JP3419338B2 - Method of firing magnetic core - Google Patents

Method of firing magnetic core

Info

Publication number
JP3419338B2
JP3419338B2 JP06426199A JP6426199A JP3419338B2 JP 3419338 B2 JP3419338 B2 JP 3419338B2 JP 06426199 A JP06426199 A JP 06426199A JP 6426199 A JP6426199 A JP 6426199A JP 3419338 B2 JP3419338 B2 JP 3419338B2
Authority
JP
Japan
Prior art keywords
thin
firing
powder
magnetic core
thin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06426199A
Other languages
Japanese (ja)
Other versions
JP2000260646A (en
Inventor
博之 木野
暢章 伊藤
良博 西永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP06426199A priority Critical patent/JP3419338B2/en
Priority to TW089103559A priority patent/TW511105B/en
Priority to CNB001033565A priority patent/CN1150572C/en
Priority to KR1020000010371A priority patent/KR100359576B1/en
Priority to US09/523,350 priority patent/US6820323B1/en
Publication of JP2000260646A publication Critical patent/JP2000260646A/en
Application granted granted Critical
Publication of JP3419338B2 publication Critical patent/JP3419338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、磁性体コアの焼成
方法に関し、特に、ノイズフィルタやトランスのインダ
クタ部品等のコアとして使用される薄型磁性体コアの焼
成方法に関する。 【0002】 【従来の技術】ノイズフィルタやトランスのインダクタ
部品等に使用されるコアとして、図5に示すような薄型
磁性体コア21が知られている。このような磁性体コア
21の焼成方法としては、以下に説明する方法が知られ
ている。 【0003】すなわち、フェライト材料からなる薄型成
形体21を、その一端側の面で焼成用容器(図示せず)
の内部に垂直に立てて焼成する方法である。このとき、
薄型成形体21は互いに離隔して配置され、隣接する薄
型成形体21同士が焼成時にくっつかないように工夫さ
れる。形成体21がくっつくと両者間で化学反応が起こ
ったり、くっついた成形体21を機械的衝撃力を加えて
外すときに欠けやクラックが生じる等の不具合が発生す
るからである。 【0004】 【発明が解決しようとする課題】ところで、従来の磁性
体コアの焼成方法は、成形体21のサイズ(特に厚み寸
法)が大きい場合には、焼成用容器内に成形体21を離
隔して垂直に立てる作業は比較的容易であった。また、
僅かな振動や衝撃が加わっても、薄型成形体21は傾斜
せず、隣接する薄型成形体21同士が焼成時にくっつく
等の不具合は発生しにくかった。 【0005】しかしながら、近年、磁性体コアの薄型
化、小型化により、サイズ(特に厚み寸法)の小さい薄
型成形体21を離隔して垂直に立てた状態で焼成するこ
とが多くなってきた。この場合、サイズの小さい薄型成
形体21を1個毎に離隔して垂直に立てる作業は煩雑で
手間がかかるという問題があった。また、薄型成形体2
1のサイズが小さいと、僅かな振動が加わっても、薄型
成形体21が傾斜し、隣接する薄型成形体21に接触し
てそれらの間で化学反応が生じたり、くっつきや欠け、
外観からは発見が困難なひび割れ等が生じ、良品率が低
下したり、製品の信頼性が低下するといった問題があっ
た。 【0006】本発明の目的は、焼成を高い信頼性で行な
うことができ、しかも量産性の優れた磁性体コアの焼成
方法を提供することにある。 【0007】 【課題を解決するための手段及び作用】前記目的を達成
するため、本発明に係る磁性体コアの焼成方法は、磁性
体材料からなる複数の薄型成形体の表面に、粒径が10
00μm以下のものを含む有機材料からなる粉体を付与
し、複数の前記薄型成形体を近接して垂直に整列配置し
た後、互いに隣接する薄型成形体間に前記粉体を介在さ
せた状態で前記薄型成形体を焼成するとともに、該焼成
により前記粉体を構成する有機材料を気化させる。 【0008】以上の方法により、薄型成形体の表面に付
与された粉体は、互いに隣接する薄型成形体間に介在し
てスペーサとして機能する。従って、薄型成形体を積み
重ねてセットすることができ、セッティング作業が容易
になる。そして、薄型成形体が焼成される際、隣接する
薄型成形体同士が直接に接触しなくなり、それらの間で
反応が生じたり、くっつきや欠けが生じるという不具合
が解消される。 【0009】 【発明の実施の形態】以下に、本発明に係る磁性体コア
の焼成方法の実施の形態について添付の図面を参照して
説明する。 【0010】図1に示すように、複数の薄型成形体1を
用意する。薄型成形体1は、バインダ等と混練したフェ
ライト等の磁性体材料粉末を、E字形に成形してなるも
のである。薄型成形体1は、長辺寸法をL1、短辺寸法
をL2、厚み寸法をtとすると、厚み寸法tが短辺寸法
の1/3以下に設定されている。薄型成形体1の各々
は、水平に寝かされる。次に、図1に矢印Aで示すよう
に、薄型成形体1の上から粉体をむらなく振りかける。
該粉体は、粒径が1000μm以下のものを含み、有機
材料又は無機材料からなるものである。有機材料として
は、焼成工程で気化してしまう材料が好ましく、具体的
には、ポリビニールアルコール系やセルロース系の合成
樹脂材料、小麦粉や片栗粉等の天然有機材料等が用いら
れる。無機材料としては、焼成工程で薄型成形体1と化
学反応しない材料が好ましく、具体的には、アルミナや
ジルコニア等が用いられる。 【0011】ところで、粉体の粒径が1000μmを越
えると、粉体と薄型成形体1とのなじみが悪くなり、後
工程で薄型成形体1を垂直に立てたときに粉体が薄型成
形体1の表面から落ち易く、薄型成形体1のセッティン
グの作業性が低下する。ただし、粒径が1000μmを
越える粉体に、1000μm以下の粒径のものを混合す
ることにより、前記の作業性の低下は改善される。 【0012】一方、粒径が20μm以下の粉体は、薄型
成形体1のくっつきを防止するスペーサとしての機能は
多少劣るものの、互いにくっついている薄型成形体1に
軽く機械的衝撃を与えることにより、簡単に分離させる
ことができる。 【0013】次いで、図2に示すように、粉体が振りか
けられて表面に粉体が付着した薄型成形体1を、その各
軸方向を水平に揃えて一定数、積み重ねる。積み重ねら
れた状態の薄型成形体1は、相互間に粉体が介在してい
る。その後、図3に示すように、薄型成形体1を積み重
ね状態を保持したまま垂直になるようにして、薄型成形
体1と化学反応しない無機粉体(例えば高純度のアルミ
ナ粉体もしくはジルコニア粉体)を敷き詰めた焼成用容
器(図示せず)の内部に、整列配置する。なお、薄型成
形体1の形状や、焼成用容器の材質によっては、焼成用
容器に無機粉体を敷く必要がない場合もある。 【0014】この後、垂直に立てた薄型成形体1が倒れ
ないように、図4に示すように、高純度アルミナもしく
はジルコニア等のバー3を薄型成形体1の側面に添え
る。このようにセットされた薄型成形体1は、焼成炉内
で焼成される。こうして、薄型成形体1を焼成してなる
磁性体コアが得られる。 【0015】以上の焼成方法により、薄型成形体1の表
面に付与された粉体は、互いに隣接する薄型成形体1間
に介在してスペーサとして機能する。従って、薄型成形
体1を積み重ねてセットすることができ、セッティング
作業が容易になる。そして、薄型成形体1が焼成される
際、隣接する薄型成形体1同士が直接に接触しなくな
り、それらの間で反応が生じたり、くっつきや欠けが生
じるという不具合を解消することができる。 【0016】なお、本発明は、前記実施形態に限定され
るものではなく、本発明の要旨の範囲内で種々の構成と
することができる。例えば、前記実施形態では、粉体を
薄型成形体に振りかけるようにしたが、吹き付け等によ
り粉体を薄型成形体に強制的に付着させるようにしても
よい。また、磁性体コアの形状は、E字形の他に、U字
形、I字形、リング形、日の字形、ロの字形等であって
もよい。 【0017】 【実施例】長辺寸法L1=24.0mm、短辺寸法L2
=12.0mm、厚み寸法t=2.8mmの外形寸法を
有した薄型成形体1(図1参照)を用意した。この薄型
成形体1はNiZn系フェライト材料からなる。また、
粉体として以下の表1に示す種々のものを用意した。そ
して、薄型成形体1を水平に寝かした後、上から表1に
示したそれぞれの粉体を網の容器に入れてむらなく振り
かけた。次いで、振りかけた粉体を介在させ、垂直に立
てるように偏平リング状成形体1を積み重ねた。 【0018】この後、図2〜図4に示した工程に従っ
て、薄型成形体1をジルコニア粉を敷き詰めた焼成用容
器内に、一列当たり32個、これを5列並べ、ジルコニ
ア製のバー3を添わせた。こうして薄型成形体1をセッ
トした焼成用容器を各実施例毎に30サンプル(薄型成
形体1の数で4800個)用意し、1000〜1200
℃の電気炉で焼成した。焼成後の磁性体コアのくっつき
発生率及び不良率の評価結果を表1に示す(実施例1〜
実施例8)。なお、表1には、比較のために、従来の焼
成方法で焼成した磁性体コアの評価結果も合わせて記載
している(比較例)。 【0019】 【表1】 【0020】表1で、実施例3のセルロース系粉体を用
いて焼成した場合、並びに実施例8の平均粒径が40μ
mの高純度アルミナ粉体を用いて焼成した場合には、そ
れぞれ12%及び13%の磁性体コアにくっつきが発生
した。しかし、両者とも、くっついている磁性体コアに
軽く機械的衝撃を与えると、簡単に分離させることがで
き、その品質も合格のレベルに達しており、不良率は0
%であった。 【0021】 【発明の効果】以上の説明からも明らかなように、本発
明によれば、薄型成形体の表面に付与された粉体は、互
いに隣接する薄型成形体間に介在してスペーサとして機
能する。従って、薄型成形体を積み重ねてセットするこ
とができ、セッティング作業が容易になる。そして、薄
型成形体が焼成される際、隣接する薄型成形体同士が直
接に接触しなくなり、それらの間で反応が生じたり、く
っつきや欠けが生じるという不具合を解消することがで
きる。この結果、磁性体コアの焼成を高い信頼性を有し
て効率よく行うことができるばかりでなく、良品率も大
幅に向上する。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method of firing a magnetic core, and more particularly, to a method of firing a thin magnetic core used as a core of an inductor component of a noise filter or a transformer. It relates to a firing method. 2. Description of the Related Art A thin magnetic core 21 as shown in FIG. 5 is known as a core used for an inductor component of a noise filter or a transformer. As a method for firing such a magnetic core 21, a method described below is known. [0003] That is, a thin molded body 21 made of a ferrite material is placed on one side of a surface thereof in a firing container (not shown).
And baking it vertically inside. At this time,
The thin molded bodies 21 are arranged apart from each other, and are designed so that adjacent thin molded bodies 21 do not stick to each other during firing. This is because if the formed bodies 21 stick together, a chemical reaction occurs between them, and defects such as chipping or cracking occur when the bonded formed body 21 is removed by applying a mechanical impact force. [0004] By the way, in the conventional method of firing a magnetic core, when the size (particularly, thickness) of the molded body 21 is large, the molded body 21 is separated in a firing container. Standing vertically was relatively easy. Also,
Even when a slight vibration or impact is applied, the thin molded body 21 does not tilt, and problems such as the adjacent thin molded bodies 21 sticking to each other during firing are unlikely to occur. However, in recent years, due to the thinning and miniaturization of the magnetic core, firing has been increasing in a state where the thin molded body 21 having a small size (particularly the thickness dimension) is vertically spaced apart from the molded body. In this case, there is a problem that the work of vertically standing the thin molded bodies 21 having a small size apart from each other is complicated and time-consuming. In addition, the thin molded body 2
If the size of 1 is small, even if a slight vibration is applied, the thin molded body 21 is inclined and comes into contact with the adjacent thin molded bodies 21 to cause a chemical reaction between them, and sticking or chipping occurs.
Cracks and the like, which are difficult to find from the appearance, occur, and there is a problem that the yield rate decreases and the reliability of the product decreases. An object of the present invention is to provide a method for firing a magnetic core which can be fired with high reliability and which is excellent in mass productivity. [0007] According and action for Solving the Problems To achieve the above object, a firing method of the magnetic core of the present invention, the surfaces of the thin molded product made of a magnetic material, is the particle size 10
After applying a powder made of an organic material including those having a size of not more than 00 μm , a plurality of the thin compacts are vertically arranged in close proximity to each other, and then the powder is interposed between the thin compacts adjacent to each other. with firing the thin molded product, the baking
Thereby, the organic material constituting the powder is vaporized . According to the above method, the powder applied to the surface of the thin molded body functions as a spacer by being interposed between the thin molded bodies adjacent to each other. Therefore, thin molded bodies can be stacked and set, and the setting operation is facilitated. Then, when the thin compacts are fired, the adjacent thin compacts do not come into direct contact with each other, and the problem that a reaction occurs between them and sticking or chipping occurs is eliminated. Embodiments of a method for firing a magnetic core according to the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, a plurality of thin molded bodies 1 are prepared. The thin compact 1 is formed by molding a magnetic material powder such as ferrite kneaded with a binder or the like into an E-shape. Assuming that the long side dimension is L1, the short side dimension is L2, and the thickness dimension is t, the thickness dimension t of the thin molded article 1 is set to 1/3 or less of the short side dimension. Each of the thin molded bodies 1 is laid horizontally. Next, as shown by the arrow A in FIG. 1, the powder is evenly sprinkled over the thin molded body 1.
The powder contains particles having a particle size of 1000 μm or less, and is made of an organic material or an inorganic material. As the organic material, a material that evaporates in the firing step is preferable, and specifically, a polyvinyl alcohol-based or cellulose-based synthetic resin material, or a natural organic material such as flour or potato starch is used. As the inorganic material, a material that does not chemically react with the thin molded body 1 in the firing step is preferable, and specifically, alumina, zirconia, or the like is used. When the particle size of the powder exceeds 1000 μm, the powder and the thin molded article 1 become less compatible with each other, and when the thin molded article 1 is set upright in a subsequent step, the powder becomes thin. 1 easily falls off the surface of the thin molded article 1, and the workability of setting the thin molded article 1 is reduced. However, by mixing a powder having a particle diameter of 1000 μm or less with a powder having a particle diameter of more than 1000 μm, the above-mentioned decrease in workability is improved. On the other hand, the powder having a particle size of 20 μm or less has a slightly inferior function as a spacer for preventing the thin compact 1 from sticking to each other, but gives a light mechanical impact to the thin compacts 1 attached to each other. , Can be easily separated. Next, as shown in FIG. 2, a certain number of thin compacts 1 on which the powder is sprinkled and the powder adheres to the surface are stacked with their respective axial directions aligned horizontally. The thin molded bodies 1 in the stacked state have powder interposed therebetween. Thereafter, as shown in FIG. 3, the thin compacts 1 are vertically stacked while maintaining the stacked state, and inorganic powders that do not chemically react with the thin compacts 1 (for example, high-purity alumina powder or zirconia powder) ) Are arranged and arranged inside a firing container (not shown) on which the sheets are spread. Note that, depending on the shape of the thin molded body 1 and the material of the firing container, it may not be necessary to spread the inorganic powder in the firing container. Thereafter, as shown in FIG. 4, a bar 3 of high-purity alumina or zirconia is attached to the side surface of the thin molded article 1 so that the thin molded article 1 standing vertically does not fall. The thin compact 1 thus set is fired in a firing furnace. Thus, a magnetic core obtained by firing the thin molded body 1 is obtained. The powder applied to the surface of the thin compact 1 by the above firing method functions as a spacer by being interposed between the thin compacts 1 adjacent to each other. Therefore, the thin molded bodies 1 can be stacked and set, and the setting operation becomes easy. Then, when the thin molded articles 1 are fired, the disadvantages that adjacent thin molded articles 1 do not come into direct contact with each other, and a reaction occurs between them and sticking or chipping occurs can be solved. It should be noted that the present invention is not limited to the above-described embodiment, and may have various configurations within the scope of the present invention. For example, in the above embodiment, the powder is sprinkled on the thin compact, but the powder may be forcibly adhered to the thin compact by spraying or the like. Further, the shape of the magnetic core may be a U shape, an I shape, a ring shape, a sun shape, a square shape, or the like, in addition to the E shape. EXAMPLE Long dimension L1 = 24.0 mm, short dimension L2
A thin molded body 1 (see FIG. 1) having an outer dimension of = 12.0 mm and a thickness t of 2.8 mm was prepared. The thin compact 1 is made of a NiZn-based ferrite material. Also,
Various powders shown in Table 1 below were prepared as powders. Then, after the thin molded body 1 was laid horizontally, the powders shown in Table 1 were placed in a net container from above and sprinkled evenly. Next, the flat ring-shaped molded articles 1 were stacked vertically so that the sprinkled powder was interposed. Thereafter, according to the steps shown in FIGS. 2 to 4, 32 thin moldings 1 are lined up in a firing container in which zirconia powder is spread, and the thin moldings 1 are lined up in five rows. I attached it. In this way, 30 samples (4800 thin molded articles 1) were prepared for each of the firing containers in which the thin molded articles 1 were set, and 1000 to 1200.
Calcination was carried out in an electric furnace at ℃. Table 1 shows the evaluation results of the sticking occurrence rate and the defect rate of the magnetic core after firing.
Example 8). For comparison, Table 1 also shows the evaluation results of the magnetic cores fired by the conventional firing method (Comparative Example). [Table 1] In Table 1, when the calcined product was prepared using the cellulosic powder of Example 3, and the average particle size of Example 8 was 40 μm.
When baking was performed using high-purity alumina powder having a m of 12 m, sticking occurred to 12% and 13% of the magnetic cores, respectively. However, in both cases, when a light mechanical shock is applied to the attached magnetic cores, the magnetic cores can be easily separated, the quality thereof has reached a passing level, and the defect rate is 0%.
%Met. As is clear from the above description, according to the present invention, the powder applied to the surface of the thin compact is interposed between the thin compacts adjacent to each other and serves as a spacer. Function. Therefore, thin molded bodies can be stacked and set, and the setting operation is facilitated. Then, when the thin compacts are fired, the disadvantages that adjacent thin compacts do not come into direct contact with each other, causing a reaction between them and sticking or chipping can be eliminated. As a result, not only can the magnetic core be fired efficiently with high reliability, but also the yield rate can be significantly improved.

【図面の簡単な説明】 【図1】本発明に係る磁性体コアの焼成方法の一実施形
態を示す斜視図。 【図2】図1に続く工程を示す斜視図。 【図3】図2に続く工程を示す説明図。 【図4】図3に続く工程を示す斜視図。 【図5】従来の磁性体コアの焼成方法を示す斜視図。 【符号の説明】 1…薄型成形体 3…バー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing one embodiment of a method for firing a magnetic core according to the present invention. FIG. 2 is a perspective view showing a step following the step shown in FIG. 1; FIG. 3 is an explanatory view showing a step following FIG. 2; FIG. 4 is an exemplary perspective view showing a step following FIG. 3; FIG. 5 is a perspective view showing a conventional method for firing a magnetic core. [Explanation of Signs] 1: Thin molded body 3: Bar

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−145101(JP,A) 特開 平3−199168(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 41/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-145101 (JP, A) JP-A-3-199168 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 41/02

Claims (1)

(57)【特許請求の範囲】 【請求項1】 磁性体材料からなる複数の薄型成形体の
表面に、粒径が1000μm以下のものを含む有機材料
からなる粉体を付与し、複数の前記薄型成形体を近接し
て垂直に整列配置した後、互いに隣接する薄型成形体間
に前記粉体を介在させた状態で前記薄型成形体を焼成す
とともに、該焼成により前記粉体を構成する有機材料
を気化させることを特徴とする磁性体コアの焼成方法。
(57) [Claims 1] An organic material containing one having a particle diameter of 1000 μm or less on a surface of a plurality of thin molded bodies made of a magnetic material.
After applying the powder consisting of, and a plurality of the thin compacts are vertically arranged in close proximity to each other, the thin compacts are fired with the powder interposed between the thin compacts adjacent to each other. An organic material constituting the powder by the firing
A method for firing a magnetic core, comprising:
JP06426199A 1999-03-11 1999-03-11 Method of firing magnetic core Expired - Fee Related JP3419338B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP06426199A JP3419338B2 (en) 1999-03-11 1999-03-11 Method of firing magnetic core
TW089103559A TW511105B (en) 1999-03-11 2000-03-01 Method of firing magnetic core
CNB001033565A CN1150572C (en) 1999-03-11 2000-03-02 Method for calcining magnetic core
KR1020000010371A KR100359576B1 (en) 1999-03-11 2000-03-02 Method of firing magnetic core
US09/523,350 US6820323B1 (en) 1999-03-11 2000-03-10 Method of firing magnetic cores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06426199A JP3419338B2 (en) 1999-03-11 1999-03-11 Method of firing magnetic core

Publications (2)

Publication Number Publication Date
JP2000260646A JP2000260646A (en) 2000-09-22
JP3419338B2 true JP3419338B2 (en) 2003-06-23

Family

ID=13253090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06426199A Expired - Fee Related JP3419338B2 (en) 1999-03-11 1999-03-11 Method of firing magnetic core

Country Status (1)

Country Link
JP (1) JP3419338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937800B2 (en) * 2011-09-29 2016-06-22 住友化学株式会社 Method for manufacturing honeycomb fired body

Also Published As

Publication number Publication date
JP2000260646A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
WO2005015581A1 (en) Soft magnetic composite powder and production method therefor and production method for soft magnetic compact
TWI275110B (en) Paste for releasable layer, and method of manufacturing laminated electronic component
JP2001114569A (en) Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part
CN109734440B (en) SrTiO with heterogeneous layered structure3Base energy storage medium ceramic and preparation method thereof
JP3419338B2 (en) Method of firing magnetic core
JP3419337B2 (en) Method of firing magnetic core
JP2023158013A (en) Ni-Zn-Cu-BASED FERRITE POWDER, SINTERED COMPACT, FERRITE SHEET
JP4753016B2 (en) Ferrite powder, green sheet containing ferrite powder, and ferrite sintered body
JP2007273965A (en) Anode element for solid electrolytic capacitor, and method of manufacturing same
TW511105B (en) Method of firing magnetic core
JPH07161560A (en) Manufacture of rare earth magnet
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
JP2006111518A (en) Method for manufacturing soft ferrite core
CN207305136U (en) The manufacture device of ceramic multi-layer baseplate
JPH0235704B2 (en)
JPS608991B2 (en) Alumina ceramic baking powder-containing sheet
JPS63136677A (en) Manufacture of piezoelectric ceramics thin plate
JPH08277168A (en) Formed article of oxide-based ceramic and its production
JPH01320271A (en) Powder for preventing melt sticking and production thereof
JP3215410B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3279701B2 (en) Molding method of ferrite raw material powder
JPS5918167A (en) Manufacture of sintered body thin sheet
JPH02157593A (en) Substitute sheet for matting powder in ceramic firing
JPS61279508A (en) Manufacture of ceramics sphere
JPH05226176A (en) Method for burning ferrite core

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees