyl ether aqueous solution was added to each of 0.06 and 0.04. 12,
0.3, 0.6, 1.2 and 2.4 ml were added to make a uniform solution. Pour a fixed amount of each solution into a flat dish,
The cross-linking reaction was carried out by leaving it in an air circulation type constant temperature bath at 80 ° C. for 14 hours. After being washed with a 60% ethanol solution and dried, the respective films were peeled off to a thickness of 0.06 to 0.
A 08 mm crosslinked hyaluronate film was prepared. All of these were water-insoluble, and swelling in water was hardly observed. The cross-linking ratio of cross-linked hyaluronic acid was calculated by assuming that the total amount of the added cross-linking agent reacts with the carboxyl group of hyaluronic acid. A crosslinking rate of 100% means that all carboxyl groups are crosslinking points.
In the case of the above addition amount, the crosslinking ratio is 0.5, 1, respectively.
Equivalent to 2.5, 5, 10, and 20%.

【0022】実施例2 純水430mlにりん酸−アンモニウム水溶液86m
g、分子量95万のヒアルロン酸4.3gを加えて溶解
した液8個を用意し、それぞれに4%エチレングリコー
ルジグリシジルエーテル水溶液を0.03、0.13、
0.26、0.64、l.27、2.55及び5.09
ml加えて均一な溶液とした。各溶液の一定量を平板シ
ャーレに流し込み、80℃の空気循環式恒温槽に14時
間放置して架橋反応を行わせた。60%エタノール溶液
で洗浄後、乾燥し、架橋ヒアルロン酸フイルムを調製し
た。上記の添加量の場合、架橋率はそれぞれO.13、
0.5、1、25、5、10、及び20%となった。架
橋率0.13%のフイルムを除いて、ほかのフィルムは
何れも水不溶性であった。そこで、得られたフィルムの
純水中での膨潤率を測定した。各フィルムからl.5×
l.5cmを切り出し、重量を測定したのち、25℃の
生理食塩液に膨潤平衛に達するまで浸漬した。フィルム
を液から取り出し、表面の水滴を除いたのち再び重量を
測定した。この結果をもとに、浸漬前後の膨潤倍比を算
出し、図2に示した。図から明かなように架橋率の増加
とともに膨潤倍率が低下している。しかし、何れの架橋
率のフイルムでも膨潤倍率は4を越えず、膨潤性は際だ
って低いことが理解される。
Example 2 Phosphoric acid-ammonium phosphate aqueous solution 86 m was added to pure water 430 ml.
g, 4.3 g of hyaluronic acid having a molecular weight of 950,000 was added and dissolved, and 8 liquids were prepared, and 0.03, 0.13, 4% ethylene glycol diglycidyl ether aqueous solution was prepared for each of them.
0.26, 0.64, l. 27, 2.55 and 5.09
ml was added to make a uniform solution. A certain amount of each solution was poured into a flat dish and left in an air-circulating constant temperature bath at 80 ° C. for 14 hours to carry out a crosslinking reaction. After washing with a 60% ethanol solution, it was dried to prepare a crosslinked hyaluronate film. In the case of the above addition amount, the cross-linking rate is 0. 13,
It became 0.5, 1, 25, 5, 10, and 20%. All the other films were water-insoluble except for the film having a crosslinking rate of 0.13%. Therefore, the swelling ratio of the obtained film in pure water was measured. From each film l. 5x
l. After cutting out 5 cm and measuring the weight, it was immersed in a physiological saline solution at 25 ° C. until reaching a swollen hemisphere. The film was taken out from the liquid, water drops on the surface were removed, and then the weight was measured again. Based on this result, the swelling ratio before and after the immersion was calculated and shown in FIG. As is clear from the figure, the swelling ratio decreases with the increase of the crosslinking rate. However, it is understood that the swelling ratio does not exceed 4 and the swelling property is remarkably low in any cross-linked film.

【0023】このように、本発明にかかる架橋ヒアルロ
ン酸は、水不溶性であるばかりでなく、水膨潤性も極め
て低いため、腱の手術のときのように狭い組織空間に癒
着防止剤として用いられる場合においても、周囲の組織
を必要以上に圧迫するようなことはない。
As described above, the crosslinked hyaluronic acid according to the present invention is not only water-insoluble but also extremely low in water swelling property, so that it is used as an adhesion preventive agent in a narrow tissue space such as in tendon surgery. Even in some cases, the surrounding tissue is not unnecessarily pressed.

【0024】実施例3 本実施例は、架橋ヒアルロン酸フィルムのウシ睾丸ヒア
ルロニターゼによる酵素分解性をみたもので、架橋ヒア
ルロン酸フイルムの生体内分解性を示すものである。実
験には実施例1で得た架橋率0.5、1、2.5、
10、及び20%の架橋ヒアルロン酸フイルムを用い
た。上記の架橋ヒアルロン酸フィルム約10mgを0.
1Mリン酸緩衝液(pH7.0)3.96ml中に入れ
たのち、10400U/mlのウシ睾丸ヒアルロニダー
ゼ(タイプVI−S,シグマ)0.04mlを加え、3
7℃の恒温水浴中で反応させた。反応後24時間まで経
時的に小量の反応液を採取してカルバゾール硫酸法(B
itter,T.& Muir,H.,Anal.Bi
ochem,4,330,1962)によりヒアルロン
酸量を測定し、架橋ヒアルロン酸フイルムの分解率を求
めた。
Example 3 In this example, the cross-linked hyaluronan film was examined for enzymatic degradability by bovine testicular hyaluronidase, and the biodegradability of the cross-linked hyaluronate film was shown. For the experiment, the crosslinking ratios obtained in Example 1 were 0.5, 1, 2.5, 5 ,
10 and 20% crosslinked hyaluronate film was used. About 10 mg of the above crosslinked hyaluronic acid film was added to 0.2
After being placed in 3.96 ml of 1M phosphate buffer (pH 7.0), 0.04 ml of bovine testicular hyaluronidase (Type VI-S, Sigma) at 10400 U / ml was added, and the mixture was added to 3
The reaction was carried out in a constant temperature water bath at 7 ° C. After the reaction, a small amount of the reaction solution was collected with time until 24 hours, and the carbazole sulfuric acid method (B
itter, T .; & Muir, H .; , Anal. Bi
Ochem, 4, 330, 1962), the amount of hyaluronic acid was measured to determine the decomposition rate of the crosslinked hyaluronic acid film.

【0025】結果を図3に示した。図から明らかなよう
に、架橋ヒアルロン酸フイルムはその架橋率の違いによ
り、ヒアルロニダーゼ分解性、すなわち生体内分解性が
異なることがわかる。このことから、架橋ヒアルロン酸
の架橋率を調節することにより、架橋ヒアルロン酸の生
体内分解性、すなわち生体内滞留期間を自由に調節しう
ることがわかる。ただし、架橋率が5%以上になると、
分解率は架橋率に大きくは依存せず、低い分解率を示
す。
The results are shown in FIG. As is clear from the figure, the cross-linked hyaluronate film has different hyaluronidase degradability, that is, biodegradability, depending on the difference in cross-linking rate. From this, it is understood that the biodegradability of the crosslinked hyaluronic acid, that is, the in-vivo retention period can be freely adjusted by adjusting the crosslinking rate of the crosslinked hyaluronic acid. However, if the cross-linking rate is 5% or more,
The decomposition rate does not largely depend on the crosslinking rate and shows a low decomposition rate.

【0026】実施例4 本実施例は、実施例3の結果を踏まえて実施したもの
で、架橋ヒアルロン酸フイルムのラット皮下への埋め込
み実験による生体内滞留性の違いを示すものである。実
験には実施例1と同様にして得た架橋率1、3及び5%
の架橋ヒアルロン酸フイルムを用いた。ただし、エンド
トキシンの混入をさけるため、水は局方注射用水を使用
し、ヒアルロン酸溶液は0.45μmのメンブランフィ
ルターにて濾過菌して平板シャーレに流し込んだ。ま
た、分子最90万のヒアルロン酸ナトリウムの1%水溶
液を実施例1と同様に一定量を平板シャーレに流し込
み、80℃の空気循環式恒温槽に16時間放置して得た
厚さ0.07mmのヒアルロン酸フイルムを対照として
用いた。
Example 4 This example was carried out on the basis of the results of Example 3, and shows the difference in the in-vivo retention property in the experiment of subcutaneously implanting the crosslinked hyaluronate film in the rat. In the experiment, the crosslinking ratios obtained in the same manner as in Example 1 were 1, 3 and 5%.
The cross-linked hyaluronic acid film of was used. However, to avoid endotoxin contamination, water using Japanese Pharmacopoeia water for injection, hyaluronic acid solution was poured into a flat Petri dish and filtered sterilized at 0.45μm membrane filters. A 1% aqueous solution of sodium hyaluronate having a maximum molecular weight of 900,000 was poured into a flat dish in the same manner as in Example 1 and left in an air-circulating constant temperature bath at 80 ° C. for 16 hours to obtain a thickness of 0.07 mm. Film of hyaluronate was used as a control.

【0027】上記の架橋ヒアルロン酸フイルム及びヒア
ルロン酸フイルム5.0mgずつをそれぞれ11〜12
週齢のWistar系雄性ラットの背部皮下に埋め込
み、切開口はナイロン糸で縫合した。埋め込み後、3、
7、14及び2l日目にエーテルの吸入により動物を屠
殺し、埋め込み部位を生理食塩液で洗浄し残存している
ヒアルロン酸を回収した。別のラットの同じ部位に生理
食塩液0.5mlを注入し、同様に処理したものを対照
として、カルバゾール硫酸法(Bitter,T.&
Muir,H.M.,Anal.Biochem,
330,1962)によリウロン酸を定量して残存率を
求めた。結果を表lに示した。同表から明らかなように
架橋ヒアルロン酸フイルムはヒアルロン酸フイルムに比
べて長期間組織中に滞留することがわかる。すなわち、
ヒアルロン酸を架橋して水不溶性で膨潤性を押さえるこ
とにより、その組織中の滞留性を向上させることができ
る。また、架橋ヒアルロン酸の架橋率を調節することに
より、架橋ヒアルロン酸の生体内滞留期間を自由に調節
できることがわかる。なお何れの試料においても炎症性
細胞の浸潤等の反応は観察されなかった。
The cross-linked hyaluronic acid film and the hyaluronic acid film (5.0 mg each) are respectively 11 to 12
A week-old male Wistar rat was subcutaneously embedded in the back and the incision was sutured with a nylon thread. After embedding 3,
The animals were sacrificed by inhalation of ether on the 7th, 14th, and 21st days, and the implantation site was washed with physiological saline to recover the residual hyaluronic acid. 0.5 ml of physiological saline was injected into the same site of another rat, and the same treatment was performed as a control, and the carbazole sulfate method (Bitter, T. &
Muir, H .; M. , Anal. Biochem, 4 ,
330, 1962) to determine the residual ratio by quantifying liuronic acid. The results are shown in Table 1. As is clear from the table, the cross-linked hyaluronate film is retained in the tissue for a longer period of time than the hyaluronate film. That is,
By retaining hyaluronic acid in a water-insoluble and swelling property by cross-linking, the retention property in the tissue can be improved. Further, it is understood that the in vivo retention period of the crosslinked hyaluronic acid can be freely adjusted by adjusting the crosslinking rate of the crosslinked hyaluronic acid. No reaction such as infiltration of inflammatory cells was observed in any of the samples.

【0028】[0028]

【表1】 ──────────────────────────────────── 試 料 残 存 率(%) 3日 7日 14日 21日 ──────────────────────────────────── ヒアルロン酸フィルム 1.0 0 0 0 ──────────────────────────────────── 架橋ヒアルロン酸フィルム 架橋率1% 80.7 12.2 0 0 架橋率3% 92.1 26.1 8.1 0 架橋率5% 95.2 41.0 24.9 2.1 ────────────────────────────────────[Table 1] ────────────────────────────────────     Remaining test rate (%)                                3 days 7 days 14 days 21 days ──────────────────────────────────── Hyaluronic acid film 1.0 0 0 0 ──────────────────────────────────── Crosslinked hyaluronic acid film     Cross-linking rate 1% 80.7 12.2 0 0     Crosslinking rate 3% 92.1 26.1 8.1 0     Crosslinking rate 5% 95.2 41.0 24.9 2.1 ────────────────────────────────────

【0029】実施例5 実施例2と同様に調製した架橋率0.5、2.5、5、
10及び20%の架橋ヒアルロン酸フイルム及び実施例
3と同様に調製したヒアルロン酸フイルムについて、水
分含有率及び引っ張り強さを測定した。水分含有率は
l.5×l.5cmの大きさに切り出したフイルムの重
量を測定した後、五酸化りん存在下60℃で4時間減圧
し、再び重量を測定して、その重量変化から算出した。
また、引っ張り強さはフイルムをダンベル型に打ち抜い
た後、レオメーター(モデルNRM−2010J―C
W,不動工業)で測定して求めた。
Example 5 Crosslinking ratios 0.5, 2.5, 5 , prepared in the same manner as in Example 2,
Moisture content and tensile strength were measured for 10 and 20% crosslinked hyaluronic acid films and hyaluronic acid films prepared as in Example 3. The water content is 1. 5 × l. The weight of the film cut into a size of 5 cm was measured, the pressure was reduced at 60 ° C. for 4 hours in the presence of phosphorus pentoxide, the weight was measured again, and the change in weight was calculated.
In addition, the tensile strength is that after punching the film into a dumbbell shape, the rheometer (model NRM-2010J-C
W, Fudo Kogyo).

【0030】測定結果を表2に示した。同表から明らか
なように、水分含有率及び引っ張り強さは架橋ヒアルロ
ン酸フイルムの架橋率に依存せず、何れの架橋率におい
ても同等の強度を有していることを示している。
The measurement results are shown in Table 2. As is clear from the table, the water content and the tensile strength do not depend on the cross-linking rate of the crosslinked hyaluronate film, and show that the cross-linked hyaluronate film has the same strength at any cross-linking rate.

【表2】 ──────────────────────────────────── 試料 水分含有率(%) 引っ張り強さ(N/cm2) ──────────────────────────────────── ヒアルロン酸フイルム 9.4 5327 ──────────────────────────────────── 架橋ヒアルロン酸フイルム 架橋率0.5% 9.5 5124 架橋率2.5% 8.9 5818 架橋率5% 8.7 5558 架橋率10% 8.4 5835 架橋率20% 8.4 5274 ────────────────────────────────────[Table 2] ──────────────────────────────────── Sample moisture content (%) Tensile strength (N / cm 2 ) ──────────────────────────────────── Hyaluronic acid film 9.4 5327 ─ ─────────────────────────────────── Cross-linked hyaluronic acid film Cross-linking rate 0.5% 9.5 5124 Cross-linked Rate 2.5% 8.9 5818 Crosslinking rate 5% 8.7 5558 Crosslinking rate 10% 8.4 5835 Crosslinking rate 20% 8.4 5274 ────────────────── ────────────────────

【0031】以下、本架橋ヒアルロン酸の癒着防止効果
について記述する。実施別6(腱の癒着防止効果) 生後3カ月の雌の白色レグホンを用いた。動物に塩酸ケ
タミン(動物用ケタラール50,三共)50mg/kg
を筋肉注射して全身麻酔を施し、駆血下で両側第3趾深
趾屈筋腱の切断実験を施行した。まず、蹠側に波状切開
を加え、深趾屈筋腱及び腱鞘を遠位趾節間関節レベルで
露出して腱を切断した。腱鞘の近位と遠位から切断した
第3趾深趾屈筋腱の近位端と遠位端を引き出し6−0ル
ープナイロンを用いて津下法で縫合した。A群には分子
量190万の1%ヒアルロン酸ナトリウム溶液0.2ml
を腱縫合部に滴下した。B群、C群、D群及びE群に
は、架橋率0.5,2.5,5及び10%の架橋ヒアル
ロン酸フィルムで腱縫合部を包む処置を施した。F群に
は生理食塩液0.2mlを滴下した。腱縫合後はボクシン
グ・グローブ位で3週間固定した。術後6週目に動物を
屠殺し、腱滑動距離を測定して癒着の程度を評価した。
なお、架橋ヒアルロン酸フィルムは生理食塩液で膨潤さ
せた状態においても、手術時のピンセットによる取り扱
いに十分耐える強度を有していた。しかし、架橋率10
%の架橋ヒアルロン酸フィルムは、架橋率0.5〜5%
のものに比して硬いため、取り扱い時に破損するものが
多く、操作性が悪かった。
The adhesion preventing effect of the present crosslinked hyaluronic acid will be described below. Example 6 (Effect of preventing adhesion of tendon) A female white legphone aged 3 months was used. Ketamine hydrochloride (Ketalal 50 for animals, Sankyo) 50 mg / kg for animals
Was intramuscularly injected to give general anesthesia, and a cutting experiment of bilateral third toe deep flexor flexor tendon was performed under avascularization. First, a wavy incision was made on the side of the ankle, and the deep flexor tendon and tendon sheath were exposed at the level of the distal interphalangeal joint to cut the tendon. The proximal end and the distal end of the third flexor deep flexor digitorum tendon cut from the proximal and distal parts of the tendon sheath were pulled out and sutured by the Tsushita method using 6-0 loop nylon. For group A, 0.2 ml of 1% sodium hyaluronate solution with a molecular weight of 1.9 million
Was dripped on the tendon sutured part. The groups B, C, D and E were subjected to a treatment of wrapping the tendon sutured part with a crosslinked hyaluronic acid film having a crosslinking rate of 0.5, 2.5, 5 and 10%. To group F, 0.2 ml of physiological saline was added dropwise. After suturing the tendons, they were fixed in boxing gloves for 3 weeks. The animals were sacrificed 6 weeks after the surgery, and the sliding distance of the tendon was measured to evaluate the degree of adhesion.
The cross-linked hyaluronic acid film had a strength sufficient to withstand handling with tweezers during surgery even when swollen with a physiological saline solution. However, the crosslinking rate is 10
% Crosslinked hyaluronic acid film has a crosslinking rate of 0.5 to 5%
Since it is harder than other products, many of them are damaged during handling, resulting in poor operability.

【0032】腱滑動距離の測定は、以下の方法で行っ
た。手術趾である第3趾を中手指間関節レベルで切断し
て基節骨部を測定板に固定した。その際、近位指節間関
節、遠位指節間関節の固定は行わずに自由な運動を許し
た。中手指節間関節の切断端から深趾屈筋腱を確認して
近位方向に牽引を加えた。深趾屈筋腱に加える牽引力は
バネはかりで計測し約2Kgとした。その際に引き出され
る深趾屈筋腱の長さを腱滑動距離とした。第4指を非手
術趾として同様の方法で深趾屈筋腱が引き出される距離
を求めた。そして、第3指の深趾屈筋腱の引き出し距離
との比を腱滑動度とし、癒着の程度を腱の滑動性から評
価した。
The tendon sliding distance was measured by the following method. The third toe, which is a surgical toe, was cut at the level of the metacarpophalangeal joint to fix the proximal phalanx to the measurement plate. At that time, free movement was allowed without fixing the proximal interphalangeal joint and the distal interphalangeal joint. A deep flexor flexor tendon was confirmed from the cut end of the metacarpophalangeal joint, and traction was applied in the proximal direction. The traction force applied to the flexor flexor tendon was measured with a spring balance and was set to about 2 kg. The length of the deep flexor flexor tendon pulled out at that time was defined as the tendon sliding distance. Using the fourth finger as the non-operated toe, the distance from which the deep flexor tendon was pulled out was determined in the same manner. Then, the ratio of the distance from the deep flexor flexor tendon of the third finger to the pull-out distance was taken as the tendon smoothness, and the degree of adhesion was evaluated from the smoothness of the tendon.

【0033】結果を表3に示す。腱滑動度は1%ヒアル
ロン酸群81.6±6.2%、対照群68.2±5.1
%で、1%ヒアルロン酸群に有意な(p<0.001)
癒着防止作用が認められた。架橋ヒアルロン酸フィルム
群の腱滑動度は平均値で90.2〜92.2%で1%ヒ
アルロン酸群より有意に(p<0.01〜0.001)
高く、更に優れた癒着防止作用が認められた。
The results are shown in Table 3. Tendon smoothness was 81.6 ± 6.2% in the 1% hyaluronic acid group, 68.2 ± 5.1 in the control group
%, Significant in 1% hyaluronic acid group (p <0.001)
The anti-adhesion effect was recognized. The average tendon smoothness of the cross-linked hyaluronic acid film group was 90.2 to 92.2%, which was significantly higher than that of the 1% hyaluronic acid group (p <0.01 to 0.001).
A high and further excellent anti-adhesion action was observed.

【表3】 [Table 3]

【0034】また、術後3週目に腱及び周囲組織を採取
して、病理組織学的検索に供した。すなわち、採取した
組織を10%ホルマリン液で固定した後脱水し、パラフ
ィン包埋した。包埋した組織を薄切し、ヘマトキシリン
・エオジン染色標本を作製し、光学顕微鏡にて観察し
た。腱縫合部は、周囲組織からの肉芽組織の侵入によっ
て癒合していた。腱縫合部のコラーゲン線維は、A群、
B群、C群、D郡及びF群では、何れの群においても長
軸方向に並んでおり、癒合状態に差は認められなかっ
た。このことは、ヒアルロン酸及び架橋ヒアルロン酸は
腱の治癒に対して悪影響を及ぼさないことを示してい
る。しかしながら、E群では、他の群と比べて線維の癒
合状態が疎であった。このことは、架橋率の高い架橋ヒ
アルロン酸フィルムを用いた場合には腱の治癒が遅延す
ることを示している。
Ten weeks after the operation, the tendon and surrounding tissues were collected and used for histopathological examination. That is, the collected tissue was fixed with 10% formalin solution, dehydrated, and embedded in paraffin. The embedded tissue was sliced into thin pieces to prepare a hematoxylin / eosin-stained specimen, which was observed with an optical microscope. The tendon suture was fused by the invasion of granulation tissue from the surrounding tissue. Collagen fibers in the tendon suture are group A,
In group B, group C, group D and group F, the groups were lined up in the long axis direction, and no difference was observed in the fusion state. This indicates that hyaluronic acid and cross-linked hyaluronic acid do not adversely affect tendon healing. However, in the E group, the fusion state of fibers was sparse as compared with the other groups. This indicates that tendon healing is delayed when a crosslinked hyaluronic acid film having a high crosslinking rate is used.

【0035】実施例7(腹膜の癒着防止効果) 体重200〜250gのWistar系雄性ラットを用
いた。ラットをペントバルビタールナトリウム麻酔後、
無菌状態で中央線で切開して開腹した。盲腸を創外に引
き出し、乾燥したスポンジで擦過した後乾燥させた。更
に壁側腹膜を1cm四方にわたりメスで擦過して点状の出
血を生じさせた後、A群には分子量190万の1%ヒア
ルロン酸ナトリウム溶液4mlを擦過部に滴下した。ま
た、B群、C群、D群及びE群には架橋率0.13,
0.5,2.5及び20%の架橋ヒアルロン酸フィルム
をそれぞれ擦過部を覆う形で貼り付けた。F群には生理
食塩液2mlを滴下した。閉腹は3−0ナイロン縫合糸
(エチコン)を用いて実施した。手術7日後に動物を屠
殺して開腹し、盲腸と壁側腹膜間の癒着の有無を判定し
た。なお、癒着の判定に際しては、膜状のごく軽度の癒
着は癒着と判定せず、線維状〜厚い癒着を生じた場合を
癒着と判定した。
Example 7 (Peritoneal adhesion prevention effect) Wistar male rats weighing 200 to 250 g were used. After anesthetizing the rat with sodium pentobarbital,
Under sterile conditions, a laparotomy was performed by incising at the center line. The cecum was pulled out of the wound, rubbed with a dry sponge and then dried. Further, the parietal peritoneum was rubbed over a 1 cm square with a scalpel to cause punctate hemorrhage, and then 4 ml of a 1% sodium hyaluronate solution having a molecular weight of 1.9 million was dropped on the rubbed portion in Group A. In addition, the cross-linking rate of 0.13 for groups B, C, D and E.
Crosslinked hyaluronic acid films of 0.5, 2.5 and 20% were attached so as to cover the scratched portions, respectively. To group F, 2 ml of physiological saline was dropped. Closure was performed using 3-0 nylon suture (Ethicon). Seven days after the operation, the animals were sacrificed and laparotomy was performed, and the presence or absence of adhesion between the cecum and the parietal peritoneum was determined. In the determination of adhesion, a membranous very slight adhesion was not determined as an adhesion, but a fibrous to thick adhesion was determined as an adhesion.

【0036】結果を表4に示した。生理食塩液を使用し
たF群では、94%の高率で癒着を生じた。1%のヒア
ルロン酸溶液を使用したA群ではF群と比較すると癒着
の頻度は低くなるものの、39%に癒着を生じた。架橋
率0.13%の架橋ヒアルロン酸フィルムを用いたB群
では癒着の頻度は33%と低くなるものの、A群と大き
な差を認めなかった。架橋率0.5及び2.5%の架橋
ヒアルロン酸フィルムを用いたC群及びD群において
は、癒着の頻度はそれぞれ6及び0%とごく低率を示し
た。E群においては、癒着の頻度は39%とむしろ高値
を示した。開腹時の肉眼観察では、A群及びB群では残
留物を認めなかった。C群では多くの動物で、形状のま
とまらない架橋ヒアルロン酸フィルムの残留物をごく小
量認めた。D群では、分解されて薄くなった膜状の架橋
ヒアルロン酸フィルムの残留物を小量認めた。E群で
は、多くの動物で、破損したシートの残留物が投与部位
以外に散在していた。また、癒着を認めなかった個体で
は、何れの群においても擦過部位に出血などを認めず、
治癒が進んでいた。
The results are shown in Table 4. Adhesion occurred at a high rate of 94% in group F, which used saline. In group A using a 1% hyaluronic acid solution, adhesion occurred in 39% although the frequency of adhesion was lower than in group F. In group B using the crosslinked hyaluronic acid film having a crosslinking rate of 0.13%, the frequency of adhesion was as low as 33%, but no significant difference was observed with group A. In the groups C and D using the crosslinked hyaluronic acid film having a crosslinking rate of 0.5 and 2.5%, the frequency of adhesion was 6 and 0%, which were very low rates. In group E, the frequency of adhesions was 39%, which was rather high. No macroscopic observation at the time of laparotomy revealed any residue in groups A and B. In group C, many animals showed a very small amount of residue of the cross-linked hyaluronic acid film which was not well organized. In Group D, a small amount of the residue of the film-like crosslinked hyaluronic acid film which was decomposed and thinned was observed. In Group E, many animals had broken sheet residues scattered out of the administration site. In addition, in individuals who did not recognize adhesion, bleeding etc. were not observed at the scratched site in any group,
Healing was progressing.

【0037】この結果と実施例4で示した生体内滞留性
の実験結果から、癒着防止作用は架橋ヒアルロン酸の滞
留性、すなわちその架橋率と密接な相関関係にあること
がわかる。
From these results and the experimental results of the retention property in the living body shown in Example 4, it can be seen that the anti-adhesion action has a close correlation with the retention property of the crosslinked hyaluronic acid, that is, its crosslinking rate.

【表4】 ──────────────────────────────────── 群 A B C D E F ──────────────────────────────────── 癒着の程度 7/18 6/18 1/18 0/18 7/18 17/18 % 39% 33% 6% 0% 39% 94% ────────────────────────────────────[Table 4] ──────────────────────────────────── Group A B C D E F ──────────────────────────────────── Degree of adhesion 7/18 6/18 1/18 0/18 7/18 17/18     % 39% 33% 6% 0% 39% 94% ────────────────────────────────────

【0038】[0038]

【発明の効果】以上説明したように本発明にかかる癒着
防止剤は、製造時のヒアルロン酸濃度が0.5〜3質量
%であることにより、均一に架橋が行われ、カルボキシ
ル基同士を0.5〜5%架橋した架橋ヒアルロン酸から
構成することにより、水不溶性となることから、組織局
所において所望する期間滞留させ、効果を持続させるこ
とができ、術後の癒着発生を顕著に減少させることがで
きる。
As described above, the adhesion preventive agent according to the present invention has a hyaluronic acid concentration of 0.5 to 3 mass at the time of production.
%, The cross-linking is performed uniformly, and the cross- linked hyaluronic acid in which the carboxyl groups are cross-linked with each other by 0.5 to 5% is water-insoluble, so that it is retained in the tissue locally for a desired period, The effect can be sustained and the occurrence of postoperative adhesions can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において特徴的なヒアルロン酸架橋機構
の説明図である。
FIG. 1 is an explanatory view of a characteristic hyaluronic acid crosslinking mechanism in the present invention.

【図2】本発明にかかる癒着防止剤の架橋率と膨潤倍率
の説明図である。
FIG. 2 is an explanatory diagram of a cross-linking rate and a swelling ratio of the adhesion preventive agent according to the present invention.

【図3】本発明にかかる癒着防止剤の架橋率とヒアルロ
ニダーゼによる分解率の説明図である。
FIG. 3 is an explanatory diagram of the crosslinking rate of the anti-adhesion agent according to the present invention and the degradation rate by hyaluronidase.

フロントページの続き (72)発明者 山口 敏二郎 神奈川県横浜市金沢区福浦2−12−1 株式会社 資生堂 第二リサーチセンタ ー内 (72)発明者 梁木 利男 神奈川県横浜市港北区新羽町1050番地 株式会社 資生堂 第一リサーチセンタ ー内 (72)発明者 山口 道広 神奈川県横浜市港北区新羽町1050番地 株式会社 資生堂 第一リサーチセンタ ー内 (56)参考文献 特開 昭61−234864(JP,A) 特開 平6−154596(JP,A) 特表 昭61−502729(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61K 31/715 C08B 37/00 C08B 37/08 CA(STN)Front page continuation (72) Inventor Tosujiro Yamaguchi 2-12-1, Fukuura, Kanazawa-ku, Yokohama, Kanagawa Shiseido Co., Ltd. 2nd Research Center (72) Inventor Toshio Yanaki, 1050 Shinba-cho, Kohoku-ku, Yokohama-shi, Kanagawa Shiseido Daiichi Research Center (72) Inventor Michihiro Yamaguchi 1050 Shinba-cho, Kohoku-ku, Yokohama-shi, Kanagawa Shiseido Daiichi Research Center (56) Reference JP-A-61-234864 (JP, A) ) JP-A-6-154596 (JP, A) Special Table Sho 61-502729 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A61K 31/715 C08B 37/00 C08B 37 / 08 CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ヒアルロン酸を構成するグルクロン酸残
基のカルボキシル基が両末端エポキシ化合物系架橋剤に
より架橋された、下記一般式化1で示される癒着防止剤
において、製造時のヒアルロン酸濃度が0.5〜3質量
%であり、カルボキシル基間の架橋率が、0.5〜5%
であることを特徴とする癒着防止剤。【化1】
1. An adhesion preventive agent represented by the following general formula 1 in which a carboxyl group of a glucuronic acid residue constituting hyaluronic acid is cross-linked by an epoxy compound-based cross-linking agent at both ends, and the concentration of hyaluronic acid at the time of production is 0.5 to 3% by mass, and the cross-linking ratio between carboxyl groups is 0.5 to 5%
An anti-adhesion agent characterized by being [Chemical 1]
【請求項2】 請求項1に記載の癒着防止剤において、
シート状若しくはフイルム状であることを特徴とする癒
着防止剤。
2. The anti-adhesion agent according to claim 1, wherein
An anti-adhesion agent, which is in the form of a sheet or a film.
【請求項3】 請求項1又は2記載の癒着防止剤におい3. The anti-adhesion agent according to claim 1 or 2.
て、両末端エポキシ化合物系架橋剤がエポキシ基を2つThe epoxy compound cross-linking agent at both ends has two epoxy groups.
以上持つグリシジル化合物であることを特徴とする癒着Adhesion characterized by being a glycidyl compound having the above
防止剤。Preventive agent.
【請求項4】 請求項1又は2記載の癒着防止剤におい4. The anti-adhesion agent according to claim 1 or 2.
て、両末端エポキシ化合物系架橋剤がエポキシ基を2つThe epoxy compound cross-linking agent at both ends has two epoxy groups.
以上持つグリシジルエーテル化合物であることを特徴とCharacterized by being a glycidyl ether compound having the above
する癒着防止剤。An anti-adhesion agent.
JP34115794A 1994-12-06 1994-12-06 Anti-adhesion agent Expired - Fee Related JP3420851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34115794A JP3420851B2 (en) 1994-12-06 1994-12-06 Anti-adhesion agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34115794A JP3420851B2 (en) 1994-12-06 1994-12-06 Anti-adhesion agent

Publications (2)

Publication Number Publication Date
JPH08157378A JPH08157378A (en) 1996-06-18
JP3420851B2 true JP3420851B2 (en) 2003-06-30

Family

ID=18343787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34115794A Expired - Fee Related JP3420851B2 (en) 1994-12-06 1994-12-06 Anti-adhesion agent

Country Status (1)

Country Link
JP (1) JP3420851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9155751B2 (en) 2005-06-08 2015-10-13 The University Of Tokyo Solution for tissue adhesion prevention and method for tissue adhesion prevention

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9902412D0 (en) 1999-02-03 1999-03-24 Fermentech Med Ltd Process
GB9902652D0 (en) * 1999-02-05 1999-03-31 Fermentech Med Ltd Process
WO2005113608A1 (en) 2004-05-20 2005-12-01 Mentor Corporation Method of covalently linking hyaluronan and chitosan
JP5022618B2 (en) * 2005-04-05 2012-09-12 株式会社 資生堂 Hydroxyalkylated hyaluronic acid
FR3029928B1 (en) 2014-12-15 2018-03-09 Teoxane RETICULATED GEL
KR101973801B1 (en) * 2016-06-16 2019-04-30 주식회사 엔도더마 Hyaluronic Acid Microstructure Having Excellent Dissolving Properties
KR102546437B1 (en) * 2021-03-15 2023-06-21 금오공과대학교 산학협력단 Powder type anti-adhesion agent comprising biocompatible polymer and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9155751B2 (en) 2005-06-08 2015-10-13 The University Of Tokyo Solution for tissue adhesion prevention and method for tissue adhesion prevention

Also Published As

Publication number Publication date
JPH08157378A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
KR100612975B1 (en) Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
US6096727A (en) Method for treating wounds using modified hyaluronic acid crosslinked with biscarbodiimide
EP0648122B1 (en) PREVENTING TISSUE ADHESION USING $i(IN SITU) MODIFICATION OF ALGINATE
EP1207828B1 (en) Hyaluronic acid anti-adhesion barrier
US6869938B1 (en) Compositions of polyacids and polyethers and methods for their use in reducing adhesions
JP4458852B2 (en) Ester derivatives of hyaluronic acid for the preparation of hydrogel materials by photocuring
KR101766679B1 (en) Hydrogel membrane for adhesion prevention
CA2810590C (en) Mercapto-modified biocompatible macromolecule derivatives with low degree of mercapto-modification and the cross-linked materials and uses thereof
WO1999010385A1 (en) Hyaluronic acid gel, process for producing the same and medical material containing the same
WO1997018244A1 (en) Photocured cross-linked-hyaluronic acid gel and method of preparation thereof
KR930004655B1 (en) Compositions containing derivatives of chitin for preventing adhesion
JP2000509632A (en) Collagen material that can be used especially to prevent post-operative adhesions
WO1993013136A1 (en) Ultra-pure polysaccharide materials for medical use
PL215579B1 (en) Novel biomaterials, their preparation and use
JP2003530136A (en) Compositions of polyacids and polyethers and their use in reducing adhesion
JP3420851B2 (en) Anti-adhesion agent
CN107007620B (en) Copolymer of p-oxycyclohexanone and L-phenylalanine and application thereof
JPH0826081B2 (en) Method for insolubilizing N-carboxyalkyl derivative of chitosan
JP2003019194A (en) Co-crosslinked gel composition comprising hyaluronic acid and carboxymethyl cellulose
CN111378125B (en) PEBP block polymer gel, preparation and application thereof
Mirabile Optimization and Characterization of a Polyelectrolyte Complex for In Vivo Abdominal Adhesion Prevention
EP2146755A1 (en) Device made at least partially of n-acetylchitosan with controlled biodissolution
US9757499B2 (en) Biomaterial and methods of use thereof for the prevention of post-operative adhesions
CN117736465A (en) Injectable Hemoadhican polysaccharide hydrogel, preparation method and application thereof
JP2000239305A (en) Bioabsorbable drug carrier

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees