JP3420838B2 - Method for treating phosphorus-containing organic wastewater - Google Patents

Method for treating phosphorus-containing organic wastewater

Info

Publication number
JP3420838B2
JP3420838B2 JP20606794A JP20606794A JP3420838B2 JP 3420838 B2 JP3420838 B2 JP 3420838B2 JP 20606794 A JP20606794 A JP 20606794A JP 20606794 A JP20606794 A JP 20606794A JP 3420838 B2 JP3420838 B2 JP 3420838B2
Authority
JP
Japan
Prior art keywords
phosphorus
filtration
fine particles
organic wastewater
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20606794A
Other languages
Japanese (ja)
Other versions
JPH0852497A (en
Inventor
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP20606794A priority Critical patent/JP3420838B2/en
Publication of JPH0852497A publication Critical patent/JPH0852497A/en
Application granted granted Critical
Publication of JP3420838B2 publication Critical patent/JP3420838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、し尿系汚水、工場廃
水、下水などのリン含有有機性汚水の処理方法に関し、
特に、該汚水中のリン、SS、BOD、アンモニアを単
一槽内で高速度で、且つ高度に除去することが可能なリ
ン含有有機性汚水の処理方法に関するものである。 【0002】 【従来の技術】下水等の有機性汚水の処理方法の一つと
して、生物学的処理方法がある。この中でも、アンスラ
サイト等の粒状固体の充填層に、有機性汚水を空気気泡
と共に供給して生物処理する技術が知られている。この
方法は「好気性生物ろ過法」(Biological Aerated Fil
ter 、略称BAF)と呼ばれる。BAFは、汚水中のB
OD、SS、アンモニア等を単一槽で高度に処理でき、
維持管理が容易で、省面積型の方法であり注目を集めて
いる。しかしながら、最近特に環境上の問題となってき
たリンを除去できないという大きな欠点があり、BAF
の普及を阻害する要因の一つになっている。一方、上記
有機性汚水中のリンを除去する方法としては、活性汚泥
法、無機凝集剤を添加する方法等がある。しかし、活性
汚泥法はある程度リンは除去できるものの、安定して高
度にリンを除去できなかった。無機凝集剤(塩化カルシ
ウム等)による方法は、難脱水性の凝集汚泥(リン酸カ
ルシウム等を含む)が発生するため、汚泥処理に負担を
与えていた。 【0003】 【本発明が解決しようとする課題】従って、本発明の目
的は、リン含有有機性汚水中のリン、BOD、SS、ア
ンモニアを単一槽で高速且つ高度に除去できるリン含有
有機性汚水の処理方法を提供することにある。本発明の
他の目的は、ろ過持続時間が長くでき、洗浄排水の濃縮
脱水性が良く汚泥の処理が容易なリン含有有機性汚水の
処理方法を提供することにある。本発明の更なる目的
は、生物ろ過のろ材に付着した微生物膜が、水酸化鉄、
水酸化アルミニウム微粒子を付着捕捉するので処理水へ
のSSリークが少ないリン含有有機性汚水の処理方法を
提供することにある。 【0004】 【課題を解決するための手段】この目的を達成するた
め、本発明者は当初、次の手段を検討した。即ち、BA
Fに流入する汚水に硫酸アルミニウム、ポリ塩化アルミ
ニウム等の無機凝集剤を添加してリンを凝集ろ過によっ
て除去する方法である。しかし生成する凝集フロックが
綿状でバルキーであり、しかも多量に生成するため、ろ
過層が短時間にめづまりを起こすという問題が認められ
た。さらに、ろ過層の逆洗排水には難脱水性の無機汚泥
が含まれているため汚泥の処理処分に負担を与える欠点
もあった。 【0005】本発明者は更に検討を重ね、下記構成を見
出し、目的を達成できた。本発明は、少なくともリンを
含有する有機性汚水に、予め調整した緻密な水酸化鉄及
び/又は水酸化アルミニウムの微粒子を添加した後、好
気条件下で微生物を固定した粒状充填材の充填層に導入
することを特徴とするリン含有有機性汚水の処理方法で
ある。 【0006】即ち、あらかじめ後記する方法によってリ
ン吸着力が大きく、緻密な水酸化鉄もしくは水酸化アル
ミニウム微粒子を製造し、これを有機性汚水に添加し
て、単なる物理的ろ過層でなくろ材に微生物を付着させ
たBAFに供給すると、汚水中のリン、BOD、SS、
アンモニアを単一槽で高度に且つ高速で除去でき、なお
かつろ過層の目詰りが凝集剤を添加する方法よりも著し
く少なくなり、ろ過水へのSSのリークも無く、しかも
難脱水性の無機汚泥がいっさい発生しなくなることを見
出した。 【0007】 【作用】本発明の方法の一態様を示した図1を参照しな
がら、本発明の構成と作用を示す。好気性生物ろ過装置
(BAF)2内にはアンスラサイト、粒状活性炭、多孔
性セラミック粒状物、スポンジ状粒状物(例えば、ウレ
タンフォーム粒状物等)、球状発泡スチロールなど生物
膜の付着固定化に適した粒状固体の充填層3が設けられ
ている。充填層3の下部には散気管4が設置され空気5
が気泡として直接、充填層3内に供給される。有機性汚
水1をBAFに供給すると、2週間程度で粒状固体にB
OD資化菌、硝化菌等の微生物膜が付着固定化する。 【0008】下水などのリン含有有機性汚水1は、リン
吸着力の大きい緻密な水酸化鉄の微粒子のスラリ6が貯
槽から添加され、管路10内で攪拌され、好気性生物ろ
過装置2の上部からBAFの充填層3に流入する。ここ
で、リン吸着力のある微粒子としては他に、水酸化アル
ミニウムが挙げられ、更に水酸化鉄と水酸化アルミニウ
ムの両方を使用することができる。リンは水酸化鉄等の
緻密な微粒子に速やかに吸着除去され、汚水中のSSは
生物膜に捕捉されてろ過除去される。さらにBOD、ア
ンモニアもろ材に付着している微生物により、生物学的
に除去され、好気性生物ろ過装置2の下部から流出した
清澄処理水7が得られる。本発明において、このように
リン吸着作用の大きい緻密な水酸化鉄及び/又は水酸化
アルミニウム微粒子を、有機性汚水に添加して、その混
合した汚水を微生物固定した粒状充填材の充填層に好気
的に導入することにより、有機性汚水中のリン、BO
D、SS、アンモニアを単一槽により高度且つ高速に除
去できるようになる。 【0009】スラリ6中のリンを吸着する水酸化鉄微粒
子は、緻密なため、生物ろ過の充填層3に大量に捕捉で
きるため、充填層3のろ過抵抗の上昇は、凝集フロック
がバルキーである凝集ろ過法に比較して著しく少なく、
ろ過性が向上する。更に、充填槽3の微粒子等のSSの
捕捉容量が大きくなるので、ろ過持続時間が長くなる。
これらにより、処理時間の短縮化やろ過槽のメインテナ
ンスを容易にできる。その反面、緻密な水酸化鉄の微粒
子のスラリ6は、凝集剤を添加する凝集ろ過法において
生成するフロックに比べて、ろ材への付着力がいちじる
しく少ないので、単なる物理的なろ過ではSSがリーク
しやすいという欠点がある。しかし、本発明のように生
物ろ過の場合には、充填ろ材に付着している生物膜が、
該微粒子を含むSSに対して強い付着力を示すので、凝
集力の乏しい水酸化鉄、水酸化アルミニウムの微粒子が
効果的に捕捉されることが認められた。これは本発明の
立脚する新知見である。 【0010】以上のような方法によってろ過処理を続け
ると、充填層のろ過抵抗が所定の値(500mmH2
程度)に到達するので、有機性汚水1の供給を止め充填
層3の洗浄を行なう。弁11を開け、弁12を閉じ洗浄
用水8を生物ろ過装置3の下部から供給し逆洗する。洗
浄除去されたSSを含む洗浄排水は、洗浄排水排出管9
から排除される。この際、該水酸化鉄、水酸化アルミニ
ウムの微粒子は、逆洗により充填材より離れて、洗浄排
水とともに排出される。洗浄排水は緻密な水酸化鉄、ま
たは水酸化アルミニウムを含んでいるので、後述するよ
うに濃縮脱水性が良好で簡単に脱水でき、水分の少ない
脱水ケーキが得られることが分かった。これにより、凝
集ろ過法のように難脱水性の無機汚泥が発生しない。 【0011】本発明で使用するリン吸着容量が大きく、
緻密な水酸化鉄又は水酸化アルミニウム微粒子を製造す
る方法としては次のような方法を推奨できる。即ち、硫
酸第一鉄液を中和して空気、酸素、過酸化水素、オゾン
のいずれかで酸化する方法、硫酸第2鉄、ポリ硫酸鉄
(ポリ鉄)液をマグネシウム系アルカリ剤で中和する方
法、硫酸アルミニウムをマグネシウム系アルカリ剤で中
和する方法等が好適である。マグネシウムの代わりにカ
ルシウム系アルカリ剤も有効であるが、マグネシウムを
使用したほうがより緻密な微粒子が生成する。アルカリ
としてNaOHを用いると緻密な粒子が生成しない。図
1に示した例は、調整槽15において、ポリ鉄13を水
酸化マグネシウム14で中和する方法である。 【0012】本発明に用いる水酸化鉄及び水酸化アルミ
ニウム微粒子はろ過性、沈降濃縮性、脱水性が良いほか
に次のような利点がある。まず、水酸化鉄及び水酸化ア
ルミニウム微粒子のリン吸着速度が、従来の活性アルミ
ナなどの粒状吸着剤(粒径2〜4mm程度)をカラムに
充填する方式に比べて著しく大きい。このことは、微粒
子を添加後、水溶液を攪拌しているため、溶解している
リンと水酸化鉄及び水酸化アルミニウム微粒子の接触率
が高くなること、及び粒径が数μmと小さいため粒子の
比表面積が著しく大きいことによる。 【0013】本発明でいう「緻密な微粒子」とは、粒子
単位重量当たりの容積が少なく、粒子を一定時間沈殿さ
せたときに高い沈殿固形物濃度が得られることを意味し
ている。具体的には、本発明で用いる緻密な水酸化鉄、
水酸化アルミニウム微粒子は、1リットルメスシリンダ
ー内で30分沈殿させたときの固形物濃度を40〜13
0g/リットル程度の高い値を持つ。これに対し汚水に
塩化第2鉄、硫酸アルミニウム等の凝集剤を添加したと
きに生成するフロックは不可避的に「バルキーフロッ
ク」と呼ばれる膨化粒子となり、「緻密な粒子」とは正
反対の性状を持ち30分沈殿固形物濃度は4〜16g/
リットル程度にすぎない。尚、本発明の「水酸化鉄」は
水和酸化鉄Fe2 3 ・nH2 Oを含む意味で用い、
「水酸化アルミニウム」は水和酸化アルミニウムを含む
意味で用いる。水酸化鉄及び/又は水酸化アルミニウム
微粒子の添加量は、原水リン1mg対して、7〜30mg、
好ましくは10〜20mgである。また、ろ過方法として
は、有機性汚水を充填層の下部から導入し、上向流でろ
過を行ってもよいし、有機性汚水を充填層の上部から導
入し、下向流でろ過を行ってもよい。 【0014】 【実施例】以下、実施例を示して本発明を具体的に説明
するが、本発明の内容がこれらに限定されるものではな
い。市販のポリ硫酸鉄原液(鉄含有率11%)を水で1
0倍に希釈し、これに水酸化マグネシウムを添加してp
H5.5に中和したところ、SVIの値が11(SVI
の値は、メスシリンダーにスラリーを満たし、30分静
置後に沈殿中の1gの固形物が占める容積をmlの単位
で示したものである)という非常に緻密な水酸化鉄微粒
子(粒径2〜4μm)を含むスラリーを得た。このスラ
リーを原水(下水)に固形物として20mg/リットル
添加して混合した後、ろ材として粒径10mmの立方体
のポリウレタンフォームを層高2.5mに充填した充填
槽の下部から空気泡を曝気する生物方法(実施例)と曝
気しない物理ろ過方法(比較例)の2条件の比較試験を
行なった。ここで、曝気しない物理ろ過方法は、曝気し
ない以外は本発明と同じ条件により行った。また、本実
施例で用いたポリウレタンフォームのかさ密度は、0.
028g/cm3 であった。 【0015】両者ともろ過速度50m/dで通水した。
原水水質は水温22℃、SS105mg/リットル、B
OD120mg/リットル、リン2.9mg/リット
ル、アンモニア31mg/リットルであった。物理ろ過
法は、ろ材に微生物が付着していないため、ろ過水にS
Sが約14〜18mg/リットルリークした。また、B
OD除去率は30%、アンモニア除去率は0%であっ
た。更に、リン除去率は72%であった。一方、生物ろ
過法は、2週間後にはろ材に微生物が十分付着し、その
後得られるろ過水は清澄になりSS2mg/リットル、
リン0.08mg/リットル、BOD2mg/リット
ル、アンモニア8mg/リットルの処理水が得られた。
この時のろ材への微生物付着量は、ろ材1リットル充填
当たり16g/リットルと高濃度であった。処理水SS
が10mg/リットルに悪化するまでのろ過持続時間は
70〜75時間と長時間が可能であった。この時点のろ
過抵抗は40mmH2Oにすぎなかった。ろ過槽逆洗排
水の濃縮脱水性は良好であり120分沈殿後の汚泥濃度
は4.8%、ベルトプレスによる脱水ケーキ水分は73
%と少なかった。ここで、逆洗は、1回/48hrで行
った。 【0016】 【発明の効果】本発明の方法により、下記効果が得られ
る。 1.リン含有有機性汚水のリン、BOD、SS、アンモ
ニアを単一槽で高速且つ高度に除去できる。 2.リン吸着力が大きく、緻密な水酸化鉄、水酸化アル
ミニウムを予め調製し、これを原水に添加するのでろ過
持続時間が長く、洗浄排水の濃縮脱水性が良く汚泥の処
理が容易である。 3.生物ろ過のろ材に付着した生物膜が、水酸化鉄、水
酸化アルミ微粒子を付着捕捉するので処理水へのSSリ
ークが少ない。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating phosphorus-containing organic wastewater such as human wastewater, industrial wastewater and sewage.
In particular, the present invention relates to a method for treating phosphorus-containing organic wastewater capable of removing phosphorus, SS, BOD, and ammonia in the wastewater at a high speed and in a single tank. 2. Description of the Related Art One of the methods for treating organic wastewater such as sewage is a biological treatment method. Among them, there is known a technique of performing biological treatment by supplying organic wastewater together with air bubbles to a packed bed of granular solid such as anthracite. This method is called "Biological Aerated Filtration".
ter (abbreviated as BAF). BAF is the B in wastewater.
OD, SS, ammonia, etc. can be highly treated in a single tank,
It is an easy-to-maintain, area-saving method and attracts attention. However, there is a major drawback that phosphorus, which has recently become an environmental problem, cannot be removed.
It is one of the factors that hinder the spread of the technology. On the other hand, as a method of removing phosphorus from the organic wastewater, there are an activated sludge method, a method of adding an inorganic flocculant, and the like. However, the activated sludge method could remove phosphorus to some extent, but could not remove phosphorus stably to a high degree. The method using an inorganic coagulant (such as calcium chloride) generates coagulated sludge (including calcium phosphate and the like) that is hardly dehydrated, and thus imposes a burden on sludge treatment. Accordingly, an object of the present invention is to provide a phosphorus-containing organic wastewater capable of removing phosphorus, BOD, SS, and ammonia from a phosphorus-containing organic wastewater in a single tank at a high speed and a high degree. It is to provide a method for treating sewage. It is another object of the present invention to provide a method for treating phosphorus-containing organic wastewater, in which the duration of filtration can be lengthened, the concentration of dewatered washing wastewater can be improved, and sludge can be easily treated. A further object of the present invention is that the microorganism membrane attached to the filter medium of the biological filtration is iron hydroxide,
It is an object of the present invention to provide a method for treating phosphorus-containing organic wastewater which has a small SS leak to treated water because aluminum hydroxide fine particles are attached and captured. [0004] In order to achieve this object, the present inventor first studied the following means. That is, BA
This is a method in which an inorganic coagulant such as aluminum sulfate or polyaluminum chloride is added to the wastewater flowing into F to remove phosphorus by coagulation filtration. However, there was a problem that the formed floc was floc and bulky and generated in a large amount, so that the filtration layer was clogged in a short time. Furthermore, since the backwash wastewater of the filtration layer contains inorganic sludge which is hardly dewaterable, there is a drawback that a burden is imposed on sludge treatment and disposal. The present inventor has further studied and found the following structure, and has achieved the object. The present invention provides a packed bed of granular filler in which microorganisms are fixed under aerobic conditions after fine particles of fine iron hydroxide and / or aluminum hydroxide prepared in advance are added to organic wastewater containing at least phosphorus. And a method for treating phosphorus-containing organic wastewater. That is, fine iron hydroxide or aluminum hydroxide fine particles having a large phosphorus adsorbing power are produced by a method described later in advance, and the fine particles are added to an organic sewage water. Is supplied to the BAF to which is attached, phosphorus in wastewater, BOD, SS,
Ammonia can be removed at a high and high speed in a single tank, and the clogging of the filtration layer is significantly less than that of the method using a flocculant. Was found not to occur at all. The structure and operation of the present invention will be described with reference to FIG. 1 showing one embodiment of the method of the present invention. In the aerobic biofiltration device (BAF) 2, anthracite, granular activated carbon, porous ceramic granules, sponge granules (for example, urethane foam granules, etc.), and spherical polystyrene foam are suitable for adhesion and immobilization of biological films. A packed bed 3 of granular solid is provided. An air diffuser 4 is provided below the packed bed 3 so that air 5
Is supplied directly into the packed bed 3 as bubbles. When organic sewage 1 is supplied to BAF, B
Microbial membranes such as OD-utilizing bacteria and nitrifying bacteria adhere and fix. [0008] Phosphorus-containing organic sewage 1 such as sewage is added with a slurry 6 of fine iron hydroxide fine particles having a large phosphorus adsorption power from a storage tank, and stirred in a pipe 10. It flows into the BAF filling layer 3 from above. Here, as the fine particles having a phosphorus adsorbing power, aluminum hydroxide may be used, and both iron hydroxide and aluminum hydroxide may be used. Phosphorus is quickly absorbed and removed by dense fine particles such as iron hydroxide, and SS in wastewater is captured by a biofilm and removed by filtration. Furthermore, BOD and ammonia are biologically removed by microorganisms adhering to the filter medium, and clarified treated water 7 flowing out from the lower part of the aerobic biological filtration device 2 is obtained. In the present invention, such fine iron hydroxide and / or aluminum hydroxide fine particles having a large phosphorus adsorption action are added to organic sewage, and the mixed sewage is favorably applied to a packed bed of particulate filler in which microorganisms are fixed. Phosphorus in organic sewage, BO
It becomes possible to remove D, SS, and ammonia in a single tank at a high and high speed. The iron hydroxide fine particles that adsorb phosphorus in the slurry 6 are dense and can be captured in a large amount in the packed bed 3 for biofiltration. Significantly less than the coagulation filtration method,
Filterability is improved. Furthermore, since the capacity of the filling tank 3 for capturing SS such as fine particles increases, the duration of filtration becomes longer.
Thus, the processing time can be shortened and the maintenance of the filtration tank can be facilitated. On the other hand, the slurry 6 of fine iron hydroxide fine particles has much less adhesion to the filter medium than floc generated by the coagulation filtration method in which a coagulant is added. It has the disadvantage of being easy to do. However, in the case of biofiltration as in the present invention, the biofilm adhering to the packed filter medium is
It has been found that the fine particles of iron hydroxide and aluminum hydroxide, which have poor cohesion, are effectively captured because they exhibit strong adhesion to SS containing the fine particles. This is a new finding based on the present invention. When the filtration treatment is continued by the above method, the filtration resistance of the packed bed becomes a predetermined value (500 mmH 2 O).
), The supply of the organic wastewater 1 is stopped, and the packed bed 3 is washed. The valve 11 is opened, the valve 12 is closed, and the washing water 8 is supplied from the lower part of the biological filtration device 3 to backwash. The washing wastewater containing the washed and removed SS is supplied to the washing wastewater discharge pipe
Be excluded from. At this time, the fine particles of the iron hydroxide and the aluminum hydroxide are separated from the filler by back washing and discharged together with the washing waste water. Since the washing wastewater contains dense iron hydroxide or aluminum hydroxide, it has been found that, as described later, the concentrated dewatering property is good, the dewatering can be easily performed, and a dewatered cake with a small amount of water can be obtained. Thereby, unlike the coagulation filtration method, hardly dewaterable inorganic sludge is not generated. The phosphorus adsorption capacity used in the present invention is large,
The following method can be recommended as a method for producing fine iron hydroxide or aluminum hydroxide fine particles. That is, a method of neutralizing a ferrous sulfate solution and oxidizing it with any of air, oxygen, hydrogen peroxide, and ozone, and neutralizing a ferric sulfate and a polyferrous sulfate (polyiron) solution with a magnesium-based alkali agent. And a method of neutralizing aluminum sulfate with a magnesium-based alkali agent. Although a calcium-based alkali agent is effective in place of magnesium, the use of magnesium produces finer fine particles. When NaOH is used as an alkali, dense particles are not generated. The example shown in FIG. 1 is a method in which the polyiron 13 is neutralized with magnesium hydroxide 14 in the adjustment tank 15. The fine particles of iron hydroxide and aluminum hydroxide used in the present invention have the following advantages in addition to good filterability, sedimentation and concentration, and dehydration. First, the phosphorus adsorption rate of the iron hydroxide and aluminum hydroxide fine particles is remarkably higher than the conventional method of packing a column with a granular adsorbent (particle diameter of about 2 to 4 mm) such as activated alumina. This means that the aqueous solution is stirred after the addition of the fine particles, so that the contact ratio between the dissolved phosphorus and the fine particles of iron hydroxide and aluminum hydroxide increases, and that the particle size is as small as several μm. This is because the specific surface area is extremely large. The term "dense fine particles" as used in the present invention means that the volume per unit weight of the particles is small and a high solid concentration can be obtained when the particles are precipitated for a certain period of time. Specifically, the dense iron hydroxide used in the present invention,
The aluminum hydroxide fine particles have a solid concentration of 40 to 13 when precipitated in a 1-liter measuring cylinder for 30 minutes.
It has a high value of about 0 g / liter. On the other hand, flocs generated when flocculants such as ferric chloride and aluminum sulfate are added to sewage are inevitably swollen particles called "bulky flocks", and have properties opposite to those of "dense particles". 30 minutes precipitation solid concentration is 4-16 g /
Only a liter. Incidentally, "iron hydroxide" of the present invention is used in a sense including hydrated iron oxide Fe 2 O 3 · nH 2 O ,
"Aluminum hydroxide" is used to include hydrated aluminum oxide. The addition amount of the iron hydroxide and / or aluminum hydroxide fine particles is 7 to 30 mg per 1 mg of phosphorus in raw water,
Preferably, it is 10 to 20 mg. In addition, as a filtration method, organic sewage may be introduced from the lower part of the packed bed and filtered in an upward flow, or organic sewage may be introduced from the upper part of the packed bed and filtered in a downward flow. You may. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. Commercially available undiluted polyiron sulfate solution (iron content 11%)
Dilute to 0-fold, add magnesium hydroxide to this and add p
When neutralized to H5.5, the value of SVI was 11 (SVI
Is the volume of 1 g of solid matter in the sediment after filling the slurry in a graduated cylinder and allowed to stand for 30 minutes, and indicates the volume in ml. 44 μm). This slurry is added to raw water (sewage) as a solid in an amount of 20 mg / liter and mixed, and then air bubbles are aerated from the lower part of a filling tank filled with a cubic polyurethane foam having a particle diameter of 10 mm as a filter medium to a height of 2.5 m. A comparative test was conducted under two conditions: a biological method (Example) and a physical filtration method without aeration (Comparative Example). Here, the physical filtration method without aeration was performed under the same conditions as in the present invention except that the aeration was not performed. Further, the bulk density of the polyurethane foam used in this example was 0.1.
It was 028 g / cm 3 . In both cases, water was passed at a filtration speed of 50 m / d.
Raw water quality is 22 ℃, SS 105mg / L, B
The OD was 120 mg / liter, phosphorus was 2.9 mg / liter, and ammonia was 31 mg / liter. In the physical filtration method, since microorganisms do not adhere to the filter medium, S
S leaked about 14-18 mg / liter. Also, B
The OD removal rate was 30%, and the ammonia removal rate was 0%. Further, the phosphorus removal rate was 72%. On the other hand, in the biological filtration method, microorganisms sufficiently adhere to the filter medium after two weeks, and the filtered water obtained after that becomes clear, and SS2 mg / liter,
A treated water containing 0.08 mg / liter of phosphorus, 2 mg / liter of BOD, and 8 mg / liter of ammonia was obtained.
At this time, the amount of microorganisms adhering to the filter medium was as high as 16 g / liter per 1 liter of the filter medium. Treated water SS
Can be as long as 70 to 75 hours before the filtration becomes worse to 10 mg / liter. Filtration resistance at this point was only 40mmH 2 O. The concentration and dewatering properties of the backwash wastewater from the filtration tank are good.
%. Here, the back washing was performed once / 48 hr. According to the method of the present invention, the following effects can be obtained. 1. A single tank can remove phosphorus, BOD, SS, and ammonia in a phosphorus-containing organic wastewater at high speed and at a high level. 2. Since phosphorus adsorption power is large and dense iron hydroxide and aluminum hydroxide are prepared in advance and added to raw water, the duration of filtration is long, the concentration of dewatered washing wastewater is good, and sludge treatment is easy. 3. The biofilm adhering to the filter medium for biofiltration adheres and captures iron hydroxide and aluminum hydroxide microparticles, so there is little SS leakage into the treated water.

【図面の簡単な説明】 【図1】本発明の方法の一態様を示す工程図である。 【符号の説明】 1 有機性汚水 2 好気性生物ろ過装置 3 充填槽 4 散気管 5 空気 6 水酸化鉄スラリ 7 清澄処理水 8 洗浄用水 9 排水管 10 管路 11 弁 12 弁 13 ポリ鉄 14 水酸化マグネシウム 15 調製槽[Brief description of the drawings] FIG. 1 is a process chart showing one embodiment of the method of the present invention. [Explanation of symbols] 1 Organic wastewater 2 Aerobic biological filtration equipment 3 filling tank 4 diffuser 5 air 6 Iron hydroxide slurry 7 Refined treated water 8 Cleaning water 9 Drain pipe 10 Pipeline 11 valves 12 valves 13 Poly iron 14 Magnesium hydroxide 15 Preparation tank

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−8984(JP,A) 特開 平7−47379(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/06 ────────────────────────────────────────────────── (5) References JP-A-7-8984 (JP, A) JP-A-7-47379 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 少なくともリンを含有する有機性汚水
に、予め調整した緻密な水酸化鉄及び/又は水酸化アル
ミニウムの微粒子を添加した後、好気条件下で微生物を
固定した粒状充填材の充填層に導入することを特徴とす
るリン含有有機性汚水の処理方法。
(57) [Claims] [Claim 1] After adding fine iron oxide and / or aluminum hydroxide fine particles prepared in advance to an organic wastewater containing at least phosphorus, under an aerobic condition. A method for treating phosphorus-containing organic wastewater, comprising introducing microorganisms into a packed bed of fixed granular filler.
JP20606794A 1994-08-09 1994-08-09 Method for treating phosphorus-containing organic wastewater Expired - Fee Related JP3420838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20606794A JP3420838B2 (en) 1994-08-09 1994-08-09 Method for treating phosphorus-containing organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20606794A JP3420838B2 (en) 1994-08-09 1994-08-09 Method for treating phosphorus-containing organic wastewater

Publications (2)

Publication Number Publication Date
JPH0852497A JPH0852497A (en) 1996-02-27
JP3420838B2 true JP3420838B2 (en) 2003-06-30

Family

ID=16517297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20606794A Expired - Fee Related JP3420838B2 (en) 1994-08-09 1994-08-09 Method for treating phosphorus-containing organic wastewater

Country Status (1)

Country Link
JP (1) JP3420838B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351269A (en) * 2003-05-27 2004-12-16 Tensho Giken:Kk Method for microbial degradation treatment of waste water and apparatus for mixing waste water treating agent
US20100243571A1 (en) * 2007-11-12 2010-09-30 Technion Research And Development Foundation Ltd. Method for adsorption of phosphate contaminants from water solutions and its recovery
JP6641840B2 (en) * 2015-09-28 2020-02-05 王子ホールディングス株式会社 Water treatment carrier and water treatment method

Also Published As

Publication number Publication date
JPH0852497A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
US5932099A (en) Installation for biological water treatment for the production of drinkable water
JPH06285496A (en) Hollow fiber membrane separation biological treatment and device for organic drainage
KR101110710B1 (en) Water purification of polluted water methods, and the device
CA2199517C (en) Installation for biological water treatment for the production of drinkable water
CN209537233U (en) A kind of trade effluent advanced treatment system
JP3420838B2 (en) Method for treating phosphorus-containing organic wastewater
JP3456022B2 (en) Sewage treatment equipment
JPS5876182A (en) Biological water purifier
JP3414511B2 (en) Advanced treatment method for organic wastewater
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
KR0184304B1 (en) Clarifying method of eutrophicated water
KR100957502B1 (en) One-body typed apparatus for removing phosphorus which coincide adsorption purge and filtering and separating process to remove the phosphorus from the treated water of wastewater
JPS61178092A (en) Treatment of sewage
JPS61287494A (en) Method for continuously filtering water
JPH091187A (en) Waste water treating device and its operating method
JP3050817U (en) Water treatment equipment
JPH0231895A (en) Process and apparatus for treating filthy water
JP2520798B2 (en) Method and apparatus for biological dephosphorization of organic wastewater
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
US3794581A (en) Wastewater treatment
SU1000422A1 (en) Method and apparatus for purifying effluents
JPH0866689A (en) Advanced treatment of organic sewage
JPH01171698A (en) Purification process of organic waste water
RU2006471C1 (en) Method of purifying water against ferrum
JPH0210716B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees