JP3417985B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JP3417985B2
JP3417985B2 JP25898093A JP25898093A JP3417985B2 JP 3417985 B2 JP3417985 B2 JP 3417985B2 JP 25898093 A JP25898093 A JP 25898093A JP 25898093 A JP25898093 A JP 25898093A JP 3417985 B2 JP3417985 B2 JP 3417985B2
Authority
JP
Japan
Prior art keywords
battery
sodium
positive electrode
sulfur
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25898093A
Other languages
Japanese (ja)
Other versions
JPH0794210A (en
Inventor
正明 向出
正則 吉川
成興 西村
康司 佐藤
誼 小松
晃康 奥野
豊 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP25898093A priority Critical patent/JP3417985B2/en
Publication of JPH0794210A publication Critical patent/JPH0794210A/en
Application granted granted Critical
Publication of JP3417985B2 publication Critical patent/JP3417985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力貯蔵や電気自動車
バッテリ等に用いられるナトリウム−硫黄電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery used for power storage, electric vehicle batteries and the like.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池は負極にナトリウ
ム、正極に硫黄を配し、両者を固体電解質兼セパレータ
のベータアルミナで隔てた二次電池であり、300〜3
50℃で運転される。この電池はエネルギー密度が鉛電
池の約4倍と大きいために、電力貯蔵や電気自動車用バ
ッテリに用いられる。また、この電池は固体電解質とし
て用いるベータアルミナがセラミックであることから、
反応面積をある程度以上大きくすることができないた
め、通常、大きな電力を得るには電池を直並列に配置し
たモジュールの形で運転される。
2. Description of the Related Art A sodium-sulfur battery is a secondary battery in which sodium is placed in the negative electrode and sulfur is placed in the positive electrode, and they are separated by beta-alumina, which is also a solid electrolyte and separator.
It is operated at 50 ° C. Since this battery has an energy density as large as about four times that of a lead battery, it is used as a battery for electric power storage and electric vehicles. In addition, since beta-alumina used as a solid electrolyte in this battery is ceramic,
Since the reaction area cannot be increased to a certain extent or more, it is usually operated in the form of a module in which batteries are arranged in series and parallel to obtain a large electric power.

【0003】このようなナトリウム−硫黄電池は、電池
作動温度においては活物質が液体であるため、電池の負
極と正極にどのような電位が掛かっても悪影響は全く及
ばないが、常温においては、電池内で負極から正極に向
かって電流が流れるように電位が掛かった場合、転極に
よって固体電解質内にナトリウムデンドライトが生成
し、運転に至るまで、又は運転中に固体電解質の破損を
生じ、ひいては電池運転が不可能になるという問題があ
った。この問題は電池両極の活物質がどちらも固体状態
の場合に生じる現象で、モジュール組立時の電気的取扱
不備や、モジュール昇温時に電池温度分布の不均一によ
って電池起電力が部分的に異なった場合に生じる。
In such a sodium-sulfur battery, since the active material is a liquid at the battery operating temperature, no adverse effect is exerted even if any potential is applied to the negative electrode and the positive electrode of the battery, but at room temperature, When a potential is applied so that a current flows from the negative electrode to the positive electrode in the battery, sodium dendrite is generated in the solid electrolyte due to the inversion, and the solid electrolyte is damaged until or during the operation, and eventually There was a problem that battery operation became impossible. This problem is a phenomenon that occurs when both active materials on both sides of the battery are in a solid state, and the battery electromotive force is partially different due to improper electrical handling during module assembly and uneven battery temperature distribution during module temperature rise. It happens when.

【0004】常温において電池内部に流れる電流の大小
は、印加電圧と電池の内部抵抗によって決まるが、その
内部抵抗は主に正極の構造によって決定される。正極は
硫黄又は多硫化ナトリウム又は両者の混合物の正極活物
質3と、正極活物質を含浸した繊維状又は織布状の正極
集電体物質4とで構成される。固体状態においては、正
極活物質はほとんど電気伝導を示さず、電気が流れる経
路は、固体電解質と正極集電体物質との接触部分に限定
される。
The magnitude of the current flowing inside the battery at room temperature is determined by the applied voltage and the internal resistance of the battery. The internal resistance is mainly determined by the structure of the positive electrode. The positive electrode is composed of a positive electrode active material 3 made of sulfur, sodium polysulfide, or a mixture of both, and a fibrous or woven positive electrode current collector material 4 impregnated with the positive electrode active material. In the solid state, the positive electrode active material exhibits almost no electric conduction, and the path of electricity flow is limited to the contact portion between the solid electrolyte and the positive electrode current collector material.

【0005】このため固体状態では、上記固体電解質と
正極集電体物質との接点の数によって内部抵抗が決定さ
れ、同じ電位差が両極に掛かった場合でも、この数が多
いほど電池内に流れる電流は大きくなる。固体電解質と
正極集電体物質の間では、電子の授受によって電流が流
れる。すなわち固体状態で転換が生じた場合を考える
と、電子は正極集電体物質から固体電解質表面に流れ込
み、そこでナトリウムイオンの還元を引き起こす。還元
によって生成した金属状のナトリウムは固体電解質表面
で電極内部に拡散できないため、固体電解質内部に向か
ってデンドライトとして析出することになる。またこの
析出量は、電池内に流れる電気量、すなわち電流と時間
の積に依存するため、固体状態で内部抵抗が低い電池ほ
ど、デンドライト発生量が多い。
Therefore, in the solid state, the internal resistance is determined by the number of contacts between the solid electrolyte and the positive electrode current collector material, and even if the same potential difference is applied to both electrodes, the larger the number, the more the current flowing in the battery. Grows. An electric current flows between the solid electrolyte and the positive electrode current collector substance due to the transfer of electrons. That is, considering the case where conversion occurs in the solid state, the electrons flow from the positive electrode current collector material to the surface of the solid electrolyte, where they cause the reduction of sodium ions. Since metallic sodium produced by the reduction cannot diffuse inside the electrode on the surface of the solid electrolyte, it is deposited as dendrite toward the inside of the solid electrolyte. In addition, since the amount of deposition depends on the amount of electricity flowing in the battery, that is, the product of current and time, the battery having a lower internal resistance in the solid state has a larger amount of dendrite generation.

【0006】この問題の解決は、固体状態での電池の内
部抵抗を非常に大きくすること、具体的には固体電解質
と正極集電体物質との接触点を全て除くことによって可
能になると考えられる。従来技術では実公昭55−42
392号、特開平2−257576号、特開平4−28
169号及び特開平4−71171号各公報に示すよう
に別の観点、すなわち電池運転温度で充電時における固
体電解質の劣化を少なくすることや、充電深度を高める
ために、正極と固体電解質の間に電子絶縁性の繊維状物
質層を挿入することが行われている。
It is considered that this problem can be solved by making the internal resistance of the battery in the solid state very large, specifically, by removing all the contact points between the solid electrolyte and the positive electrode current collector material. . According to the conventional technique
392, JP-A-2-257576, JP-A-4-28
169 and Japanese Patent Application Laid-Open No. 4-71171, there is another point of view, that is, in order to reduce the deterioration of the solid electrolyte during charging at the battery operating temperature and to increase the charging depth, a positive electrode and a solid electrolyte are provided. It has been practiced to insert an electronically insulating fibrous material layer into the.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記従来技術
では、電子絶縁層の物質が、比較的薄くまた非常に空隙
率の高い繊維状であるため、正極集電体物質がこの層を
突き抜け直接固体電解質と接触してしまうことから、接
触点の数を減少することはできてもそれらを全て除くこ
と、すなわち本発明の問題点である室温での転極による
デンドライト析出を防止することは困難である。
However, in the above-mentioned prior art, since the material of the electronic insulating layer is a fibrous material having a relatively thin thickness and a very high porosity, the positive electrode current collector material directly penetrates through this layer. Since it comes in contact with the solid electrolyte, it is difficult to reduce the number of contact points, but it is difficult to remove all of them, that is, it is difficult to prevent dendrite precipitation due to polarization at room temperature, which is a problem of the present invention. Is.

【0008】また、この問題を解決するにあたって、仮
に固体電解質と正極集電体物質の接触を除くことができ
た場合でも、単にそれだけでは電池の初期放電時におい
て分極が生じ、放電が困難になるという新たな問題が生
じる。これは固体電解質と正極集電体物質との間に導電
性物質が存在しないことに起因する。本発明は、以上の
点に鑑み、固体状態での転極によっても固体電解質内に
デンドライト析出を生じせしめない電池構造、換言すれ
ば正極集電物質と固体電解質の接触がなく、しかも初期
放電において正常な電池動作が保証された電池を提供す
ることを目的とする。
Further, in order to solve this problem, even if the contact between the solid electrolyte and the positive electrode current collector material could be removed, polarization alone will occur during the initial discharge of the battery, and discharge will be difficult. A new problem arises. This is because there is no conductive substance between the solid electrolyte and the positive electrode current collector substance. In view of the above points, the present invention is a battery structure that does not cause dendrite precipitation in the solid electrolyte even by reversal in the solid state, in other words, there is no contact between the positive electrode current collector and the solid electrolyte, and in the initial discharge It is an object to provide a battery whose normal battery operation is guaranteed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、ナトリウムを主体とするアルカリ金属
の負極活物質1と、負極活物質を収納する負極容器2
と、硫黄及び/又は多硫化ナトリウムからなる正極活物
質3と、正極活物質を含浸した繊維状又は織布状の正極
集電体物質4と、正極活物質及び正極集電体物質を収納
する正極容器5と、負極活物質と正極活物質を隔てるナ
トリウムイオン伝導性の固体電解質6と、固体電解質に
接着され正極容器と負極容器を電気的に絶縁する絶縁体
7から構成されるナトリウム−硫黄電池において、前記
固体電解質の正極側に、正極集電体物質の繊維径よりも
細かな間隙を有する電子絶縁性でかつ耐溶融硫黄性、及
び耐溶融多硫化ナトリウム性の織布状又は不織布状物質
8を配置し、さらに該物質の間隙に、電池作動温度でイ
オン伝導を有し、常温ではほとんど伝導性のない、少な
くとも電池運転温度では液体の物質9が含まれているこ
ととしたものである。
In order to achieve the above object, according to the present invention, a negative electrode active material 1 of an alkali metal mainly containing sodium and a negative electrode container 2 accommodating the negative electrode active material.
And a positive electrode active material 3 made of sulfur and / or sodium polysulfide, a positive electrode active material impregnated with a fibrous or woven fabric, and a positive electrode active material and a positive electrode current collector material. Sodium-sulfur composed of a positive electrode container 5, a sodium ion conductive solid electrolyte 6 separating the negative electrode active material and the positive electrode active material, and an insulator 7 adhered to the solid electrolyte to electrically insulate the positive electrode container and the negative electrode container. In the battery, on the positive electrode side of the solid electrolyte, there is a finer gap than the fiber diameter of the positive electrode current collector substance, and it has an electronic insulation property and is resistant to molten sulfur and molten polysulfide. The substance 8 is disposed, and the substance 9 is assumed to contain a liquid substance 9 having a ionic conductivity at a battery operating temperature and having almost no conductivity at room temperature, at least at a battery operating temperature, in a gap between the substances. Ah .

【0010】上記において、固体電解質の正極側に配置
される、正極集電体物質の繊維径よりも細かな間隙を有
する電子絶縁性でかつ耐溶融硫黄性、及び耐溶融多硫化
ナトリウム性の織布状又は不織布状物質8は、具体的に
はアルミニウム酸化物を主体とする物質やケイ素酸化
物、ケイ酸塩を主体とする物質が適用可能である。ま
た、これらの電子絶縁性の織布状又は不織布状物質の間
隙に含まれる、電池作動温度でイオン伝導性を示す液体
の物質9として、多硫化ナトリウムを用いることができ
るが、これに限らず、上記の機能を満たす物質であれば
適用可能である。
In the above, the woven fabric, which is arranged on the positive electrode side of the solid electrolyte and has a gap smaller than the fiber diameter of the positive electrode current collector material, and which has electronic insulation, is resistant to molten sulfur, and is resistant to molten sodium polysulfide. As the cloth-like or non-woven cloth-like substance 8, specifically, a substance mainly containing aluminum oxide, a substance mainly containing silicon oxide or silicate can be applied. In addition, sodium polysulfide can be used as the liquid substance 9 having ion conductivity at the battery operating temperature, which is contained in the gap between these electronically insulating woven or non-woven substances, but is not limited to this. Any substance that satisfies the above functions can be applied.

【0011】本発明のナトリウム−硫黄電池は、直並列
に接続した複数本の単電池13と、これら単電池群を収
容するモジュール容器12と、該単電池群の温度を高め
る昇温手段と、該単電池群の充放電をモジュール容器1
2の外部から行うための入出力端子16とを有するナト
リウム−硫黄電池モジュールにおける単電池として好適
に用いることができる。
The sodium-sulfur battery of the present invention comprises a plurality of cells 13 connected in series and parallel, a module container 12 for accommodating these cell groups, and a temperature raising means for raising the temperature of the cell groups. Module container 1 for charging and discharging the unit cells
2 can be preferably used as a unit cell in a sodium-sulfur battery module having an input / output terminal 16 for performing from the outside.

【0012】また、上記のナトリウム−硫黄電池モジュ
ールは、電力供給が需要に対して過剰な時に余剰電力を
二次電池に蓄え、電力供給が需要に対して不足の時には
二次電池に蓄えていた電力を放出することによって不足
分の電力の全部又は一部を補うための二次電池による電
力貯蔵システムにおける二次電池として好適に用いるこ
とができる。さらに、ナトリウム−硫黄電池モジュール
は、駆動力源として電池による電気エネルギーを用い、
これをモーター等で運動エネルギーに変換する機構29
と、電気エネルギー又は運動エネルギーの量を調節する
ことで加速及び減速が可能な制御機構27とを有する電
気自動車における電池としても好適に用いることができ
る。
Further, in the sodium-sulfur battery module, the surplus power is stored in the secondary battery when the power supply is excessive with respect to the demand, and is stored in the secondary battery when the power supply is insufficient with respect to the demand. It can be suitably used as a secondary battery in a power storage system using a secondary battery for supplementing all or part of the shortage of power by discharging power. Further, the sodium-sulfur battery module uses electric energy from the battery as a driving force source,
Mechanism for converting this to kinetic energy with a motor etc. 29
And a control mechanism 27 capable of accelerating and decelerating by adjusting the amount of electric energy or kinetic energy, it can be suitably used as a battery in an electric vehicle.

【0013】[0013]

【作用】上記のように固体電解質の正極側に、正極集電
体物質の繊維径よりも細かな間隙を有する電子絶縁性で
かつ耐溶融硫黄性、及び耐溶融多硫化ナトリウム性の織
布状又は不織布状物質を配置した場合、正極集電体物質
の繊維が、その径より細かい間隙を介して電子絶縁性織
布状物質を突き抜けることは不可能であり、それゆえ固
体電解質に直接接触することがない。このために固体状
態において電池の内部抵抗は非常に高くなり、両極間に
電位差が生じても電池内を流れる電流はほとんど生じな
いので、固体電解質内にデンドライトが発生することも
ない。
[Function] As described above, the solid electrolyte has a finer size than the fiber diameter of the positive electrode current collector material on the positive electrode side, and has electronic insulation, molten sulfur resistance, and molten sodium polysulfide resistance. Or, when a non-woven fabric-like substance is arranged, it is impossible for the fibers of the positive electrode current collector substance to penetrate through the electronically insulating woven fabric-like substance through a gap smaller than its diameter, and therefore, it is in direct contact with the solid electrolyte. Never. For this reason, the internal resistance of the battery becomes extremely high in the solid state, and even if a potential difference occurs between both electrodes, almost no current flows in the battery, so that dendrite does not occur in the solid electrolyte.

【0014】また電子絶縁性織布状又は不織布状物質の
間隙に、電池作動温度でイオン伝導を有し、常温ではほ
とんど電気伝導性のない、少なくとも電池運転温度では
液体の物質を含まれることにより、固体状態では上述の
ように内部抵抗が高く、デンドライトが生じにくい状態
が維持され、一方、電池作動温度ではこの物質を通して
イオン電流が流れるため、正常な電池動作が確保でき
る。初期放電においても、電池の分極によって生じる使
用不能な状態に陥ることがない。
In addition, by containing a substance which is ionic conductive at a battery operating temperature and has little electric conductivity at room temperature, and which is a liquid at least at a battery operating temperature, in the gap between the electronically insulating woven or non-woven material. In the solid state, the internal resistance is high as described above, and the state in which dendrite is hard to occur is maintained. On the other hand, at the battery operating temperature, the ionic current flows through this substance, so that normal battery operation can be ensured. Even in the initial discharge, there is no possibility of becoming unusable due to polarization of the battery.

【0015】[0015]

【実施例】以下に、実施例を挙げて本発明を具体的に説
明する。 実施例1 図1は本発明にかかるナトリウム−硫黄電池の断面図を
示す。負極活物質1、正極活物質3は一般に金属製の負
極容器2、正極容器5にそれぞれ収納されている。負極
活物質にはナトリウムを主体とするアルカリ金属、正極
活物質には硫黄又は多硫化ナトリウム又は両者の混合物
が用いられるが、電池組立時には一般的に硫黄が用いら
れる。両極活物質は電池作動温度では液体である。硫黄
は電気伝導がないために繊維状又は織布状の正極集電体
物質4に含浸された形で用いられる。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 FIG. 1 shows a sectional view of a sodium-sulfur battery according to the present invention. The negative electrode active material 1 and the positive electrode active material 3 are generally housed in a metal negative electrode container 2 and a positive electrode container 5, respectively. Alkali metal mainly composed of sodium is used for the negative electrode active material, and sulfur, sodium polysulfide, or a mixture of both is used for the positive electrode active material, and sulfur is generally used during battery assembly. The bipolar active material is a liquid at the battery operating temperature. Sulfur has no electric conductivity, and is used in the form of being impregnated in the fibrous or woven cloth-like positive electrode current collector material 4.

【0016】正極集電体物質は、耐硫黄性及び耐多硫化
ナトリウム性の電子伝導性物質である必要があり、一般
には繊維状、フェルト状もしくはマット状のカーボン又
はグラファイトが用いられる。負極容器2と正極容器5
は絶縁体7で絶縁されており、一般には密閉構造になっ
ている。さらに電池内部において、負極活物質1は正極
活物質3と固体電解質6によって隔てられる。固体電解
質6は負極活物質が酸化されて生成するイオンの伝導体
であるが、電子伝導性が極めて低いことが必要で、一般
にはベータアルミナが用いられる。固体電解質6は一般
には反応面積を広くとるために、下端を閉じた管状に成
形され、活物質をその内側と外側に分離するセパレータ
の役目を兼ねている。
The positive electrode current collector material must be a sulfur-resistant and sodium polysulfide-resistant electron conductive material, and generally fibrous, felt-like or mat-like carbon or graphite is used. Negative electrode container 2 and positive electrode container 5
Are insulated by an insulator 7, and generally have a closed structure. Further, inside the battery, the negative electrode active material 1 is separated from the positive electrode active material 3 by the solid electrolyte 6. The solid electrolyte 6 is a conductor of ions generated by oxidizing the negative electrode active material, but it needs to have extremely low electron conductivity, and beta alumina is generally used. The solid electrolyte 6 is generally formed in a tubular shape with its lower end closed so as to have a large reaction area, and also serves as a separator for separating the active material into the inside and the outside thereof.

【0017】図中の8が本発明に係る電子絶縁性の織布
状又は不織布状物質で、該物質は正極活物質3及び正極
集電体物質4からなる正極と、袋管状の固体電解質6と
の間に配置される。さらに正極と固体電解質の界面の拡
大図である図2に示すように、該織布状又は不織布状物
質8は、固体電解質と正極を結ぶ間隙を有していなくて
はならず、また、その間隙の大きさは、正極集電体物質
4の繊維径よりも小さく、正極集電体物質4が直接固体
電解質6に接触しないようになっている。なおかつ、そ
の間隙には電池作動温度でイオン伝導を有し、常温では
ほとんど電気伝導性のない、少なくとも電池運転温度で
は液体の物質9が含まれている。
Reference numeral 8 in the figure denotes an electronically insulating woven or non-woven material according to the present invention, which is a positive electrode composed of a positive electrode active material 3 and a positive electrode current collector material 4, and a solid electrolyte 6 having a tubular shape. It is placed between and. Further, as shown in FIG. 2, which is an enlarged view of the interface between the positive electrode and the solid electrolyte, the woven or non-woven material 8 must have a gap connecting the solid electrolyte and the positive electrode, and The size of the gap is smaller than the fiber diameter of the positive electrode current collector material 4 so that the positive electrode current collector material 4 does not come into direct contact with the solid electrolyte 6. In addition, the gap contains a substance 9 which has ionic conductivity at the battery operating temperature and has almost no electrical conductivity at room temperature, and which is liquid at least at the battery operating temperature.

【0018】実施例2 次に本発明の電池の応用例について説明する。ナトリウ
ム−硫黄電池は単電池で用いられることは少なく、多く
は電池を複数本組み合わせたモジュールの形で使われ、
これは本発明にかかるナトリウム−硫黄電池においても
同様である。図3には本発明を用いた電池モジュールの
一例を示す。複数の単電池13が使用する目的に見合っ
た電圧、電流値によって充放電を行うように直並列に接
続され並べられている。電池が高温で作動するために、
これらの単電池群は昇温及び保温が可能であるようにヒ
ータ線10及び断熱材11が配置されたモジュール容器
内に収納されている。またモジュール内部の温度を調節
するために排気筒14及びブロア15が配設されてい
る。電池の充放電を制御するための設備は通常モジュー
ル容器12の外部にあり、その設備と単電池群との接続
は入出力端子16を介して行われ、これによって外部か
らモジュールの制御が可能となる。
Example 2 Next, an application example of the battery of the present invention will be described. Sodium-sulfur batteries are rarely used in single cells, most are used in the form of modules that combine multiple batteries,
This also applies to the sodium-sulfur battery according to the present invention. FIG. 3 shows an example of a battery module using the present invention. The plurality of unit cells 13 are connected and arranged in series / parallel so as to perform charging / discharging according to a voltage and current value suitable for the purpose of use. Because the battery operates at high temperature,
These unit cell groups are housed in a module container in which the heater wire 10 and the heat insulating material 11 are arranged so that the temperature can be raised and kept warm. Further, an exhaust pipe 14 and a blower 15 are arranged to adjust the temperature inside the module. The equipment for controlling the charge / discharge of the battery is usually outside the module container 12, and the equipment and the unit cell group are connected via the input / output terminal 16, which allows the module to be controlled from the outside. Become.

【0019】本発明にかかる電池モジュールの用途とし
て、余剰電力を貯蔵して電力不足時に放出する電力貯蔵
システムや、電気を駆動力源とする電気自動車用のバッ
テリがあげられる。電力貯蔵システムの概念例を図4に
示す。発電所17で発電された電気は、送電系統20を
介して変電設備18に送られ、ここで電圧調節等が行わ
れた後、配電系統21を介して需要家19に送られる。
需要家19の電力使用量は一定とは限らずむしろ常に変
動する。一方発電所17においては、負荷に追従する運
転では電力設備の稼働率低下を招くため、一定出力の運
転が望ましい。
Applications of the battery module according to the present invention include a power storage system that stores surplus power and discharges it when power is insufficient, and a battery for an electric vehicle that uses electricity as a driving force source. FIG. 4 shows a conceptual example of the power storage system. The electricity generated at the power plant 17 is sent to the substation facility 18 via the power transmission system 20, where the voltage is adjusted and the like, and then sent to the customer 19 via the power distribution system 21.
The power consumption of the customer 19 is not always constant but rather constantly fluctuates. On the other hand, in the power plant 17, the operation following the load causes a decrease in the operating rate of the electric power facility, and thus the operation with a constant output is desirable.

【0020】そこで変電設備に付属して電力貯蔵システ
ム26を設置するとこの問題に対処することができる。
電力貯蔵システムは直交変換設備23、電池設備24、
これらの制御設備22、及び保安設備から構成される。
直交変換設備23はインバータ等で系統の交流を電池で
貯蔵できる直流に変換する設備であり、電池設備24は
前述の電池モジュール、又はこれを多数集合させた設備
である。電力供給量が需要量を上回る時には、変電設備
18を介して余剰電力を電池設備24に蓄積し、逆に需
要量が供給量を上回る時には、電池設備に蓄積していた
電力を放出し、配電系統に合流させる。結果的に電力供
給量は平準化され、発電設備利用効率を高めることがで
きる。同様に、この電力貯蔵システム26を需要家19
に付属させることも可能である。
Therefore, by installing the power storage system 26 attached to the substation equipment, this problem can be dealt with.
The power storage system includes an orthogonal transformation equipment 23, a battery equipment 24,
It is composed of these control equipment 22 and security equipment.
The orthogonal conversion equipment 23 is equipment for converting alternating current of the system to direct current that can be stored in a battery by an inverter or the like, and the battery equipment 24 is the above-mentioned battery module or a large number of these assembled. When the power supply amount exceeds the demand amount, surplus power is accumulated in the battery facility 24 via the substation facility 18, and conversely, when the demand amount exceeds the supply amount, the power accumulated in the battery facility is discharged to distribute power. Join the system. As a result, the amount of power supply is leveled and the efficiency of power generation equipment utilization can be improved. Similarly, this power storage system 26 is used by the consumer 19
It is also possible to attach it to.

【0021】図5には電気自動車の概念例を示す。比較
的小型の電池モジュール30を用いて電気を駆動力源と
し、電気エネルギーを運動エネルギーに変換するモータ
ー等の変換機構29によって回転運動を作り、車輪に運
動を伝達することで自動車を駆動させる。また電池の電
気エネルギー又はエネルギー変換機構29によって生成
した運動エネルギーの量を運転者が調節することで加速
及び減速が可能な制御機構27を有している。
FIG. 5 shows a conceptual example of an electric vehicle. Electricity is used as a driving force source using a relatively small battery module 30, and a conversion mechanism 29 such as a motor that converts electric energy into kinetic energy makes a rotational movement, and the movement is transmitted to wheels to drive an automobile. It also has a control mechanism 27 capable of acceleration and deceleration by the driver adjusting the amount of kinetic energy generated by the electric energy of the battery or the energy conversion mechanism 29.

【0022】実施例3 次に本発明の電池の製造例と比較例について説明する。
正極として活物質の硫黄(99.9%)を円筒状のグラ
ファイトフェルトに真空含浸させたモールドを作製し
た。グラファイトフェルトには繊維径の異なる3種類の
もの、すなわち15μm、5μm、1μmの3種類を使
用した。固体電解質としてβ″−アルミナのセラミック
袋管を用い、この開口部にα−アルミナのリングをガラ
スで接合した後、負極容器、正極容器とこのα−アルミ
ナのリングを拡散接合により一体化した。
Example 3 Next, a production example and a comparative example of the battery of the present invention will be described.
As a positive electrode, a mold was manufactured by vacuum impregnating a cylindrical graphite felt with sulfur (99.9%) as an active material. Three types of graphite felt having different fiber diameters, that is, 15 μm, 5 μm, and 1 μm were used. A β ″ -alumina ceramic bag tube was used as a solid electrolyte, and an α-alumina ring was bonded to this opening with glass, and then the negative electrode container and the positive electrode container were integrated with this α-alumina ring by diffusion bonding.

【0023】負極容器にナトリウムを注入して、不活性
雰囲気中の溶接によって容器を密閉した。α−アルミナ
繊維を平織で布状に編み上げたもの(厚さ約100μ
m、ヤーン間10μm)に、不活性雰囲気中で五硫化ナ
トリウム粉末をまぶし、同じく不活性雰囲気で熱処理に
よってα−アルミナの布に含浸させた。これをβ″−ア
ルミナ固体電解質管の周囲に巻きつけ、それと容器の間
に上述の硫黄モールドを挿入して正極を溶接によって密
閉し、図1と同様の、ただしグラファイト繊維径がそれ
ぞれ異なる3種類のナトリウム−硫黄電池を得た。この
3種類の電池のうち、本発明を適用しているものは、α
−アルミナ織布の間隙より大きい繊維径を有する、15
μmのグラファイト繊維を用いたもののみである。
Sodium was injected into the negative electrode container, and the container was sealed by welding in an inert atmosphere. α-alumina fiber woven in a plain weave (thickness: approx. 100μ
m, 10 μm between yarns) was sprinkled with sodium pentasulfide powder in an inert atmosphere, and the α-alumina cloth was impregnated by heat treatment in the same inert atmosphere. This is wrapped around a β ″ -alumina solid electrolyte tube, the above-mentioned sulfur mold is inserted between it and the container, and the positive electrode is sealed by welding. The same as in FIG. 1, but with three different graphite fiber diameters The sodium-sulfur battery of the present invention was obtained from the three types of batteries to which the present invention was applied.
-Having a fiber diameter larger than the interstices of the woven alumina fabric, 15
Only those using μm graphite fiber.

【0024】これらのナトリウム−硫黄電池を電気炉で
電池作動温度である330℃に昇温し、固体電解質面積
当たりの電流密度70mA/cm2 で通電を行ったとこ
ろ、3種類の電池とも初期放電を正常に行うことがで
き、充放電にも支障はなかった。その後これらの電池を
室温まで降温し、それぞれについて室温での内部抵抗を
測定したところ、繊維径15μmのグラファイトフェル
トを用いた電池では100MΩ以上であったのに対し、
繊維径5μm、1μmのグラファイトフェルトを用いた
電池ではそれぞれ10kΩ、3kΩと抵抗が低かった。
These sodium-sulfur batteries were heated in an electric furnace to a cell operating temperature of 330 ° C. and energized at a current density of 70 mA / cm 2 per solid electrolyte area. Was performed normally, and there was no hindrance to charging and discharging. After that, these batteries were cooled to room temperature, and the internal resistance was measured at room temperature for each of them, which was 100 MΩ or more in the battery using the graphite felt having a fiber diameter of 15 μm.
Batteries using graphite felt having fiber diameters of 5 μm and 1 μm had low resistances of 10 kΩ and 3 kΩ, respectively.

【0025】次にこれらの電池を室温において放電方向
に5Vの電圧で10分間通電した。グラファイト繊維径
が15μmの電池ではほとんど電流がなかったのに対し
て、5μm、1μmの電池では初めから数百μAないし
1mA程度の電流が流れ、時間の経過とともに電流が増
していった。続いてこれらの電池を再び電池作動温度ま
で昇温しようとしたが、グラファイト繊維径5μm及び
1μmの電池では昇温中に電池の発熱が観察された。こ
れらの電池を分解したところ、β″−アルミナ管が破損
しており、活物質が直接反応していた。一方繊維径15
μmの電池では、電池作動温度まで正常に昇温ができ
て、電池の充放電を行ったところ、最初の特性と全く変
らない特性が得られた。
Next, these batteries were energized at room temperature in the discharge direction at a voltage of 5 V for 10 minutes. In the battery having a graphite fiber diameter of 15 μm, there was almost no current, whereas in the battery having 5 μm and 1 μm, a current of about several hundred μA to 1 mA flows from the beginning, and the current increased with the passage of time. Subsequently, these batteries were tried to be heated to the battery operating temperature again, but in the batteries having graphite fiber diameters of 5 μm and 1 μm, heat generation of the batteries was observed during the temperature rising. When these batteries were disassembled, the β ″ -alumina tube was broken, and the active material was directly reacted.
In the case of the μm battery, the temperature could be raised to the battery operating temperature normally, and when the battery was charged and discharged, the characteristics that were completely the same as the initial characteristics were obtained.

【0026】これらの例は次のように説明できる。すな
わち本発明を適用していない、α−アルミナの織布の間
隙(10μm)より小さい繊維径のグラファイトフェル
トを用いた電池、すなわち5μm及び1μmの径の繊維
を用いた電池では、グラファイト繊維がα−アルミナ織
布の間隙を突き抜けて、直接β″−アルミナ固体電解質
管に接触している部分があるため、この部分を通して電
子伝導が生じ、室温で活物質が固体状態でも比較的内部
抵抗が低く、電流が電池内に流れ込みやすい状態になっ
ている。また、放電方向に電流が流れた場合は、β″−
アルミナに接しているグラファイト繊維から電子が供給
され、β″−アルミナ表面から内部に向かってナトリウ
ムのデンドライトが生じ、このため、昇温中の電池内に
発生する応力によってβ″−アルミナ管が破損する事態
が生じたと考えられる。
These examples can be explained as follows. That is, in the battery to which the present invention is not applied and which uses the graphite felt having a fiber diameter smaller than the gap (10 μm) of the α-alumina woven cloth, that is, the battery using the fibers having the diameters of 5 μm and 1 μm, the graphite fiber is α. -There is a portion that penetrates the gap of the alumina woven cloth and is in direct contact with the β "-alumina solid electrolyte tube, so electron conduction occurs through this portion, and the internal resistance is relatively low even at room temperature even if the active material is in the solid state. , The current is easy to flow into the battery. Also, when the current flows in the discharge direction, β ″ −
Electrons are supplied from the graphite fibers in contact with the alumina, and sodium dendrites are generated from the surface of the β ″ -alumina to the inside. Therefore, the β ″ -alumina tube is damaged by the stress generated in the battery during temperature increase. It is considered that a situation has occurred.

【0027】一方、本発明を適用した、グラファイトフ
ェルト径15μmの電池では、α−アルミナ織布の間隙
をグラファイト繊維が突き抜けないため、その間隙にあ
る物質の電気伝導性によって電池の内部抵抗が決定され
る。ここではその物質は多硫化ナトリウムであり、固体
ではほとんど電気伝導性がないため電池の内部抵抗が高
く、ある程度の電位差が電池の両極間にかかっても電池
内に電流が流れない。また、そのためβ″−アルミナ内
にデンドライトが生じることもない。このように本発明
の適用によって、室温での耐デンドライト性に優れた電
池が得られる。
On the other hand, in the battery having the graphite felt diameter of 15 μm to which the present invention is applied, the graphite fibers do not penetrate through the gap of the α-alumina woven cloth, and therefore the internal resistance of the battery is determined by the electric conductivity of the substance in the gap. To be done. Here, the substance is sodium polysulfide, and since solid has almost no electrical conductivity, the internal resistance of the battery is high, and even if a certain potential difference is applied between both electrodes of the battery, no current flows in the battery. Therefore, dendrite does not occur in β ″ -alumina. Thus, by applying the present invention, a battery having excellent dendrite resistance at room temperature can be obtained.

【0028】実施例4 実施例3と同様に、ただし、α−アルミナ織布の代わり
に布状にシリカ繊維を織った電子絶縁層(ヤーン間10
μm)に五硫化ナトリウムを含浸させたものを、固体電
解質管と正極硫黄モールドの間に配して、実施例3と同
様、3種類の電池を製作し、それらの試験(高温充放電
→室温通電→昇温)を行った。結果は実施例3と同様
で、いずれの電池も初期放電時は問題なかったが、室温
での抵抗測定、放電方向の通電の後昇温した際に、本発
明を適用していない、グラファイトフェルト径が5μm
及び1μmの電池ではβ″−アルミナ管の破損が生じ
た。一方、本発明を適用したグラファイトフェルト径が
15μmの電池では昇温中の異常はなく、通常の充放電
が再度可能であった。このように、電子伝導性がなく、
耐硫黄及び耐多硫化ナトリウム性の物質であれば、本発
明における固体電解質と正極との間の電子絶縁層に適用
することが可能である。
Example 4 As in Example 3, except that an electronic insulating layer (a space between yarns 10) in which silica fibers were woven in a cloth form instead of the α-alumina woven cloth was used.
μm) impregnated with sodium pentasulfide was placed between the solid electrolyte tube and the positive electrode sulfur mold, and three types of batteries were manufactured in the same manner as in Example 3, and their tests (high temperature charge / discharge → room temperature) were performed. The power was turned on → the temperature was raised. The results were similar to those of Example 3, and no problem was found in any of the batteries during initial discharge, but when the resistance was measured at room temperature and the temperature was raised after energization in the discharge direction, the present invention was not applied. Diameter is 5 μm
In addition, the β ″ -alumina tube was broken in the 1 μm battery. On the other hand, in the battery having the graphite felt diameter of 15 μm to which the present invention was applied, there was no abnormality during the temperature rise, and normal charge / discharge was possible again. Thus, it has no electronic conductivity,
Any substance that is resistant to sulfur and sodium polysulfide can be applied to the electronic insulating layer between the solid electrolyte and the positive electrode in the present invention.

【0029】実施例5 実施例4と同様、正極集電体に15μmの繊維径のグラ
ファイトフェルトを用い、電子絶縁層にシリカ繊維を織
った布を用いた。ただし、シリカ織布に五硫化ナトリウ
ム粉末を含浸させたものと、単に織布のみを配したもの
の2種類の電池を作製した。これらの電池は室温では1
00MΩ以上の高い内部抵抗を示し、室温での耐デンド
ライト性は良好であると考えられた。これらの電池を昇
温し、初期放電を試みたところ、シリカの電子絶縁層に
五硫化ナトリウム粉末を含浸させた電池では、初期放電
が円滑に進行したが、単に織布のみを配した電池では、
数週間放電を行っても電流が流れず、電池として機能し
なかった。
Example 5 As in Example 4, a graphite felt having a fiber diameter of 15 μm was used for the positive electrode current collector, and a cloth woven of silica fibers was used for the electronic insulating layer. However, two types of batteries were produced, one in which a silica woven cloth was impregnated with sodium pentasulfide powder and the other in which only the woven cloth was arranged. These batteries are 1 at room temperature
It showed a high internal resistance of 00 MΩ or more, and was considered to have good dendrite resistance at room temperature. When these batteries were heated and initial discharge was attempted, the initial discharge proceeded smoothly in the battery in which the silica electronic insulating layer was impregnated with sodium pentasulfide powder, but in the battery in which only the woven fabric was arranged, ,
After discharging for several weeks, no current flowed and it did not function as a battery.

【0030】このことから、電子絶縁層に電池作動温度
でイオン伝導を示す物質が含浸されていない場合、室温
での耐デンドライト性は良好であっても、電池として作
動しないことがわかる。従って、こうした物質を含んだ
電子絶縁層であることが本発明を成立させるのに不可欠
な構成要素である。
From the above, it can be seen that when the electronic insulating layer is not impregnated with a substance exhibiting ion conduction at the battery operating temperature, the battery does not operate even if the dendrite resistance at room temperature is good. Therefore, the electronic insulating layer containing such a substance is an essential component for realizing the present invention.

【0031】実施例6 実施例3と同様に、正極集電体に15μmの繊維径のグ
ラファイトフェルトを用い、ただし固体電解質の正極側
に配置する電子絶縁層として、アルミナ短繊維を梳いた
シート状物質を用い、これに実施例3と同様に五硫化ナ
トリウムを含浸させてナトリウム−硫黄電池を作製し
た。このアルミナシートに存在する細孔は、走査型電子
顕微鏡を用い画像解析によって調べたところ、平均5.
5μm、最大11μmであった。
Example 6 As in Example 3, a graphite felt having a fiber diameter of 15 μm was used for the positive electrode current collector, except that a sheet-shaped alumina short fiber was used as an electronic insulating layer arranged on the positive electrode side of the solid electrolyte. A substance was used and impregnated with sodium pentasulfide in the same manner as in Example 3 to prepare a sodium-sulfur battery. The pores present in this alumina sheet were examined by image analysis using a scanning electron microscope and found to have an average of 5.
It was 5 μm and maximum 11 μm.

【0032】この電池は室温で100MΩ以上の高い内
部抵抗を示し、室温での耐デンドライト性は良好である
と考えられた。室温で放電方向に25Vの電圧を10分
間印加した後、電池を昇温し通電を行ったところ、初期
放電及びその後の充放電ともに順調で、通常の電池と差
異は認められなかった。
This battery showed a high internal resistance of 100 MΩ or more at room temperature, and was considered to have good dendrite resistance at room temperature. When a voltage of 25 V was applied in the discharge direction at room temperature for 10 minutes and then the battery was heated and energized, both initial discharge and subsequent charging / discharging were smooth, and no difference from a normal battery was observed.

【0033】実施例7 実施例3と同様に、ただし正極集電体には15μmの繊
維径のグラファイトフェルトを用い、固体電解質の正極
側に配置する電子絶縁層として、ヤーン間隔が5μm、
10μm、20μm、50μmであるα−アルミナ繊維
の平織布を用いて、これらに実施例3と同様にそれぞれ
五硫化ナトリウムを含浸させ、計4種類のナトリウム−
硫黄電池を作製した。
Example 7 As in Example 3, except that graphite felt having a fiber diameter of 15 μm was used as the positive electrode current collector, and the yarn spacing was 5 μm as the electronic insulating layer arranged on the positive electrode side of the solid electrolyte.
Using a plain woven fabric of α-alumina fibers of 10 μm, 20 μm, and 50 μm, each was impregnated with sodium pentasulfide in the same manner as in Example 3, and a total of four types of sodium-
A sulfur battery was produced.

【0034】これらの電池を室温で外部から放電方向に
5Vの電圧をかけて10分通電した結果、本発明を実施
した電子絶縁層のヤーン間隔が5μm及び10μmの電
池は、昇温過程で特に問題が生じることなく、通常の電
池と同様に充放電が再開できた。一方、本発明を適用し
ていない、ヤーン間隔が20μm及び50μmの電子絶
縁層を用いた電池では、いずれも室温通電後の昇温過程
で電池に発熱を生じ、電池分解の結果β″−アルミナが
破損していた。この例と実施例3とを比較してわかるよ
うに、本発明の成立には正極集電体物質の繊維径が単独
である値以上であること、又は電子絶縁性物質の孔径が
単独である値以下であることは重要ではなく、(孔径)
<(繊維径)の関係が成立することが必須である。
As a result of energizing these batteries at room temperature from the outside with a voltage of 5 V in the discharge direction for 10 minutes, the batteries having the yarn intervals of the electronic insulating layer of 5 μm and 10 μm embodying the present invention are especially Charging / discharging could be restarted like a normal battery without any problems. On the other hand, in the battery to which the present invention is not applied and which uses the electronic insulating layer with the yarn interval of 20 μm and 50 μm, heat is generated in the battery during the temperature rising process after the current is applied at room temperature, and the result of the battery disassembly is β ″ -alumina. As can be seen by comparing this example with Example 3, in order to establish the present invention, the fiber diameter of the positive electrode current collector material is not less than a certain value alone, or the electronic insulating material. It is not important that the pore size of is less than a certain value, (pore size)
It is essential that the relationship of <(fiber diameter) is established.

【0035】実施例8 グローブボックス内でシリカ粉末と五硫化ナトリウム粉
末を重量比10:1で混合し、この混合比0.2gを1
00MPaの圧力で、直径15mm、厚さ約0.8mm
の薄いディスク状に成形した。このディスクの両側に実
施例3で用いたグラファイトフェルトを配し、室温で電
気伝導度を測定したところ100MΩ以上の抵抗を有し
ていた。したがって、このディスクを介して直接グラフ
ァイト同志の接触はないと考えられる。本発明に係るナ
トリウム−硫黄電池の固体電解質と正極の間に配する、
電子絶縁性織布状又は不織布状物質として、正極集電体
物質がその中を貫通しないものであれば、このように粉
末でも適用可能である。
Example 8 Silica powder and sodium pentasulfide powder were mixed at a weight ratio of 10: 1 in a glove box, and 0.2 g of this mixing ratio was used.
At a pressure of 00 MPa, diameter is 15 mm, thickness is about 0.8 mm
Was formed into a thin disk shape. The graphite felt used in Example 3 was placed on both sides of this disk, and the electrical conductivity was measured at room temperature to find that it had a resistance of 100 MΩ or more. Therefore, it is considered that there is no direct graphite contact via this disk. Disposed between the solid electrolyte and the positive electrode of the sodium-sulfur battery according to the present invention,
As the electronically insulating woven or non-woven fabric-like substance, powder can also be applied as long as the positive electrode current collector substance does not penetrate therethrough.

【0036】[0036]

【発明の効果】以上示してきたように、本発明を適用す
ることによって、電池作動温度で充放電に支障をきたさ
ずに、室温において内部抵抗が高く電池内部に電流が流
れ込むことがない、耐デンドライト性に優れた電池が得
られる。これらの単電池を複数本使って直並列の電池群
による電池モジュールを構成した場合でも、その電池モ
ジュールは室温から活物質溶融までの温度範囲で電流流
れ込みが生じず、耐デンドライト性に優れたものにな
る。また、これらの単電池及びそれらを組み立てた電池
モジュールは、電力貯蔵システムや電気自動車用バッテ
リとして用いることができる。
As shown above, by applying the present invention, charging / discharging is not affected at the battery operating temperature, the internal resistance is high at room temperature, and the current does not flow into the battery. A battery having excellent dendrite property can be obtained. Even when a battery module composed of a series-parallel battery group using a plurality of these cells is used, the battery module does not cause current flow in the temperature range from room temperature to melting of the active material, and has excellent dendrite resistance. become. In addition, these unit cells and the battery module in which they are assembled can be used as a power storage system or a battery for an electric vehicle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のナトリウム−硫黄電池の断面図。FIG. 1 is a sectional view of a sodium-sulfur battery of the present invention.

【図2】本発明のナトリウム−硫黄電池の、正極と固体
電解質界面の拡大図。
FIG. 2 is an enlarged view of the interface between the positive electrode and the solid electrolyte of the sodium-sulfur battery of the present invention.

【図3】本発明のナトリウム−硫黄電池モジュールの一
例を示す斜視組立図。
FIG. 3 is a perspective assembly view showing an example of a sodium-sulfur battery module of the present invention.

【図4】本発明のナトリウム−硫黄電池モジュールを用
いる電池電力貯蔵システムの概念図。
FIG. 4 is a conceptual diagram of a battery power storage system using the sodium-sulfur battery module of the present invention.

【図5】本発明のナトリウム−硫黄電池モジュールを用
いる電気自動車の概念図。
FIG. 5 is a conceptual diagram of an electric vehicle using the sodium-sulfur battery module of the present invention.

【符号の説明】[Explanation of symbols]

1…負極活物質、2…負極容器、3…正極活物質、4…
正極集電体物質、5…正極容器、6…固体電解質、7…
絶縁体、8…電子絶縁性の織布状又は不織布状物質、9
…電池作動温度でイオン伝導を有し、常温ではほとんど
電気伝導性のない物質、10…ヒータ線、11…断熱
材、12…モジュール容器、13…単電池、14…排気
筒、15…ブロア、16…入出力端子、17…発熱所、
18…変電設備、19…需要家、20…送電系統、21
…配電系統、22…制御設備、23…直交変換設備、2
4…電池設備、25…保安設備、26…電力貯蔵システ
ム、27…制御機構、28…車体、29…エネルギー変
換機構、30…電池モジュール
1 ... Negative electrode active material, 2 ... Negative electrode container, 3 ... Positive electrode active material, 4 ...
Positive electrode collector material, 5 ... Positive electrode container, 6 ... Solid electrolyte, 7 ...
Insulator, 8 ... Electronic insulating woven or non-woven material, 9
... a substance that has ionic conductivity at the battery operating temperature and has almost no electrical conductivity at room temperature, 10 ... Heater wire, 11 ... Heat insulating material, 12 ... Module container, 13 ... Single cell, 14 ... Exhaust pipe, 15 ... Blower, 16 ... Input / output terminal, 17 ... Heat generating place,
18 ... Substation equipment, 19 ... Customer, 20 ... Power transmission system, 21
… Power distribution system, 22… Control equipment, 23… Orthogonal transformation equipment, 2
4 ... Battery equipment, 25 ... Security equipment, 26 ... Electric power storage system, 27 ... Control mechanism, 28 ... Car body, 29 ... Energy conversion mechanism, 30 ... Battery module

フロントページの続き (72)発明者 西村 成興 茨城県日立市大みか町七丁目1番1号 株式会社日立製作所 日立研究所内 (72)発明者 佐藤 康司 茨城県日立市大みか町七丁目1番1号 株式会社日立製作所 日立研究所内 (72)発明者 小松 誼 茨城県日立市大みか町七丁目1番1号 株式会社日立製作所 日立研究所内 (72)発明者 奥野 晃康 東京都千代田区神田神保町二丁目2番30 号 東京電力株式会社 開発研究所内 (72)発明者 堀川 豊 東京都千代田区神田神保町二丁目2番30 号 東京電力株式会社 開発研究所内 (56)参考文献 特開 平5−82160(JP,A) 特開 平2−257576(JP,A) 特開 平4−282573(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 Front page continuation (72) Inventor Shigeoki Nishimura 1-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Koji Sato 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd. In Hitachi Research Laboratory (72) Inventor Satoshi Komatsu 7-1, 1-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Akiyasu Okuno 2-2 Kandajinbocho, Chiyoda-ku, Tokyo No. 30 Inside the Research Institute of TEPCO (72) Inventor Yutaka Horikawa No. 2-30 Kanda Jinbocho, Chiyoda-ku, Tokyo Inside the Research Laboratory of TEPCO (56) Reference JP 5-82160 (JP, A) ) JP-A-2-257576 (JP, A) JP-A-4-282573 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/39

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ナトリウムを主体とするアルカリ金属の
負極活物質1と、負極活物質を収納する負極容器2と、
硫黄及び/又は多硫化ナトリウムからなる正極活物質3
と、正極活物質を含浸した繊維状又は織布状の正極集電
体物質4と、正極活物質及び正極集電体物質を収納する
正極容器5と、負極活物質と正極活物質を隔てるナトリ
ウムイオン伝導性の固体電解質6と、固体電解質に接着
され正極容器と負極容器を電気的に絶縁する絶縁体7か
ら構成されるナトリウム−硫黄電池において、前記固体
電解質の正極側に、正極集電体物質の繊維径よりも細か
な間隙を有する電子絶縁性でかつ耐溶融硫黄性、及び耐
溶融多硫化ナトリウム性の織布状又は不織布状物質8を
配置し、さらに該物質の間隙に、電池作動温度でイオン
伝導を有し、常温ではほとんど伝導性のない、少なくと
も電池運転温度では液体の物質9が含まれていることを
特徴とするナトリウム−硫黄電池。
1. An alkali metal negative electrode active material 1 mainly containing sodium, and a negative electrode container 2 accommodating the negative electrode active material,
Positive electrode active material 3 made of sulfur and / or sodium polysulfide
A fibrous or woven positive electrode current collector material 4 impregnated with the positive electrode active material, a positive electrode container 5 accommodating the positive electrode active material and the positive electrode current collector material, and sodium separating the negative electrode active material and the positive electrode active material. A sodium-sulfur battery comprising an ion conductive solid electrolyte 6 and an insulator 7 that is adhered to the solid electrolyte and electrically insulates a positive electrode container and a negative electrode container, wherein a positive electrode current collector is provided on the positive electrode side of the solid electrolyte. A woven or non-woven fabric-like substance 8 having electronic insulation, molten sulfur resistance, and molten sodium polysulfide resistance that has a gap smaller than the fiber diameter of the substance is arranged, and the battery is operated in the gap between the substances. A sodium-sulfur battery characterized in that it contains a substance 9 which has ionic conductivity at temperature and is hardly conductive at room temperature and which is liquid at least at a battery operating temperature.
【請求項2】 前記電子絶縁性の織布状又は不織布状物
質8として、アルミニウム酸化物、ケイ素酸化物、ケイ
酸塩から選ばれた少なくとも1種を主体とする物質を用
いることを特徴とする請求項1記載のナトリウム−硫黄
電池。
2. A material mainly containing at least one selected from aluminum oxide, silicon oxide, and silicate is used as the electronically insulating woven or non-woven material 8. The sodium-sulfur battery according to claim 1.
【請求項3】 前記電子絶縁性の織布状又は不織布状物
質の間隙に含ませる電池運転温度で液体の物質9は、多
硫化ナトリウムであることを特徴とする請求項1又は2
記載のナトリウム−硫黄電池。
3. The substance 9 which is liquid at the battery operating temperature and is contained in the gaps of the electronically insulating woven or non-woven substance is sodium polysulfide.
The sodium-sulfur battery described.
【請求項4】 直並列に接続した複数本の単電池13
と、これら単電池群を収容するモジュール容器12と、
該単電池群の温度を高める昇温手段と、該単電池群の充
放電をモジュール容器12の外部から行うための入出力
端子16とを有するナトリウム−硫黄電池モジュールに
おいて、前記単電池が請求項1、2又は3記載のナトリ
ウム−硫黄電池であることを特徴とするナトリウム−硫
黄電池モジュール。
4. A plurality of unit cells 13 connected in series and parallel.
And a module container 12 for accommodating these unit cells,
What is claimed is: 1. A sodium-sulfur battery module having a temperature raising means for raising the temperature of the unit cell group and an input / output terminal 16 for charging / discharging the unit cell group from outside the module container 12, wherein the unit cell is A sodium-sulfur battery module, which is the sodium-sulfur battery described in 1, 2, or 3.
【請求項5】 電力供給が需要に対して過剰な時に余剰
電力を二次電池に蓄え、電力供給が需要に対して不足の
時には二次電池に蓄えていた電力を放出することによっ
て不足分の電力の全部又は一部を補うための二次電池に
よる電力貯蔵システムにおいて、前記二次電池として請
求項4に記載のナトリウム−硫黄電池モジュールを1台
以上用いることを特徴とする電力貯蔵システム。
5. When the power supply is excessive with respect to the demand, surplus power is stored in the secondary battery, and when the power supply is insufficient with respect to the demand, the power stored in the secondary battery is discharged to make up the shortage. An electric power storage system using a secondary battery for supplementing all or part of electric power, wherein at least one sodium-sulfur battery module according to claim 4 is used as the secondary battery.
【請求項6】 駆動力源として電池による電気エネルギ
ーを用い、これをモーター等で運動エネルギーに変換す
る機構29と、電気エネルギー又は運動エネルギーの量
を調節することで加速及び減速が可能な制御機構27と
を有する電気自動車において、前記電池として請求項4
に記載のナトリウム−硫黄電池モジュールを1台以上用
いることを特徴とする電気自動車。
6. A mechanism 29 for converting electric energy from a battery into a kinetic energy by a motor or the like as a driving force source, and a control mechanism capable of accelerating and decelerating by adjusting the amount of the electric energy or the kinetic energy. 27. An electric vehicle having a battery according to claim 27, wherein:
An electric vehicle comprising one or more of the sodium-sulfur battery modules described in 1.
JP25898093A 1993-09-24 1993-09-24 Sodium-sulfur battery Expired - Fee Related JP3417985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25898093A JP3417985B2 (en) 1993-09-24 1993-09-24 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25898093A JP3417985B2 (en) 1993-09-24 1993-09-24 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH0794210A JPH0794210A (en) 1995-04-07
JP3417985B2 true JP3417985B2 (en) 2003-06-16

Family

ID=17327691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25898093A Expired - Fee Related JP3417985B2 (en) 1993-09-24 1993-09-24 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3417985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016018080B1 (en) * 2014-02-07 2022-02-22 Basf Se Electrode unit for an electrochemical device, electrochemical device, process for producing a non-electron-conducting intermediate layer s, process for the first charge of an electrochemical device and use of a non-electron-conducting intermediate layer

Also Published As

Publication number Publication date
JPH0794210A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US3476602A (en) Battery cell
EP0523840B1 (en) Battery utilizing ceramic membranes
EP0142288B1 (en) Battery plate containing filler with conductive coating
CN102656733B (en) There is lithium cells and the manufacture method thereof of the cathode construction of improvement
JP4577659B2 (en) Power storage device
US4708918A (en) Battery element and battery incorporating polar polymer system
EP2859603B1 (en) Metal/oxygen battery with internal oxygen reservoir
KR20100014606A (en) Optimised energy storage device
KR20120107923A (en) Secondary battery with a rapid charging capability
US4861689A (en) Battery element and method for making same
KR20160100348A (en) Electrical device
KR20170084450A (en) Manufacturing method of solid electrolyte for all-solid-state battery
KR101854279B1 (en) Magnesium-based battery
CN111279524A (en) Method and apparatus for manufacturing functional element of electrode unit of battery cell
JP3417985B2 (en) Sodium-sulfur battery
KR20220156571A (en) High-energy-density lithium metal-based anodes for solid-state lithium-ion batteries
CN209880409U (en) Capacitor based on mass transfer reduction and diffusion control multilayer electrode
EP3297085A1 (en) Electrode assembly for a battery cell and battery cell
CN112133924A (en) All-solid-state battery and all-solid-state battery system
JP7039846B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
EP4135089A1 (en) All-solid-state battery comprising two types of solid electrolyte layers
JPH0831336B2 (en) Anode plate for sealed lead acid battery
US20160276655A1 (en) Electrical energy storage device
US20210050621A1 (en) Solid Electrolyte Material for an Electrochemical Secondary Cell
JP3598186B2 (en) Separator, secondary battery employing the same, and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees