JP3420501B2 - Optical branch coupler - Google Patents

Optical branch coupler

Info

Publication number
JP3420501B2
JP3420501B2 JP15403198A JP15403198A JP3420501B2 JP 3420501 B2 JP3420501 B2 JP 3420501B2 JP 15403198 A JP15403198 A JP 15403198A JP 15403198 A JP15403198 A JP 15403198A JP 3420501 B2 JP3420501 B2 JP 3420501B2
Authority
JP
Japan
Prior art keywords
optical
coupler
branching
waveguide
directional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15403198A
Other languages
Japanese (ja)
Other versions
JPH11344629A (en
Inventor
学 小熊
俊海 小湊
明 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15403198A priority Critical patent/JP3420501B2/en
Publication of JPH11344629A publication Critical patent/JPH11344629A/en
Application granted granted Critical
Publication of JP3420501B2 publication Critical patent/JP3420501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、光分岐結合器に関
し、特に光通信、光信号処理、光計測等に用いられる光
導波路型部品に関するものである。 【0002】 【従来の技術】平面基板上に形成された光導波路回路
は、フォトリソグラフィー技術により製造されることに
より、様々な光導波路パターンに構成でき、導波路構造
を波長オーダーで加工制御できることから、波長合分波
器や光スイッチ等の光回路が実現され、かつ、これらの
光回路をコンパクトに集積することが可能であることか
ら、盛んに研究開発が行われている。平面型光導波回路
の機能の多くは光干渉により発現しているが、光干渉の
ためには、光の分岐と結合をする必要があり、そのため
の光分岐結合器は平面型光導波路において重要な回路要
素である。 【0003】光分岐結合器を用いた光回路には、例えば
2光束干渉計の光スイッチや光波長フィルタがあるが、
それらの光回路の消光比や挿入損失、さらにはそれらの
偏波依存性は、光回路に使用する光分岐結合器の特性に
大きく左右される。光分岐結合器の特性が光回路全体に
影響を及ぼす例としては、光結合器を多段に縦列接続し
て作製されるラティスフィルタや、1個の光分岐結合器
の安定した作製が難しい積層導波路における層間光スイ
ッチがあげられるが、光結合器の歩留まりが悪いため、
これらの作製は難しいものであった。したがって、理想
的な特性を有する2光束干渉計を作製するには、光分岐
結合器は、作製条件や信号光の偏波などの状態に左右さ
れずに、過剰損が小さく、かつ分岐率が50%である事
が望まれる。 【0004】 【発明が解決しようとする課題】従来から用いられてい
る光分岐結合器には、方向性結合器、Y分岐回路、MM
I(Multi Mode Interferometer) などがある。このう
ち、方向性結合器は、過剰損失が極めて小さく、2光束
干渉計によく用いられる。しかし、方向性結合器は、微
小な導波路ギャップを持つことから、製造誤差の影響を
大きく受け易く、分岐率が変動し易い。また、伝搬光の
横モードの裾野の重なり合いを利用することから、導波
路の屈折率差の影響も受けやすい。そのため、基板等か
らの応力による導波路の複屈折が直接分岐率に影響し、
分岐率の偏波依存性が大きく出るという問題があった。 【0005】一方、Y分岐回路やMMIを用いた光分岐
結合器はスラブ導波路構造をもつが、スラブ導波路の入
射時と出射時に大きなモード変換が行われ、そのため一
部が放射モードに結合してしまい、回路挿入損失が大き
くなってしまうという問題がある。また、Y分岐回路や
MMIを用いた光分岐結合器は、入射する光の僅かな蛇
行によりスラブ導波路部分で不必要な横モードが励振さ
れ易いため、蛇行を規定する前段の光回路等に特性が依
存し、分岐率が安定しないという問題もあった。 【0006】本発明は、Y分岐回路やMMIを用いるこ
となく、過剰損失の極めて小さな方向性結合器を用いる
こととし、製造誤差による分岐率の変動や分岐率の偏波
依存性を小さくした光分岐結合器の提供を目的とする。
つまり、本発明の目的は、作製誤差や偏波等に対する分
岐率の変動を小さくし、使用する信号光波長において、
分岐率が50%に極めて近い光分岐結合器を歩留まり良
く提供することにある。 【0007】上述の目的を達成する本発明は、次の発明
特定事項を有する。基板と、その基板上に形成された第
一の光導波路および第二の光導波路とを有し、この第一
および第二の光導波路の中間部が4ヶ所互いに近接され
て形成された第一、第二、第三、第四の結合率が0.5
に設計された方向性結合器を有し、上記第一と第二の光
導波路の両方に、またはどちらか一方の光導波路に入射
される波長λの信号光を、上記第一と第二の光導波路と
に分配し出射する光分岐結合器において、上記第一と第
二の方向性結合器の間の上記第一と第二の光導波路の光
路長差ΔL1と、上記第二と第三の方向性結合器との間
の上記第一と第二の光導波路の光路長差ΔL2と、上記
第三と第四の方向性結合器との間の上記第一と第二の光
導波路の光路長差ΔL3とがΔL1=ΔL2=−ΔL3
=λ/4を満たすことを特徴とする。 【0008】本発明では、方向性結合器を4ヶ所使用す
るが、方向性結合器の損失は、作製誤差や偏波によらず
極めて小さいため、全体の過剰損失も十分小さくするこ
とが出来る。また、4ケ所の方向性結合器に挟まれる3
ヶ所の光路長差も光の波長オーダーと極めて小さいた
め、光路長差を与える為に光導波路を展開しても光導波
路の間隔は小さくてすみ、導波膜揺らぎなどの作製誤差
が光路長差に与える影響を十分小さくすることが出来
る。 【0009】一般に方向性結合器を使用した光回路の特
性は、方向性結合器の結合率が作製誤差や偏波に対し変
動しやすいが、本発明による前記の構成では、以下の理
由により、方向性結合器の変動によらず、光回路全体の
分岐率を50%に近づける事が可能である。第一および
第二の光導波路とからなり、中間部に4ヶ所、方向性結
合部を有する光回路において、第一と第二の方向性結合
器の間の光路長差をΔL1、第二と第三の方向性結合器
との間の光路長差をΔL2、第三と第四の方向性結合器
との間の光路長差をΔL3とする。この場合、光路長差
ΔL1〜ΔL3は、各々光導波路相互間の物理的導波路
長差に導波路の有効屈折率を乗じたものである。物理的
導波路長差は、方向性結合器に挟まれた二つの導波路の
一方から他方の長さを減じたものであるから、二つの導
波路長の大小によって正負の値を取りうる。例えば、Δ
L1、ΔL2が正号の場合は第一の導波路側が長く、Δ
L3が負号の場合は第二の導波路側が長い。 【0010】ここにおいて、ΔL1=−ΔL3=ΔLc
としたとき、光回路の結合率ηは波長λにおいて、次式
(1)[数1]の如く示される。この場合、ΔLcはΔ
L1と−ΔL3の絶対値とが一定のある値を示してお
り、ηは一方の光導波路に入射される光のうち、いわゆ
るCross して他方の光導波路より出射される光のパワー
の割合である。 【数1】【0011】ここでcは、方向性結合器一つの結合率を
kとした場合、次式(2)[数2]の如く示される。 【数2】 【0012】そして、本発明ではΔLc=ΔL2=λ/
4であるので上式(1)(2)及びΔLc=ΔL2=λ
/4にて式を整理すると次式(3)となる。 η=−8(k−0.5)4 +0.5 … (3) 【0013】即ち、方向性結合器の結合率kが、設計ど
おり0.5であればηは0.5 となる。ここで、前述の製造
誤差によってkが0.5 を中心に変化する場合のηを調べ
てみる。結合率k=0.5における光回路の結合率ηの1
次、2次、3次の微係数は、次式(4)(5)(6)
[数3]のようになる。 【数3】 【0014】この式(4)(5)(6)から明らかなよ
うにk=0.5 においてはηの3次の微係数まで0である
ので、kが変動したとしてもηは非常に安定した値をと
るのである。そして、例えばk=0.30のときはη=0.
487である。すなわち、本発明の光結合器に含まれる
個々の方向性結合器の結合率が揺らいでも、本発明の構
成によれば、光結合器全体としては極めて安定して分岐
率50%を実現することが可能になる。つまり、本発明
の光分岐結合器は、過剰損失が小さく、作製誤差や偏波
状態に対して極めて安定して分岐率50%を実現する事
が可能である。 【0015】 【発明の実施の形態】ここで、図1〜図9を参照しつつ
本発明の実施の形態の一例を示す。図1は光分岐結合器
の一例を示すものである。図1の光導波路1と光導波路
2は合計4ヶ所近接し方向性結合器を形成し、4ヶ所の
方向性結合器3,4,5,6の間で、後述のような光路
長差を与えた構成になっている。 【0016】光導波路1と光導波路2の幅と高さとは一
定であり、8×8μmとした。作製した光導波路の有効
屈折率は、使用する信号光波長1.55μmにおいて1.4
516であった。また導波路曲線部の曲げ半径は10m
mで一定とした。方向性結合器の作製ばらつきを故意に
与えるため、方向性結合器3,4,5,6の結合長を0
μmから1000μmまで50μmピッチで作製した。
方向性結合器のギャップは2μmで一定とした。方向性
結合器3と方向性結合器4の間では光導波路1が光導波
路2に比べ0.2663μm長くなるように導波路長差を
与えた。また、方向性結合器4と方向性結合器5の間も
同様に光導波路1が0.2663μm長くなるように、さ
らには、方向性結合器5と方向性結合器6との間は光導
波路2が0.2663μm長くなるように設計した。導
波路長差0.266μmは信号光波長1.55μmにとっ
てλ/4に相当する。 【0017】比較例として、図2に示す光導波路7,8
にて方向性結合器9のみを形成し、また、図3に示す光
導波路10,11に対して方向性結合器12,13を二
段縦列につなぎ、マッハツェンダ干渉計を構成して導波
路長差を同じく0.2663μm与えた光結合器を形成
し、これらを同一基板に作製した。 【0018】作成方法としては、次のようにした。ま
ず、シリコン基板上に火炎堆積法により、石英系下部ク
ラッド層と、二酸化ゲルマニウムを添加して屈折率を高
めた石英系コア層とを形成した。次に、コア層をフォト
リソグラフィ及び反応性イオンエッチングを用いて加工
し、前記導波路構造のコアパターンを形成した。その
後、火炎堆積法により上部クラッド層を形成して埋め込
み導波路を作製した。クラッド層とコア層との比屈折率
差は0.75%とした。 【0019】作製した光結合器の分岐率は、外部共振器
型波長可変光源からの波長1.55μmに調整したレーザ
光を用いて評価した。入力側は1.55μm用偏波保持フ
ァイバを用い、出力側は1.55μm用DSFファイバを
用いて評価した。光結合回路の透過光量は光回路にマッ
チングオイルを介して直接ファイバを突き合わせて評価
した。光結合器の分岐率の評価は、光導波路1にレーザ
光を入射した時の光導波路1と光導波路2とから出射し
た光量の比と、光導波路2にレーザ光を入射した時の光
導波路2と光導波路1とから出射した光量の比の平均と
した。光結合回路の過剰損失は、光導波路1と光導波路
2とから出射した光量の和と、入力側と出力側とのファ
イバを直接突き合わせた時の受光レベルとの差より光結
合回路の過剰損失を評価した。 【0020】図4は、図1の構成(Proposed)、図2によ
る方向性結合器1段(DC)の構成、図3のマッハツェ
ンダ型光結合器(MZI)の構成につき、分岐率を示
し、図5ではTE偏光とTM偏光との分岐率差を示して
おり、図4,5共に横軸は方向性結合器の結合長であ
る。図4から、図2の方向性結合器単体(DC)では5
0%結合は結合長が約500μmの場合にしか得られ
ず、この前後の結合長では結合長に比例して結合率が変
化している。なお、この結合率の変化が上記の(1),
(2)式のkの変化に相当するものである。一方、図1
の本願発明の光分岐結合器においては、結合長350〜
700μmに対して結合率50%の平坦な特性が得られ
ている。このことは、本発明の分岐結合器においては、
構成単位である方向性結合器単体の結合率が50%を中
心にばらついたとしても光分岐結合器全体としての結合
率は50%が維持されることを意味している。さらに、
図5からは、従来の光分岐器すなわち方向性結合器単体
(DC)やマッハツェンダ干渉計(MZI)において
は、方向性結合器の結合長が変わると偏波間の分岐率差
が生じるのに対し、本発明による光分岐器では結合長約
500μmの前後±100μmの範囲では偏波間の分岐
率差は殆ど無い(偏波依存性がない)ことが分かる。2
1個の光回路を作成してTE偏波TM偏波共分岐率が4
5%〜55%であった光回路は、図2の方向性結合器で
は2個、図3のマッハツェンダ型光結合器では6個、図
1の本発明では12個であった。また、上記のTE偏波
とTM偏波両方とも分岐率が45%から55%であった
光回路のうち、分岐率差が0.5%以下のものは、図2の
方向性結合器では0個、図3のマッハツェンダ型光結合
器では2個、図1の本実施の形態の光結合器は8個であ
った。上記各回路、それぞれ21個の過剰損失の平均値
は、図2の方向性結合器では0.151dB、図3のマッ
ハツェンダ型光結合器では0.213dB、図1の本実施
の形態の光結合器は0.277dBであった。 【0021】図6に、本発明による光分岐結合器による
2光束干渉計型光スイッチの実施例を示す。本発明によ
る光分岐結合器2台の間に熱光学効果を利用した位相器
14をつけた構成をしている。光導波路の各設計パラメ
ータは実施例1と同じにした。すなわち光導波路15,
16の幅と高さと曲げ半径は、それぞれ8μm、8μ
m、10mmとし、方向性結合器のギャップを2μm、
結合長を550μmとした、8つの方向性結合器17〜
24の間で光導波路1の長さを、それぞれ0.2663μ
m、0.2663μm、−0.2663μm、0.2663μ
m、−0.2663μm、−0.2663μmだけ長く設計
した。 【0022】また、比較例として、図7に示すように光
導波路25,26に備えた方向性結合器27,28の間
に位相器29をつけた光スイッチを作製した。光導波路
25,26の幅と高さと曲げ半径は、それぞれ8μm、
8μm、10mmとし、方向性結合器のギャップを2μ
m、結合長を550μmとした。本実施の形態の図6の
光スイッチと図7の光スイッチは図1,2,3と同様
に、火炎堆積法と、フォトリソグラフィーと反応性イオ
ンエッチングを用いて作製した。作製歩留まりを見るた
め、本発明による図6の光分岐結合器を用いた光スイッ
チと図7の光スイッチを9台作製した。作製した光スイ
ッチの特性は、波長可変光源と1.55μm用偏波保持フ
ァイバと1.55μm用DSFファイバを用いて評価し
た。光スイッチの動作には位相器に数ボルトの直流電圧
を印加して評価した。 【0023】位相器14,29に印加する電力を横軸に
取った時の、光スイッチのスルーポート(Through) への
挿入損失とクロスポート(Cross) への挿入損失の変化を
図8,図9に示す。図8は本発明による光分岐結合器を
用いた光スイッチ(図6)の特性であり、図9は比較例
の光スイッチ(図7)の特性である。本発明による光結
合器の分岐率が50%に近いことから、従来型光スイッ
チでは消光しにくいスルーポートでも、クロスポートと
同様に消光している。 【0024】TE偏波の消光比とTM偏波の消光比のう
ち、絶対値の小さい方の値をスイッチの消光比とし、位
相器の電力を振った時の最大のスイッチの消光比と、方
向性結合器の結合長との関係を表1と表2に示す。 【表1】【表2】 表1は本発明による光分岐結合器を用いた光スイッチの
特性であり、表2は従来型の光スイッチの特性であり、
9個についてそれぞれスルーポートとクロスポートとに
ついて示した。従来型の光スイッチで、最大のスイッチ
の消光比がスルーポートで平均−15.2dBとクロスポ
ートで平均−24.6dBであり、本発明による光分岐結
合器を用いた光スイッチでは、各々−32.4dB、−3
0.1dBであった。 【0025】 【発明の効果】以上説明したように、本発明の光分岐結
合器の構成を用いることにより、方向性結合器の50%
からのばらつきに対し、光分岐結合回路全体の分岐比を
安定に50%に保つことが出来る。そのため、50%分
岐の光分岐結合器の作製歩留まりを向上することがで
き、また分岐率の偏波依存性を小さくすることが可能に
なる。この光分岐結合器は、2光束干渉を用いる光回路
の歩留まり向上と特性向上に寄与し、光スイッチの特性
向上に効果的である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical branching coupler, and more particularly to an optical waveguide type component used for optical communication, optical signal processing, optical measurement, and the like. 2. Description of the Related Art An optical waveguide circuit formed on a flat substrate can be formed into various optical waveguide patterns by being manufactured by photolithography technology, and the processing of the waveguide structure can be controlled in the order of wavelength. Optical circuits such as wavelength multiplexers / demultiplexers and optical switches have been realized, and these optical circuits can be compactly integrated. Many of the functions of planar optical waveguide circuits are manifested by optical interference, but optical interference requires coupling and splitting of light, and optical branching couplers are important in planar optical waveguides. Circuit element. An optical circuit using an optical branching coupler includes, for example, an optical switch and an optical wavelength filter of a two-beam interferometer.
The extinction ratio and insertion loss of these optical circuits, and their polarization dependence, largely depend on the characteristics of the optical branching coupler used in the optical circuits. Examples of the characteristics of an optical branching coupler that affect the entire optical circuit include a lattice filter manufactured by connecting optical couplers in cascade and a stacked waveguide in which it is difficult to stably manufacture a single optical branching coupler. Although there is an interlayer optical switch in the waveguide, the yield of the optical coupler is poor,
Their fabrication has been difficult. Therefore, in order to manufacture a two-beam interferometer having ideal characteristics, the optical branching coupler has a small excess loss and a low branching ratio regardless of the manufacturing conditions and the state of the polarization of the signal light. It is desired to be 50%. [0004] Conventionally used optical branching couplers include a directional coupler, a Y branching circuit, and an MM.
I (Multi Mode Interferometer). Among them, the directional coupler has extremely small excess loss and is often used in a two-beam interferometer. However, since the directional coupler has a small waveguide gap, it is easily affected by manufacturing errors, and the branching ratio is apt to fluctuate. Further, since the overlap of the lateral modes of the propagating light is used, the waveguide is easily affected by the refractive index difference of the waveguide. Therefore, the birefringence of the waveguide due to the stress from the substrate etc. directly affects the branching rate,
There is a problem that the polarization dependence of the branching ratio is large. On the other hand, an optical branching coupler using a Y-branch circuit or an MMI has a slab waveguide structure, but a large mode conversion is performed when the slab waveguide enters and exits. As a result, there is a problem that the circuit insertion loss increases. Also, an optical branching coupler using a Y-branch circuit or an MMI can easily excite unnecessary transverse modes in a slab waveguide portion due to slight meandering of incident light. There is also a problem that the characteristics are dependent and the branching ratio is not stable. According to the present invention, a directional coupler having extremely small excess loss is used without using a Y-branch circuit or an MMI, and a variation of a branching rate due to a manufacturing error and a polarization dependency of the branching rate are reduced. It is intended to provide a branch coupler.
In other words, an object of the present invention is to reduce the variation of the branching rate due to a manufacturing error, polarization, or the like, and to use a signal light wavelength,
An object of the present invention is to provide an optical branching coupler having a branching rate extremely close to 50% with a high yield. The present invention that achieves the above object has the following matters specifying the invention. A first optical waveguide and a second optical waveguide formed on the substrate, and a first optical waveguide formed by adjoining four intermediate portions of the first and second optical waveguides at four locations; , The second, third and fourth coupling rates are 0.5
Having a directional coupler designed to both the first and second optical waveguides, or the signal light of wavelength λ incident on either one of the optical waveguides, the first and second An optical branch coupler that distributes and emits light to and from the optical waveguide, wherein the optical path length difference ΔL1 between the first and second optical waveguides between the first and second directional couplers; And the optical path length difference ΔL2 between the first and second optical waveguides between the directional coupler and the first and second optical waveguides between the third and fourth directional couplers. The optical path length difference ΔL3 is ΔL1 = ΔL2 = −ΔL3
= Λ / 4. In the present invention, four directional couplers are used. However, since the loss of the directional coupler is extremely small irrespective of the manufacturing error and the polarization, the overall excess loss can be sufficiently reduced. In addition, 3 which is sandwiched between four directional couplers
Since the optical path length difference at each location is extremely small, on the order of the wavelength of light, even if the optical waveguides are expanded to provide the optical path length difference, the spacing between the optical waveguides can be small, and manufacturing errors such as fluctuations in the waveguide film can cause optical path length differences. Can be sufficiently reduced. In general, the characteristics of an optical circuit using a directional coupler are such that the coupling ratio of the directional coupler is apt to fluctuate with respect to manufacturing errors and polarization. It is possible to make the branching ratio of the entire optical circuit close to 50% regardless of the fluctuation of the directional coupler. In an optical circuit composed of first and second optical waveguides and having four directional coupling portions at an intermediate portion, the optical path length difference between the first and second directional couplers is ΔL1, The difference in optical path length between the third directional coupler and the third directional coupler is ΔL2, and the difference in optical path length between the third and fourth directional couplers is ΔL3. In this case, the optical path length differences ΔL1 to ΔL3 are each obtained by multiplying the physical waveguide length difference between the optical waveguides by the effective refractive index of the waveguide. Since the physical waveguide length difference is obtained by subtracting the length of one of the two waveguides between the directional couplers from the other, the value can be positive or negative depending on the length of the two waveguides. For example, Δ
When L1 and ΔL2 are positive, the first waveguide side is longer,
When L3 is a negative sign, the second waveguide side is long. Here, ΔL1 = −ΔL3 = ΔLc
Then, the coupling rate η of the optical circuit at the wavelength λ is represented by the following equation (1) [Equation 1]. In this case, ΔLc is Δ
L1 and the absolute value of -ΔL3 indicate a certain value, and η is the ratio of the power of the light incident on one of the optical waveguides, that is, the power of the light emitted from the other optical waveguide as a cross. is there. (Equation 1) Here, c is given by the following equation (2), where k is the coupling rate of one directional coupler. (Equation 2) In the present invention, ΔLc = ΔL2 = λ /
4, the above equations (1) and (2) and ΔLc = ΔL2 = λ
The following equation (3) is obtained by rearranging the equation in / 4. η = −8 (k−0.5) 4 +0.5 (3) That is, if the coupling ratio k of the directional coupler is 0.5 as designed, η becomes 0.5. Here, let us examine η when k changes around 0.5 due to the above-mentioned manufacturing error. 1 of the coupling ratio η of the optical circuit at the coupling ratio k = 0.5
Next, second, and third derivatives are calculated by the following equations (4), (5), and (6).
It becomes like [Equation 3]. (Equation 3) As is apparent from the equations (4), (5), and (6), at k = 0.5, since the third order derivative of η is 0, η is a very stable value even if k varies. Because Then, for example, when k = 0.30, η = 0.
487. That is, according to the configuration of the present invention, even if the coupling ratio of each directional coupler included in the optical coupler of the present invention fluctuates, the entire optical coupler achieves a branching ratio of 50% with high stability. Becomes possible. That is, the optical branching coupler of the present invention has a small excess loss, and can realize a branching rate of 50% extremely stably with respect to a manufacturing error and a polarization state. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an example of an optical branching coupler. The optical waveguide 1 and the optical waveguide 2 of FIG. 1 are adjacent to each other at a total of four locations to form a directional coupler, and an optical path length difference between the four directional couplers 3, 4, 5, 6 as described later is reduced. It has a given configuration. The width and height of the optical waveguide 1 and the optical waveguide 2 are constant and set to 8 × 8 μm. The effective refractive index of the manufactured optical waveguide is 1.4 at a signal light wavelength of 1.55 μm.
516. The bending radius of the waveguide curve is 10 m.
m and kept constant. In order to intentionally give a manufacturing variation of the directional coupler, the coupling length of the directional couplers 3, 4, 5, and 6 is set to 0.
It was manufactured at a pitch of 50 μm from μm to 1000 μm.
The gap of the directional coupler was constant at 2 μm. Between the directional coupler 3 and the directional coupler 4, a difference in waveguide length was provided so that the optical waveguide 1 was longer than the optical waveguide 2 by 0.26663 μm. Similarly, the distance between the directional coupler 4 and the directional coupler 5 is set so that the optical waveguide 1 becomes 0.2663 μm longer, and further, the distance between the directional coupler 5 and the directional coupler 6 is increased. 2 was designed to be longer by 0.2663 μm. A waveguide length difference of 0.266 μm corresponds to λ / 4 for a signal light wavelength of 1.55 μm. As a comparative example, the optical waveguides 7 and 8 shown in FIG.
Only the directional coupler 9 is formed, and the directional couplers 12 and 13 are connected in two-stage cascade to the optical waveguides 10 and 11 shown in FIG. Optical couplers having the same difference of 0.26663 μm were formed, and these were fabricated on the same substrate. The preparation method was as follows. First, a quartz-based lower cladding layer and a quartz-based core layer having an increased refractive index by adding germanium dioxide were formed on a silicon substrate by a flame deposition method. Next, the core layer was processed using photolithography and reactive ion etching to form a core pattern of the waveguide structure. Thereafter, an upper clad layer was formed by a flame deposition method to produce a buried waveguide. The relative refractive index difference between the clad layer and the core layer was 0.75%. The branching ratio of the manufactured optical coupler was evaluated using laser light adjusted to a wavelength of 1.55 μm from an external resonator type wavelength tunable light source. The input side was evaluated using a 1.55 μm polarization maintaining fiber, and the output side was evaluated using a 1.55 μm DSF fiber. The amount of light transmitted through the optical coupling circuit was evaluated by directly abutting a fiber on the optical circuit via a matching oil. The evaluation of the branching ratio of the optical coupler is based on the ratio of the amount of light emitted from the optical waveguides 1 and 2 when the laser light enters the optical waveguide 1 and the optical waveguide when the laser light enters the optical waveguide 2. 2 and an average of the ratio of the amounts of light emitted from the optical waveguide 1. The excess loss of the optical coupling circuit is determined by the difference between the sum of the amounts of light emitted from the optical waveguides 1 and 2 and the light receiving level when the fibers on the input side and the output side are directly butted. Was evaluated. FIG. 4 shows the branching rates for the configuration of FIG. 1 (Proposed), the configuration of the one-stage directional coupler (DC) of FIG. 2, and the configuration of the Mach-Zehnder optical coupler (MZI) of FIG. FIG. 5 shows the difference in the branching ratio between the TE polarized light and the TM polarized light. In both FIGS. 4 and 5, the horizontal axis represents the coupling length of the directional coupler. As can be seen from FIG. 4, the directional coupler alone (DC) of FIG.
0% bond is obtained only when the bond length is about 500 μm, and the bond ratio before and after the bond length changes in proportion to the bond length. It should be noted that the change in the coupling ratio is caused by the above (1)
This corresponds to the change of k in the equation (2). On the other hand, FIG.
In the optical branching coupler of the present invention, the coupling length is 350 to
Flat characteristics with a coupling ratio of 50% for 700 μm are obtained. This means that in the branch coupler of the present invention,
This means that even if the coupling ratio of the directional coupler alone as a constituent unit varies around 50%, the coupling ratio of the entire optical branching coupler is maintained at 50%. further,
FIG. 5 shows that in a conventional optical splitter, that is, a directional coupler alone (DC) or a Mach-Zehnder interferometer (MZI), a change in the coupling length of the directional coupler causes a difference in the branching ratio between the polarized waves. It can be seen that in the optical splitter according to the present invention, there is almost no difference in the splitting ratio between the polarized waves in the range of ± 100 μm before and after the coupling length of about 500 μm (no polarization dependency). 2
One optical circuit is created and the TE polarization TM polarization co-branch rate is 4
The number of optical circuits that was 5% to 55% was two in the directional coupler in FIG. 2, six in the Mach-Zehnder optical coupler in FIG. 3, and twelve in the present invention in FIG. In addition, of the optical circuits having a branching ratio of 45% to 55% for both the TE polarization and the TM polarization described above, those having a branching ratio difference of 0.5% or less are the directional couplers of FIG. There were zero optical couplers, two optical couplers in the Mach-Zehnder optical coupler of FIG. 3, and eight optical couplers of the present embodiment in FIG. The average value of the excess loss of each of the above 21 circuits is 0.151 dB in the directional coupler of FIG. 2, 0.213 dB in the Mach-Zehnder optical coupler of FIG. 3, and the optical coupling of the present embodiment in FIG. The vessel was 0.277 dB. FIG. 6 shows an embodiment of a two-beam interferometer type optical switch using an optical branching coupler according to the present invention. A phase shifter 14 utilizing the thermo-optic effect is provided between two optical branching couplers according to the present invention. The design parameters of the optical waveguide were the same as in the first embodiment. That is, the optical waveguide 15,
16 width, height and bending radius are 8 μm and 8 μm, respectively.
m, 10 mm, the gap of the directional coupler is 2 μm,
Eight directional couplers 17 to with a coupling length of 550 μm
24, the length of each of the optical waveguides 1 is 0.26663 μm.
m, 0.2663 μm, −0.263 μm, 0.26663 μm
m, −0.2633 μm, and −0.26663 μm. As a comparative example, an optical switch having a phase shifter 29 between directional couplers 27 and 28 provided in optical waveguides 25 and 26 as shown in FIG. 7 was manufactured. The width, height and bending radius of each of the optical waveguides 25 and 26 are 8 μm, respectively.
8 μm, 10 mm, and the gap of the directional coupler is 2 μm.
m and the bond length were 550 μm. The optical switch of FIG. 6 and the optical switch of FIG. 7 according to the present embodiment are manufactured by using the flame deposition method, photolithography, and reactive ion etching as in FIGS. In order to observe the production yield, nine optical switches using the optical branching coupler shown in FIG. 6 according to the present invention and nine optical switches shown in FIG. 7 were produced. The characteristics of the fabricated optical switch were evaluated using a wavelength variable light source, a 1.55 μm polarization maintaining fiber, and a 1.55 μm DSF fiber. The operation of the optical switch was evaluated by applying a DC voltage of several volts to the phase shifter. FIGS. 8 and 9 show changes in the insertion loss to the through port (Through) and the insertion loss to the cross port (Cross) of the optical switch when the power applied to the phase shifters 14 and 29 is plotted on the horizontal axis. It is shown in FIG. FIG. 8 shows the characteristics of the optical switch (FIG. 6) using the optical branching coupler according to the present invention, and FIG. 9 shows the characteristics of the optical switch (FIG. 7) of the comparative example. Since the branching rate of the optical coupler according to the present invention is close to 50%, even a through port that is difficult to extinguish with a conventional optical switch is extinguished similarly to a cross port. Of the extinction ratio of the TE polarization and the extinction ratio of the TM polarization, the smaller one of the absolute values is defined as the extinction ratio of the switch, and the maximum extinction ratio of the switch when the power of the phase shifter is changed; Tables 1 and 2 show the relationship between the directional coupler and the coupling length. [Table 1] [Table 2] Table 1 shows the characteristics of the optical switch using the optical branching coupler according to the present invention. Table 2 shows the characteristics of the conventional optical switch.
The through port and cross port are shown for each of the nine ports. In the conventional optical switch, the extinction ratio of the maximum switch is -15.2 dB on the through port on average and -24.6 dB on the cross port on average, and in the optical switch using the optical branching coupler according to the present invention, each is- 32.4dB, -3
It was 0.1 dB. As described above, by using the configuration of the optical branching coupler of the present invention, 50% of the directional coupler can be obtained.
, The branching ratio of the entire optical branching / coupling circuit can be stably maintained at 50%. Therefore, it is possible to improve the production yield of the optical branching coupler with 50% branching, and to reduce the polarization dependence of the branching ratio. This optical splitter / coupler contributes to improvement in the yield and characteristics of an optical circuit using two-beam interference, and is effective in improving the characteristics of the optical switch.

【図面の簡単な説明】 【図1】第一の実施の形態の光分岐結合器の導波路構造
図である。 【図2】比較例である従来の光分岐結合器である方向性
結合器の導波路構造図である。 【図3】比較例である他の従来の光分岐結合器であるマ
ッハツェンダ干渉計の導波路構造図である。 【図4】第一の実施形態の光分岐結合器と従来の光分岐
結合器の分岐率の測定結果を示すグラフである。 【図5】第一の実施形態の光分岐結合器と従来の光分岐
結合器の偏波による分岐率差を示すグラフである。 【図6】第二の実施の形態の光スイッチの導波路構造図
である。 【図7】比較例である従来型の光スイッチの導波路構造
図である。 【図8】第二の実施の形態の光スイッチの動作特性の測
定結果を示すグラフである。 【図9】従来の光スイッチの動作特性の測定結果を示す
グラフである。 【符号の説明】 1,2,7,8,10,11,15,16,25,26
光導波路 3,4,5,6,9,12,13,17,18,19,
20,21,22,23,24,27,28 方向性結
合器 14,29 位相器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a waveguide structure of an optical branching coupler according to a first embodiment. FIG. 2 is a waveguide structure diagram of a directional coupler which is a conventional optical branching coupler as a comparative example. FIG. 3 is a waveguide structure diagram of a Mach-Zehnder interferometer, which is another conventional optical branching coupler as a comparative example. FIG. 4 is a graph showing measurement results of the branching ratio of the optical branching / combining device of the first embodiment and a conventional optical branching / combining device. FIG. 5 is a graph showing a difference in a branching rate due to polarization between the optical branching coupler of the first embodiment and a conventional optical branching coupler. FIG. 6 is a diagram illustrating a waveguide structure of an optical switch according to a second embodiment. FIG. 7 is a diagram showing a waveguide structure of a conventional optical switch as a comparative example. FIG. 8 is a graph showing measurement results of operating characteristics of the optical switch according to the second embodiment. FIG. 9 is a graph showing measurement results of operating characteristics of a conventional optical switch. [Description of Signs] 1, 2, 7, 8, 10, 11, 15, 16, 25, 26
Optical waveguides 3, 4, 5, 6, 9, 12, 13, 17, 18, 19,
20, 21, 22, 23, 24, 27, 28 Directional coupler 14, 29 Phaser

フロントページの続き (56)参考文献 特開 平8−122545(JP,A) 特開 平8−234050(JP,A) 特開 平9−243839(JP,A) 特開 平7−281215(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/10 - 6/14 Continuation of front page (56) References JP-A-8-122545 (JP, A) JP-A-8-234050 (JP, A) JP-A-9-2443839 (JP, A) JP-A-7-281215 (JP) , A) (58) Field surveyed (Int.Cl. 7 , DB name) G02B 6/10-6/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】 基板と、その基板上に形成された第一の
光導波路および第二の光導波路とを有し、この第一およ
び第二の光導波路の中間部が4ヶ所互いに近接されて形
成された第一、第二、第三、第四の結合率が0.5に設
計された方向性結合器を有し、上記第一と第二の光導波
路の両方に、またはどちらか一方の光導波路に入射され
る波長λの信号光を、上記第一と第二の光導波路とに分
配し出射する光分岐結合器において、 上記第一と第二の方向性結合器の間の上記第一と第二の
光導波路の光路長差ΔL1と、上記第二と第三の方向性
結合器との間の上記第一と第二の光導波路の光路長差Δ
L2と、上記第三と第四の方向性結合器との間の上記第
一と第二の光導波路の光路長差ΔL3とがΔL1=ΔL
2=−ΔL3=λ/4を満たすことを特徴とする光分岐
結合器。
(57) Claims 1. It has a substrate, a first optical waveguide and a second optical waveguide formed on the substrate, and the first and second optical waveguides The first, second, third, and fourth coupling ratios in which four intermediate portions are formed close to each other are set at 0.5.
A directional coupler, and transmits the signal light having a wavelength λ incident to both the first and second optical waveguides or to one of the optical waveguides. An optical branching coupler that distributes and emits light to and from the optical path, wherein an optical path length difference ΔL1 between the first and second directional couplers between the first and second directional couplers; Optical path length difference Δ between the first and second optical waveguides between the directional coupler
L2 and the optical path length difference ΔL3 between the first and second optical waveguides between the third and fourth directional couplers are ΔL1 = ΔL
2 = −ΔL3 = λ / 4.
JP15403198A 1998-06-03 1998-06-03 Optical branch coupler Expired - Lifetime JP3420501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15403198A JP3420501B2 (en) 1998-06-03 1998-06-03 Optical branch coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15403198A JP3420501B2 (en) 1998-06-03 1998-06-03 Optical branch coupler

Publications (2)

Publication Number Publication Date
JPH11344629A JPH11344629A (en) 1999-12-14
JP3420501B2 true JP3420501B2 (en) 2003-06-23

Family

ID=15575404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15403198A Expired - Lifetime JP3420501B2 (en) 1998-06-03 1998-06-03 Optical branch coupler

Country Status (1)

Country Link
JP (1) JP3420501B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731828B2 (en) * 2001-07-04 2004-05-04 Nippon Telegraph And Telephone Corporation Waveguide-type optical signal processing circuit
JP4150374B2 (en) 2003-02-26 2008-09-17 富士通株式会社 Arrayed waveguide type wavelength multiplexer / demultiplexer
JP5169536B2 (en) * 2008-02-08 2013-03-27 沖電気工業株式会社 Optical multiplexing / demultiplexing device
WO2011043449A1 (en) * 2009-10-09 2011-04-14 日本電気株式会社 Optical branching element, optical branching circuit, optical branching element manufacturing method, and optical branching circuit manufacturing method

Also Published As

Publication number Publication date
JPH11344629A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
Soldano et al. Optical multi-mode interference devices based on self-imaging: principles and applications
US7505640B2 (en) Integrated optics polarization beam splitter using form birefringence
EP0640854B1 (en) Polarisation diversity section for coherent optical receiver
US4904037A (en) Waveguide type optical device with thermal compensation layers
US7035491B2 (en) Integrated optics polarization beam splitter using form birefringence
JP2614365B2 (en) Polarization-independent waveguide optical device
EP1302793A2 (en) A polarization beam splitter
Doerr et al. Bending of a planar lightwave circuit 2/spl times/2 coupler to desensitize it to wavelength, polarization, and fabrication changes
US20020025103A1 (en) Polarization independent broad wavelength band optical switches/modulators
CN111399118B (en) Integrated polarization beam splitter based on thin-film lithium niobate waveguide
CN112817091A (en) Mach-Zehnder interferometer and multichannel coarse wavelength division multiplexer
US5852691A (en) Self-imaging waveguide optical polarization or wavelength splitters
JP3112193B2 (en) Optical ring resonator
JP2002286952A (en) Waveguide type optical coupler and optical multiplexer/ demultiplexer using the coupler
US20030169964A1 (en) Power splitter/combiner with parameter tolerance and design process therefor
US6856751B2 (en) Method and system for obtaining variable optical attenuation with very low polarization dependent loss over an ultra wide dynamic range
EP1389739A1 (en) Optical circulator using planar lightwave circuits
JP3420501B2 (en) Optical branch coupler
JPH04259801A (en) Macha-zehnder interferometer
US5526439A (en) Optical filter using electro-optic material
JP5137619B2 (en) PLC type variable dispersion compensator
JPH05313109A (en) Waveguide type polarization controller
JPH0749511A (en) Waveguide type optical switch
Ai et al. Broadband 2× 2 multimode-interference coupler on the silicon-nitride platform
Cheng et al. Broadband, compact and reflection-less silicon polarizer and polarization beam splitter using chirped anti-symmetric multimode nanobeams

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term