JP3416503B2 - Hypereutectic Al-Si alloy die casting member and method of manufacturing the same - Google Patents

Hypereutectic Al-Si alloy die casting member and method of manufacturing the same

Info

Publication number
JP3416503B2
JP3416503B2 JP03154898A JP3154898A JP3416503B2 JP 3416503 B2 JP3416503 B2 JP 3416503B2 JP 03154898 A JP03154898 A JP 03154898A JP 3154898 A JP3154898 A JP 3154898A JP 3416503 B2 JP3416503 B2 JP 3416503B2
Authority
JP
Japan
Prior art keywords
alloy
hypereutectic
sleeve
primary crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03154898A
Other languages
Japanese (ja)
Other versions
JPH11226723A (en
Inventor
晴康 甲藤
隆彰 猪狩
幸雄 倉増
英俊 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nippon Light Metal Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP03154898A priority Critical patent/JP3416503B2/en
Publication of JPH11226723A publication Critical patent/JPH11226723A/en
Application granted granted Critical
Publication of JP3416503B2 publication Critical patent/JP3416503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性に優れた過共
晶Al−Si合金ダイカスト部材及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hypereutectic Al-Si alloy die casting member having excellent wear resistance and a method for producing the same.

【0002】[0002]

【従来の技術】過共晶Al−Si合金のダイカスト鋳造
に際しては、溶湯保持温度及び射出温度を可能な限り高
温にし、且つスリーブ内充填率も可能な限り高く設定す
ることにより、スリーブ内で凝固が始まらないうちにダ
イカスト鋳造する方法が一般的である。この方法による
とき、溶湯の全量が金型キャビティ内で急速凝固するた
め、初晶Si粒も含めて極めて微細な鋳造組織となる。
微細な組織は、加工性,機械強度等に対しては有効であ
るが、耐摩耗性を低下させる傾向を示す。過共晶Al−
Si合金部材に高い耐摩耗性を付与するためには、適度
な粒径をもつ初晶Siを十分な密度で分散させることが
要求される。そのため、たとえば高い耐摩耗性が必要と
されるダイカスト部材では、18重量%SiのようにS
i含有量が非常に高い材料が使用されている。また、加
工性や強度特性を確保する上から比較的低いSi含有量
の材料を使用する場合、初晶Siを成長させるため、ダ
イカスト鋳造に比較して凝固速度の遅い金型鋳造や低圧
鋳造が余儀なくされていた。
2. Description of the Related Art In die casting of hypereutectic Al-Si alloy, the temperature of molten metal holding and injection is set as high as possible and the filling rate in the sleeve is set as high as possible to solidify in the sleeve. The method of die casting before the start of the process is common. According to this method, the entire amount of the molten metal is rapidly solidified in the mold cavity, so that an extremely fine cast structure including primary crystal Si grains is formed.
A fine structure is effective for workability, mechanical strength, etc., but tends to reduce wear resistance. Hypereutectic Al-
In order to impart high wear resistance to a Si alloy member, it is necessary to disperse primary crystal Si having an appropriate grain size at a sufficient density. Therefore, for example, in a die cast member that requires high wear resistance, S
A material with a very high i content is used. Also, when using a material with a relatively low Si content in order to secure workability and strength characteristics, in order to grow primary crystal Si, die casting or low pressure casting with a slower solidification rate compared to die casting can be used. Had to be forced.

【0003】[0003]

【発明が解決しようとする課題】過共晶Al−Si合金
の融点は、Si含有量に応じて高くなり、たとえばSi
含有量18重量%で658℃となる。このように融点の
高い過共晶Al−Si合金をダイカスト鋳造で使用する
とき必然的に溶湯温度が高くなり、エネルギ消費量が多
くなるばかりでなく、金型等の設備寿命が著しく低下
し、メンテナンスに要するコストも嵩んでしまう。しか
も、初晶Siの粒径を所定範囲にコントロールすること
が難しく、材料に含まれているSi量の極く一部が耐摩
耗性に有効な粒径になるに過ぎないため、材料が潜在的
にもつ耐摩耗特性を十分に引き出されていない。他方、
凝固速度の遅い金型鋳造や低圧鋳造では、初晶Si粒の
成長及び粒径コントロールが容易であるため、Si含有
量が比較的低い材料に対しても良好な耐摩耗性が付与さ
れる。しかし、凝固速度の遅い金型鋳造や低圧鋳造は、
ダイカスト鋳造に比較して生産性が低く、得られた製品
のコストがその分だけ高くなる。本発明は、このような
問題を解消すべく案出されたものであり、ダイカストス
リーブ内で初晶Si粒が晶出・成長する条件に過共晶A
l−Si合金溶湯を保持することにより、Si含有量が
比較的低い過共晶Al−Si合金であってもダイカスト
鋳造法で耐摩耗性に有効なサイズの初晶Si粒を晶出さ
せ、耐摩耗性に優れた過共晶Al−Si合金ダイカスト
部材を得ることを目的とする。
The melting point of a hypereutectic Al-Si alloy increases with the Si content.
It becomes 658 ° C. when the content is 18% by weight. When using a hypereutectic Al-Si alloy with a high melting point in this way in die casting, the melt temperature inevitably rises, not only the energy consumption increases, but also the equipment life of the mold and the like significantly decreases, The cost required for maintenance also increases. Moreover, it is difficult to control the grain size of the primary crystal Si within a predetermined range, and only a small part of the Si amount contained in the material has a grain size effective for wear resistance. The wear resistance characteristic of conventional materials is not fully exploited. On the other hand,
In die casting or low pressure casting with a slow solidification rate, it is easy to grow and control the grain size of primary Si grains, so that good wear resistance can be imparted even to a material having a relatively low Si content. However, die casting and low pressure casting with slow solidification rate
The productivity is lower than that of die casting, and the cost of the obtained product is correspondingly higher. The present invention has been devised to solve such a problem, and the hypereutectic crystal A is formed under the condition that primary crystal Si grains crystallize and grow in the die casting sleeve.
By holding the 1-Si alloy molten metal, even the hypereutectic Al-Si alloy having a relatively low Si content crystallizes primary crystal Si particles of a size effective for wear resistance by the die casting method, It is an object to obtain a hypereutectic Al-Si alloy die-cast member having excellent wear resistance.

【0004】[0004]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、14〜17重量%のSiを含有
するアルミニウム合金溶湯を充填率20〜40体積%で
ダイカストスリーブに注湯し、次いでダイカストスリー
ブ内でアルミニウム合金溶湯を初晶Si晶出温度と共晶
温度との間の温度範囲で2〜5秒保持して初晶Siを晶
出・成長させた後、アルミニウム合金溶湯を射出成形す
ることにより鋳造組織に晶出した初晶Siの平均粒径を
7〜15μmの範囲に調整することを特徴とする。使用
するアルミニウム合金は、初晶Siの晶出を促進させる
ため更に0.001〜0.02重量%のPを含むことが
できる。
In order to achieve the object, the manufacturing method of the present invention is to pour a molten aluminum alloy containing 14 to 17% by weight of Si into a die casting sleeve at a filling rate of 20 to 40% by volume. Then, the aluminum alloy melt is held in the die casting sleeve in the temperature range between the primary crystal Si crystallization temperature and the eutectic temperature for 2 to 5 seconds to crystallize and grow the primary crystal Si. Is injection-molded to adjust the average grain size of the primary crystal Si crystallized in the cast structure to a range of 7 to 15 μm. The aluminum alloy used may further contain 0.001 to 0.02% by weight of P in order to promote crystallization of primary Si.

【0005】[0005]

【実施の形態】本発明が対象とする過共晶Al−Si合
金は、14〜17重量%のSiを含んでいる。14重量
%以上のSi含有量は、初晶Siとして晶出するSi量
を確保するために必要である。Si含有量が14重量%
未満では、初晶Siの晶出に必要なSi量が不足し、耐
摩耗性の改善に有効なサイズ及び分布密度で初晶Siを
晶出させることができない。逆に、17重量%を超える
過剰のSiが含まれると、加工性及び疲労強度が劣化す
るため、得られたダイカスト部材の実用性が低下する。
この過共晶Al−Si合金に、0.001〜0.02重
量%のPを更に含ませても良い。Pは、初晶Siが晶出
するときのシードとなる異質核を合金溶湯中に生成し、
初晶Siの晶出を促進させる。このような効果は、0.
001重量%以上のP含有で顕著になる。P添加の効果
は0.02重量%で飽和し、それ以上添加しても増量に
見合った効果が得られない。
BEST MODE FOR CARRYING OUT THE INVENTION The hypereutectic Al-Si alloy targeted by the present invention contains 14 to 17% by weight of Si. The Si content of 14% by weight or more is necessary to secure the amount of Si crystallized as primary crystal Si. Si content 14% by weight
If the amount is less than the range, the amount of Si required for crystallization of primary crystal Si is insufficient, and primary crystal Si cannot be crystallized with a size and distribution density effective for improving wear resistance. On the other hand, if Si is contained in excess of 17% by weight, the workability and the fatigue strength are deteriorated and the practicality of the obtained die cast member is reduced.
The hypereutectic Al-Si alloy may further contain 0.001 to 0.02% by weight of P. P forms a heterogeneous nucleus in the molten alloy that serves as a seed when the primary crystal Si crystallizes,
Promotes crystallization of primary Si. Such an effect is 0.
It becomes remarkable when the P content is 001% by weight or more. The effect of P addition is saturated at 0.02% by weight, and even if it is added more, the effect corresponding to the increase in amount cannot be obtained.

【0006】過共晶Al−Si合金溶湯は、図1に示す
ように手元炉からレードル1を経てダイカスト鋳造機の
スリーブ2に注湯された後、プランジャ3によって金型
4内に射出される。金型4の内部には、製品形状に対応
したキャビティ5が設けられている。キャビティ5に充
填された過共晶Al−Si合金溶湯が金型4の内面形状
を倣って凝固することにより、目標形状をもつ製品とな
る。スリーブ2に注湯された過共晶Al−Si合金溶湯
は、初晶Si晶出温度と共晶温度との間の温度範囲で2
〜5秒保持される。初晶Si晶出温度は、図2に示すよ
うに溶湯のSi含有量に応じて基本的に定まる。他の合
金成分によっても多少変動するが、この場合には合金成
分によって定まる初晶Si晶出温度と合金成分によって
はほとんど変化しない共晶温度(約577℃)との関係
を考慮しながら、初晶Si晶出温度と共晶温度との間に
保持温度を設定する。
As shown in FIG. 1, a hypereutectic Al-Si alloy melt is poured from a hand furnace through a ladle 1 into a sleeve 2 of a die casting machine, and then injected into a mold 4 by a plunger 3. . A cavity 5 corresponding to the product shape is provided inside the mold 4. The hypereutectic Al—Si alloy molten metal filled in the cavity 5 is solidified by following the inner surface shape of the mold 4 to obtain a product having a target shape. The hypereutectic Al-Si alloy melt poured into the sleeve 2 has a temperature range of between the primary crystal Si crystallization temperature and the eutectic temperature.
Hold for ~ 5 seconds. The primary crystal Si crystallization temperature is basically determined according to the Si content of the molten metal as shown in FIG. Although it may fluctuate to some extent depending on other alloy components, in this case, considering the relationship between the primary crystallized Si crystallization temperature determined by the alloy component and the eutectic temperature (about 577 ° C) that hardly changes depending on the alloy component, A holding temperature is set between the crystallizing Si crystallization temperature and the eutectic temperature.

【0007】過共晶Al−Si合金溶湯を初晶Si晶出
温度以下に維持するとき、スリーブ2内にある過共晶A
l−Si合金溶湯に初晶Siが晶出し始める。この状態
を2〜5秒継続させることによって、晶出した初晶Si
が耐摩耗性の改善に有効な適正粒径に成長する。晶出し
た初晶Siの粒径や量は、スリーブ2内で保持される過
共晶Al−Si合金溶湯の温度及び保持時間によって調
整される。2秒に満たない保持時間では、平均粒径7μ
m以上の初晶Siが少なく、得られるダイカスト部材に
十分な耐摩耗性を付与できない。逆に5秒を超える保持
時間では、平均粒径が15μmを超え、粗大な初晶Si
粒が多くなり、結果として摺動時に割れて耐摩耗性に悪
影響を与え、或いは切削加工時等に切欠き発生等の欠陥
を発生させ、またダイカスト部材の強度を低下させるこ
とになる。また、5秒を超える保持時間では、スリーブ
2の入口近傍にある合金溶湯が共晶温度付近まで低下
し、スリーブ2の内壁面にα−Alが凝固し易く、操業
ができなくなる虞れがある。
When the hypereutectic Al-Si alloy melt is maintained below the primary Si crystallization temperature, the hypereutectic A in the sleeve 2 is kept.
Primary crystal Si begins to crystallize in the molten 1-Si alloy. By continuing this state for 2 to 5 seconds, crystallized primary crystal Si
Grows to an appropriate grain size effective for improving wear resistance. The grain size and amount of the crystallized primary crystal Si are adjusted by the temperature and holding time of the hypereutectic Al—Si alloy molten metal held in the sleeve 2. If the holding time is less than 2 seconds, the average particle size is 7μ
Since the amount of primary crystal Si of m or more is small, sufficient wear resistance cannot be imparted to the obtained die cast member. On the contrary, when the holding time exceeds 5 seconds, the average grain size exceeds 15 μm, and coarse primary crystal Si
The number of grains increases, resulting in cracking during sliding, which adversely affects wear resistance, or causes defects such as the occurrence of notches during cutting, etc., and also reduces the strength of the die casting member. Further, if the holding time exceeds 5 seconds, the molten alloy in the vicinity of the inlet of the sleeve 2 is lowered to near the eutectic temperature, and α-Al is likely to be solidified on the inner wall surface of the sleeve 2, which may make the operation impossible. .

【0008】Si含有量が14〜17重量%と比較的低
い過共晶Al−Si合金であっても、図2に示すように
比較的高い温度から初晶Siの晶出が始まるため、初晶
Si晶出温度と共晶温度との間に過共晶Al−Si合金
溶湯をスリーブ2内で保持するとき、初晶Siが十分に
晶出・成長する。ただし、スリーブ2内で凝固が始まら
ないように、過共晶Al−Si合金溶湯を共晶温度以上
の温度に維持することが必要である。スリーブ2に対す
る過共晶Al−Si合金溶湯の充填率は、共晶凝固を起
こすことなく初晶Siを晶出・成長させるために20〜
40体積%の範囲で選定することが必要である。
Even in a hypereutectic Al--Si alloy having a relatively low Si content of 14 to 17% by weight, crystallization of primary Si begins at a relatively high temperature as shown in FIG. When the hypereutectic Al—Si alloy molten metal is held in the sleeve 2 between the crystal Si crystallization temperature and the eutectic temperature, the primary crystal Si crystallizes and grows sufficiently. However, it is necessary to maintain the hypereutectic Al-Si alloy melt at a temperature equal to or higher than the eutectic temperature so that solidification does not start in the sleeve 2. The filling rate of the hypereutectic Al-Si alloy melt with respect to the sleeve 2 is 20 to 20 in order to crystallize and grow primary Si without causing eutectic solidification.
It is necessary to select in the range of 40% by volume.

【0009】スリーブ2に充填された過共晶Al−Si
合金溶湯6は、図3に示すようにスリーブ2の側壁を介
した熱放散によって冷却され、スリーブ2の内面に近い
ほど大きな冷却効果を受ける。そのため、高い充填率で
充填された合金溶湯6では中心部とスリーブ2の近傍と
の温度差が大きくなり、スリーブ2近傍では初晶Siが
晶出・成長するが、中心部では初晶Siの晶出がない状
態となる。このような合金溶湯6を金型4に射出して鋳
造すると、得られたダイカスト部材は微細Si粒及び粗
大Si粒が混在した鋳造組織をもち、耐摩耗性の改善に
有効な粒径,分布密度のSi粒が得られない。
Hypereutectic Al-Si filled in the sleeve 2
The molten alloy 6 is cooled by heat dissipation through the side wall of the sleeve 2 as shown in FIG. 3, and the greater the cooling effect is, the closer the inner surface of the sleeve 2 is. Therefore, in the molten alloy 6 filled with a high filling rate, the temperature difference between the central portion and the vicinity of the sleeve 2 becomes large, and primary crystal Si crystallizes and grows near the sleeve 2, but the primary crystal Si does not grow. There is no crystallization. When such a molten alloy 6 is injected into the die 4 and cast, the die-cast member obtained has a casting structure in which fine Si particles and coarse Si particles are mixed, and the particle size and distribution effective in improving wear resistance are obtained. Si particles of high density cannot be obtained.

【0010】この点、スリーブ2に対する合金溶湯6の
充填率を40体積%以下にするとき、合金溶湯6内部の
温度差が小さくなり、初晶Siの晶出・成長が合金溶湯
6の全域に渡って均一化される。また、40体積%を超
える充填率でスリーブ2に合金溶湯6を注湯する場合、
注湯温度を下げてスリーブ2内にある合金溶湯6の全量
を初晶晶出温度以下に冷却しようとすると、スリーブ2
に接している部分の溶湯温度が共晶温度以下になり易
く、初晶Si晶出温度〜共晶温度の温度域に合金溶湯6
を維持することが困難になる。部分的にも共晶温度以下
になった合金溶湯6を金型4に射出すると、健全なダイ
カスト部材が得られない。逆に20体積%に満たない充
填率で合金溶湯6をスリーブ2に充填する場合、合金溶
湯6が持つ熱量が不足し、スリーブ2に注湯された合金
溶湯6がスリーブ2内で共晶凝固することなく初晶Si
を合金溶湯6に晶出させることが困難になる。その結
果、得られたダイカスト部材の強度が低下する。
In this respect, when the filling rate of the molten alloy 6 in the sleeve 2 is set to 40% by volume or less, the temperature difference inside the molten alloy 6 becomes small, and the crystallization / growth of the primary crystal Si spreads throughout the molten alloy 6. Is homogenized across. When pouring the molten alloy 6 into the sleeve 2 at a filling rate of more than 40% by volume,
If it is attempted to lower the pouring temperature to cool the total amount of the molten alloy 6 in the sleeve 2 to below the primary crystallization temperature, the sleeve 2
The temperature of the molten metal in the portion in contact with the eutectic temperature is likely to be lower than the eutectic temperature, and the molten alloy 6 falls within the temperature range from the primary crystal crystallization temperature to the eutectic temperature.
Becomes difficult to maintain. If the molten alloy 6 which is partially below the eutectic temperature is injected into the die 4, a sound die casting member cannot be obtained. Conversely, when the sleeve 2 is filled with the molten alloy 6 at a filling rate of less than 20% by volume, the amount of heat of the molten alloy 6 is insufficient, and the molten alloy 6 poured into the sleeve 2 is eutectic solidified in the sleeve 2. Without primary crystal Si
It becomes difficult to crystallize the molten alloy 6 into the molten alloy 6. As a result, the strength of the obtained die casting member is reduced.

【0011】[0011]

【実施例】本実施例で使用した過共晶Al−Si合金の
組成を表1に示す。合金番号1は本発明で規定したSi
含有量の下限近傍の量でSiを含む材料であり、合金番
号3はダイカスト鋳造で初晶Siの晶出によって耐摩耗
性の改善が図られる従来材の下限近傍に当る量のSiを
含む材料である。
EXAMPLES Table 1 shows the composition of the hypereutectic Al-Si alloy used in this example. Alloy No. 1 is Si specified in the present invention
A material containing Si in an amount near the lower limit of the content, and Alloy No. 3 is a material containing Si in an amount close to the lower limit of the conventional material in which wear resistance is improved by crystallization of primary crystal Si in die casting. Is.

【0012】 [0012]

【0013】合金番号1〜3の各溶湯を用意し、表2の
鋳造条件でダイカスト部材を製造した。鋳造条件1及び
2は、本発明で規定したスリーブ2に対する合金溶湯6
の充填率の上限及び下限近傍に充填率を設定した例であ
る。鋳造条件3は、本発明で規定した充填率を超える充
填率で合金溶湯6をスリーブ2に充填し、従来の鋳造条
件に従って鋳造した例である。
Molten alloys Nos. 1 to 3 were prepared and die-cast members were manufactured under the casting conditions shown in Table 2. The casting conditions 1 and 2 are the molten alloy 6 for the sleeve 2 defined in the present invention.
In this example, the filling rate is set near the upper and lower limits of the filling rate. Casting condition 3 is an example of filling the sleeve 2 with the molten alloy 6 at a filling rate exceeding the filling rate specified in the present invention, and casting according to the conventional casting conditions.

【0014】 [0014]

【0015】合金番号2の過共晶Al−Si合金溶湯を
鋳造条件2に従って鋳造したときの溶湯温度の変化を図
4に示す。なお、図1に示すように下部壁から10mm
の高さでスリーブ2内の測定点T1 ,T2 に配置された
複数の温度計でスリーブ2に充填された合金溶湯6を温
度測定することにより、スリーブ2中心部及び入口部の
溶湯温度を求めた。溶湯温度の変化を示す図4から明ら
かなように、スリーブ2に合金溶湯6を注湯した直後か
ら溶湯中心部(測定点T2 )で初晶Siの晶出が開始さ
れ、注湯後2秒経過した時点ではスリーブ2の入口付近
(測定点T1 )でも初晶Siの晶出が開始され、スリー
ブ2内にある合金溶湯6の全域に渡って初晶Siが晶出
した。この場合、スリーブ2の中心部(測定点T2 )に
おける溶湯温度が初晶Si晶出温度以下になった時点か
ら射出時間までを保持時間とし、図4の例では合金溶湯
6をスリーブ2内で3秒間保持した。鋳造条件1では、
保持時間を2秒に設定し、晶出温度以下になった合金溶
湯6を金型4に射出した。鋳造条件3では、実質的な保
持時間を取ることなく、スリーブ2に注湯した合金溶湯
6を直ちに金型4に射出した。このようにして鋳造され
たダイカスト部材について、光学顕微鏡を備えた画像解
析装置を用い初晶Siの平均粒径を測定した。
FIG. 4 shows changes in the melt temperature when the hypereutectic Al--Si alloy melt of Alloy No. 2 was cast under the casting conditions 2. In addition, as shown in FIG. 1, 10 mm from the lower wall
Measurement point T 1 of the sleeve 2 at the height of, by temperature measuring molten alloy 6 which are filled into the sleeve 2 by a plurality of thermometers disposed in T 2, the melt temperature of the second central portion and the inlet portion the sleeve I asked. As is clear from FIG. 4 showing the change in the melt temperature, crystallization of primary crystal Si starts at the center of the melt (measurement point T 2 ) immediately after pouring the alloy melt 6 into the sleeve 2 and after pouring 2 After a lapse of seconds, crystallization of primary crystal Si was started even near the inlet of the sleeve 2 (measurement point T 1 ), and primary crystal Si was crystallized over the entire area of the molten alloy 6 in the sleeve 2. In this case, the holding time is from the time when the temperature of the molten metal at the central portion (measurement point T 2 ) of the sleeve 2 becomes equal to or lower than the primary crystal crystallization temperature to the injection time, and in the example of FIG. Held for 3 seconds. In casting condition 1,
The holding time was set to 2 seconds, and the molten alloy 6 having a crystallization temperature or lower was injected into the mold 4. Under casting condition 3, the alloy melt 6 poured into the sleeve 2 was immediately injected into the mold 4 without taking a substantial holding time. With respect to the die-cast member thus cast, the average grain size of primary crystal Si was measured by using an image analyzer equipped with an optical microscope.

【0016】 [0016]

【0017】表3から明らかなように、合金成分及び鋳
造条件が本発明で規定した条件を満足するものでは、何
れも平均粒径が7〜15μmの範囲にある初晶Siが晶
出した鋳造組織になっていた。これに対し、スリーブ2
に注湯した合金溶湯6を直ちに金型4に射出する鋳造条
件3では、金型4内で合金溶湯6が急冷凝固されるた
め、平均粒径4〜6μmの微細な初晶Siが晶出した。
また、Si含有量の多い合金番号3の過共晶Al−Si
合金をスリーブ2内で初晶Si晶出温度と共晶温度との
間に2秒間保持したところ、平均粒径が16μmと初晶
Siが大きく成長した。
As is apparent from Table 3, when the alloy components and the casting conditions satisfy the conditions specified in the present invention, casting in which primary crystal Si having an average grain size in the range of 7 to 15 μm is crystallized It was an organization. On the other hand, the sleeve 2
In casting condition 3 in which the molten alloy 6 poured into the mold is immediately injected into the mold 4, the molten alloy 6 is rapidly solidified in the mold 4, so that fine primary crystal Si having an average particle size of 4 to 6 μm is crystallized. did.
Further, the hypereutectic Al-Si alloy No. 3 having a high Si content is used.
When the alloy was held in the sleeve 2 between the crystallization temperature of primary Si and the eutectic temperature for 2 seconds, the average grain size was 16 μm and primary Si grew greatly.

【0018】次いで、鋳造条件1,2で鋳造された各ダ
イカスト部材をプレート状に加工し、リング・オン・プ
レート式の摩擦摩耗試験に供した。摩擦摩耗試験では、
相手材としてリング状のクロム鋼を用い、プレート状試
験片を面圧18MPaで相手材に押し付けて滑り速度
0.25m/秒,油温80℃の条件下で摩擦させ、1時
間経過後にプレート状試験片の摩耗量を測定した。合金
番号1の過共晶Al−Si合金を鋳造条件1で鋳造して
得られたダイカスト部材の摩耗量を基準値1とし、他の
ダイカスト部材の摩耗量の基準値に対する比を求めた。
摩耗量比が少ないほど、耐摩耗性に優れた材料であると
いえる。表4の測定結果にみられるように、本発明に従
った合金組成1,2及び鋳造条件1,2で得られたダイ
カスト部材は、何れも良好な耐摩耗性を示した。これに
対し、スリーブ2に注湯した合金溶湯6を直ちに金型4
に射出させること(鋳造条件3)により得られたダイカ
スト部材は、初晶Siの平均粒径が小さすぎるため本発
明品に比較して摩耗量が著しく大きく、耐摩耗性の改善
に有効な平均粒径に初晶Siの粒径が調整されていない
ことが判る。また、合金番号3の過共晶Al−Si合金
を鋳造条件1で鋳造したダイカスト部材は、初晶Siの
平均粒径が大きいため、本発明例に比較して耐摩耗性が
悪く、また切削加工に支障を来した。これは、粗大な初
晶Siが割れて悪影響を及ぼしたものと考えられる。
Next, each die-cast member cast under the casting conditions 1 and 2 was processed into a plate shape and subjected to a ring-on-plate type friction and wear test. In the friction and wear test,
A ring-shaped chrome steel was used as the mating material, and a plate-shaped test piece was pressed against the mating material with a surface pressure of 18 MPa and rubbed under the conditions of a sliding speed of 0.25 m / sec and an oil temperature of 80 ° C. The amount of wear of the test piece was measured. The wear amount of the die-cast member obtained by casting the hypereutectic Al—Si alloy of Alloy No. 1 under the casting condition 1 was used as the reference value 1, and the ratio of the wear amount of the other die-cast members to the reference value was determined.
It can be said that the smaller the wear amount ratio, the more excellent the wear resistance of the material. As can be seen from the measurement results in Table 4, the die-cast members obtained under the alloy compositions 1 and 2 and the casting conditions 1 and 2 according to the present invention all showed good wear resistance. On the other hand, the molten alloy 6 poured into the sleeve 2 is immediately fed to the die 4
In the die-cast member obtained by injecting into the casting (casting condition 3), the average grain size of the primary crystal Si is too small, so the wear amount is remarkably large as compared with the product of the present invention, and the average value effective for improving wear resistance is high. It can be seen that the grain size of the primary crystal Si is not adjusted to the grain size. Further, the die-cast member produced by casting the hypereutectic Al—Si alloy of Alloy No. 3 under the casting condition 1 has a large average grain size of primary crystal Si, so that it has poor wear resistance as compared with the examples of the present invention, and the cutting Processing has been hindered. It is considered that this is because coarse primary crystal Si was cracked and had an adverse effect.

【0019】 [0019]

【0020】本発明で規定した合金組成及び鋳造条件
は、比較的低温になった過共晶Al−Si合金溶湯6を
金型4に射出することから、金型4が受ける熱衝撃が少
なくなり、金型の寿命を長くする上でも有効である。た
とえば、合金番号1の過共晶Al−Si合金を鋳造条件
1で鋳造した場合と、合金番号3の過共晶Al−Si合
金を鋳造条件3で鋳造した場合の金型寿命を表5に比較
する。なお、金型寿命は、金型4に割れが発生するまで
の鋳造回数で評価した。表5から明らかなように、本発
明に従った鋳造法では、従来に比較して金型寿命が1.
5倍に改善されており、その分だけ製造コストが低減さ
れることが判る。
According to the alloy composition and casting conditions specified in the present invention, the hypereutectic Al--Si alloy melt 6 having a relatively low temperature is injected into the mold 4, so that the thermal shock to the mold 4 is reduced. It is also effective in extending the life of the mold. For example, Table 5 shows the die lives when a hypereutectic Al-Si alloy of alloy number 1 is cast under casting conditions 1 and a hypereutectic Al-Si alloy of alloy number 3 is cast under casting conditions 3. Compare. The mold life was evaluated by the number of castings until the mold 4 cracked. As is clear from Table 5, in the casting method according to the present invention, the mold life is 1.
It has been improved five times, and it can be seen that the manufacturing cost is reduced accordingly.

【0021】 [0021]

【0022】以上の結果から、合金組成及び鋳造条件を
本発明で特定した条件下で組み合わせることによって、
加工性や強度を損なうことなく、比較的Si含有量の低
い過共晶Al−Si合金であっても、耐摩耗性に有効な
粒径及び分布密度で初晶Siが晶出することが確認され
る。
From the above results, by combining the alloy composition and casting conditions under the conditions specified in the present invention,
It was confirmed that primary crystal Si crystallizes with a grain size and distribution density effective for wear resistance, even with a hypereutectic Al-Si alloy having a relatively low Si content, without impairing workability and strength. To be done.

【0023】[0023]

【発明の効果】以上に説明したように、本発明において
は、充填率20〜40体積%でダイカストスリーブに注
湯された過共晶Al−Si合金を初晶Si晶出温度〜共
晶温度の温度域に所定時間保持して初晶Siをスリーブ
内で晶出・成長させた後、スリーブから金型に合金溶湯
を射出している。そのため、得られたダイカスト部材
は、Si含有量が14〜17重量%と比較的低いにも拘
らず、耐摩耗性の改善に好適な粒径及び分布密度で初晶
Siが分散した鋳造組織をもつ。このダイカスト部材
は、粗大な初晶Siが成長していないため加工性や強度
も良好である。しかも、金型が受ける熱衝撃が緩和され
ることから、金型の繰返し使用回数も多くなり、その分
だけ製造コストが節減される。
As described above, in the present invention, the hypereutectic Al-Si alloy poured in the die casting sleeve at the filling rate of 20 to 40% by volume is used as the primary crystal Si crystallization temperature to the eutectic temperature. After keeping the temperature range of 1 for a predetermined time to crystallize and grow the primary crystal Si in the sleeve, the molten alloy is injected from the sleeve into the mold. Therefore, the obtained die cast member has a cast structure in which primary crystal Si is dispersed in a grain size and a distribution density suitable for improving wear resistance, even though the Si content is relatively low at 14 to 17% by weight. Hold. This die cast member has good workability and strength because coarse primary crystal Si has not grown. Moreover, since the thermal shock applied to the mold is alleviated, the number of times the mold is used repeatedly increases, and the manufacturing cost is reduced accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従ったダイカスト鋳造の説明図FIG. 1 is an explanatory view of die casting according to the present invention.

【図2】 初晶Siの晶出温度とSi含有量との関係を
示したグラフ
FIG. 2 is a graph showing the relationship between the crystallization temperature of primary Si and the Si content.

【図3】 所定の充填率でダイカストスリーブに充填さ
れた合金溶湯
[Fig. 3] Molten metal alloy filled in a die casting sleeve at a predetermined filling rate.

【図4】 本発明に従った鋳造条件で鋳造される過共晶
Al−Si合金溶湯の温度変化を示すグラフ
FIG. 4 is a graph showing changes in temperature of a hypereutectic Al—Si alloy melt cast under the casting conditions according to the present invention.

【符号の説明】[Explanation of symbols]

1:レードル 2:ダイカストスリーブ 3:プラ
ンジャ 4:金型 5:キャビティ 6:過共晶Al−Si合金溶湯
1 ,T2 :温度測定点
1: Ladle 2: Die casting sleeve 3: Plunger 4: Mold 5: Cavity 6: Hypereutectic Al-Si alloy melt
T 1 , T 2 : Temperature measurement points

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猪狩 隆彰 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社 グループ技術セ ンター内 (72)発明者 倉増 幸雄 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社 グループ技術セ ンター内 (72)発明者 志賀 英俊 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平9−87768(JP,A) 特開 平9−157781(JP,A) 特開 平5−78770(JP,A) 特開 平8−49035(JP,A) 特開 平10−298690(JP,A) 特開 平11−222636(JP,A) 特開 平6−292961(JP,A) 特開 平10−296422(JP,A) 特開 平10−152731(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 21/04 B22D 17/00 C22C 1/02 C22C 21/02 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takaaki Inokari 1-34-1, Kambara, Kambara-cho, Awara-gun, Shizuoka Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Yukio Kuramasu Kambara-cho, Anbara-gun, Shizuoka 1-34 Kambara Nippon Light Metal Co., Ltd. In the Group Technology Center (72) Inventor Hidetoshi Shiga 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (56) Reference JP-A-9-87768 ( JP, A) JP 9-157781 (JP, A) JP 5-78770 (JP, A) JP 8-49035 (JP, A) JP 10-298690 (JP, A) JP 11-222636 (JP, A) JP 6-292961 (JP, A) JP 10-296422 (JP, A) JP 10-152731 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) B22D 21/04 B22D 17/00 C22C 1/02 C22C 21/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 14〜17重量%のSiを含有するアル
ミニウム合金溶湯を充填率20〜40体積%でダイカス
トスリーブに注湯し、次いでダイカストスリーブ内でア
ルミニウム合金溶湯を初晶Si晶出温度と共晶温度との
間の温度範囲で2〜5秒保持して初晶Siを晶出・成長
させた後、アルミニウム合金溶湯を射出成形することに
より鋳造組織に晶出した初晶Siの平均粒径を7〜15
μmの範囲に調整することを特徴とする過共晶Al−S
i合金ダイカスト部材の製造方法。
1. An aluminum alloy melt containing 14 to 17% by weight of Si is poured into a die casting sleeve at a filling rate of 20 to 40% by volume , and then the aluminum alloy melt is added to the primary crystal Si in the die casting sleeve. After maintaining the temperature range between the crystallization temperature and the eutectic temperature for 2 to 5 seconds to crystallize and grow the primary crystal Si, the molten aluminum alloy is injection-molded to crystallize into the cast structure. The average particle size of Si is 7 to 15
Hypereutectic Al-S characterized by adjusting to the range of μm
Method for manufacturing i-alloy die-cast member.
【請求項2】 更に0.001〜0.02重量%のPを
含むアルミニウム合金溶湯を使用する請求項1に記載の
過共晶Al−Si合金ダイカスト部材の製造方法。
2. Further, 0.001 to 0.02% by weight of P is added.
The method for producing a hypereutectic Al-Si alloy die casting member according to claim 1, wherein an aluminum alloy melt containing the same is used .
【請求項3】 請求項1又は2に記載の方法で製造さ
れ、初晶Siの平均粒径が7〜15μmの範囲にある鋳
造組織をもつ過共晶Al−Si合金ダイカスト部材。
3. Manufactured by the method according to claim 1 or 2.
Casting in which the average grain size of primary crystal Si is in the range of 7 to 15 μm
A hypereutectic Al-Si alloy die-cast member having a structure.
JP03154898A 1998-02-13 1998-02-13 Hypereutectic Al-Si alloy die casting member and method of manufacturing the same Expired - Lifetime JP3416503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03154898A JP3416503B2 (en) 1998-02-13 1998-02-13 Hypereutectic Al-Si alloy die casting member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03154898A JP3416503B2 (en) 1998-02-13 1998-02-13 Hypereutectic Al-Si alloy die casting member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11226723A JPH11226723A (en) 1999-08-24
JP3416503B2 true JP3416503B2 (en) 2003-06-16

Family

ID=12334253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03154898A Expired - Lifetime JP3416503B2 (en) 1998-02-13 1998-02-13 Hypereutectic Al-Si alloy die casting member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3416503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097479A2 (en) * 2010-02-05 2011-08-11 Thixomat, Inc. Method and apparatus of forming a wrought material having a refined grain structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006269A1 (en) 2000-02-12 2001-08-16 Bayerische Motoren Werke Ag Method for producing a metal component for a drive unit, in particular an internal combustion engine, which interacts with a friction partner via a sliding surface
WO2013039247A1 (en) * 2011-09-15 2013-03-21 国立大学法人東北大学 Die-casting method, die-casting device, and die-cast article
EP2905351B1 (en) * 2012-09-25 2017-11-01 Josho Gakuen Educational Foundation Hypereutectic aluminum/silicon alloy die-cast member and process for producing same
JP6393008B1 (en) 2017-04-27 2018-09-19 株式会社コイワイ High-strength aluminum alloy laminated molded body and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097479A2 (en) * 2010-02-05 2011-08-11 Thixomat, Inc. Method and apparatus of forming a wrought material having a refined grain structure
WO2011097479A3 (en) * 2010-02-05 2011-09-29 Thixomat, Inc. Method and apparatus of forming a wrought material having a refined grain structure
GB2490467A (en) * 2010-02-05 2012-10-31 Thixomat Inc Method and apparatus of forming a wrought material having a refined grain structure

Also Published As

Publication number Publication date
JPH11226723A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
JP3378342B2 (en) Aluminum casting alloy excellent in wear resistance and method for producing the same
KR101738495B1 (en) Aluminium-Copper Alloy For Casting
JP4328321B2 (en) Piston for internal combustion engine
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP3416503B2 (en) Hypereutectic Al-Si alloy die casting member and method of manufacturing the same
EP1017866B1 (en) Cast metal-matrix composite material and its use
JP4390762B2 (en) Differential gear case and manufacturing method thereof
JP2000265232A (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture
JP2000355722A (en) Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JPH08134577A (en) Aluminum alloy for die casting, excellent in high temperature strength, wear resistance, and vibration absorbing property, and its production
JPS63140060A (en) Free-cutting aluminum-alloy casting and its production
JP4510541B2 (en) Aluminum alloy casting molding method
JPH1136030A (en) Aluminum alloy for piston, and manufacture of piston
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production
JP2001214228A (en) Diecast cylinder block excellent in airtightness and wear resistance, and its producing method
US20040055724A1 (en) Semi-solid metal casting process and product
JP3696844B2 (en) Aluminum alloy with excellent semi-melt formability
JP3339333B2 (en) Method for forming molten metal
CN106011545B (en) A kind of aluminium antimony intermediate alloy and its preparation method and application
JP3053063B2 (en) Manufacturing method of aluminum alloy casting material suitable for semi-solid molding
US20050103461A1 (en) Process for generating a semi-solid slurry
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JP3484989B2 (en) Manufacturing method of aluminum integrated caliper body for disc brake
JP2002356755A (en) METHOD FOR PRODUCING Cu-CONTAINING HYPER-EUTECTIC Al-Si ALLOY CAST MEMBER HAVING EXCELLENT WEAR RESISTANCE
JP5025953B2 (en) Method for manufacturing wear-resistant products

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term