JP3413888B2 - Method of forming oxide thin film - Google Patents

Method of forming oxide thin film

Info

Publication number
JP3413888B2
JP3413888B2 JP19085493A JP19085493A JP3413888B2 JP 3413888 B2 JP3413888 B2 JP 3413888B2 JP 19085493 A JP19085493 A JP 19085493A JP 19085493 A JP19085493 A JP 19085493A JP 3413888 B2 JP3413888 B2 JP 3413888B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
oxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19085493A
Other languages
Japanese (ja)
Other versions
JPH0718417A (en
Inventor
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19085493A priority Critical patent/JP3413888B2/en
Priority to DE69422666T priority patent/DE69422666T2/en
Priority to EP94401516A priority patent/EP0633331B1/en
Priority to US08/269,777 priority patent/US5501175A/en
Priority to CA002127323A priority patent/CA2127323C/en
Publication of JPH0718417A publication Critical patent/JPH0718417A/en
Application granted granted Critical
Publication of JP3413888B2 publication Critical patent/JP3413888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物薄膜の成膜方法
に関する。より詳細には、表面の平坦性、結晶性に優れ
た酸化物薄膜が成膜でき、絶縁特性の向上を図る酸化物
薄膜の成膜方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an oxide thin film. More specifically, the present invention relates to a method for forming an oxide thin film capable of forming an oxide thin film having excellent surface flatness and crystallinity and improving insulating properties.

【0002】[0002]

【従来の技術】酸化物薄膜は、従来より半導体技術の分
野において絶縁層、保護層等としてひろく使用されてき
た。近年、研究が進められている酸化物超電導体を使用
した超電導素子においても、酸化物薄膜は絶縁層、障壁
層等に使用されることがある。超電導素子に使用される
酸化物薄膜は、絶縁膜を介しての超電導粒子の相互作
用、あるいは高電圧の印加が求められるので半導体素子
に使用されるものよりも均一性、結晶性、表面の平坦性
等に高い品質が要求される。
2. Description of the Related Art Oxide thin films have hitherto been widely used as insulating layers, protective layers, etc. in the field of semiconductor technology. Even in a superconducting element using an oxide superconductor, which has been studied in recent years, the oxide thin film may be used as an insulating layer, a barrier layer, or the like. Oxide thin films used for superconducting devices are required to interact with superconducting particles through an insulating film or to apply a high voltage, so they are more uniform, more crystalline, and flatter than those used for semiconductor devices. High quality is required for the quality.

【0003】従来、超電導素子に使用される酸化物薄膜
は、レーザ蒸着法で成膜されることが多かった。レーザ
蒸着法では、高い成膜速度で成膜が可能で、ターゲット
の組成にほぼ等しい組成の薄膜を成膜することが可能で
ある。しかしながら、成膜された薄膜の表面が荒れやす
く、均一な結晶性の薄膜を成膜することが難しい。その
ため、必要な耐圧を得るためには膜厚を大きくしなけれ
ばならない。さらに、成膜時に薄膜の組成を調整、変更
することは難しい。従って、従来のレーザ蒸着法による
成膜では、絶縁特性のよい薄膜を得ることは困難であっ
た。
Conventionally, oxide thin films used for superconducting elements have often been formed by laser vapor deposition. With the laser deposition method, it is possible to form a film at a high film formation rate, and it is possible to form a thin film having a composition almost equal to that of the target. However, the surface of the formed thin film is easily roughened, and it is difficult to form a thin film having uniform crystallinity. Therefore, the film thickness must be increased to obtain the required breakdown voltage. Furthermore, it is difficult to adjust or change the composition of the thin film during film formation. Therefore, it has been difficult to obtain a thin film having good insulating properties by the conventional film formation by the laser vapor deposition method.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は従来技
術の問題点を解決して、結晶性、表面平滑性の優れた酸
化物薄膜が成膜可能で、絶縁特性の向上を図る方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art by forming a thin oxide film having excellent crystallinity and surface smoothness, and improving the insulating property. To provide.

【0005】[0005]

【課題を解決するための手段】本発明に従うと、基板上
に酸化物薄膜を成膜する方法において、高真空に排気可
能なチャンバ内に、基板を加熱可能に収容し、該基板を
所定の温度に加熱して該基板の近傍にO3 を含むO2
供給し、前記チャンバ内で基板に対向して配置した複数
のKセル蒸着源から、前記酸化物の酸素以外の成分元素
を個別に供給して成膜を行うことを特徴とする酸化物薄
膜の成膜方法が提供される。
According to the present invention, in a method for forming an oxide thin film on a substrate, the substrate is housed in a chamber that can be evacuated to a high vacuum so that it can be heated, and the substrate is heated to a predetermined size. and heated to a temperature to supply O 2 including O 3 in the vicinity of the substrate, a plurality of K cells deposition source which is disposed to face the substrate in the chamber, separate constituent elements other than oxygen in the oxide There is provided a method for forming an oxide thin film, characterized in that the film is formed by supplying the oxide film to the film.

【0006】本発明の方法においては、前記チャンバ内
のバックグランド圧力が、1×10-9〜1×10-11 Torrで
あり、前記基板近傍での前記O3 を含むO2 の圧力が1
×10-5〜1×10-6Torrであることが好ましい。また、本
発明の方法では、成膜時の基板温度が 330〜530 ℃の範
囲であることが好ましく、特に430 ℃が好ましい。ま
た、本発明の方法は、特に、酸化物の絶縁体の薄膜、特
にSrTiO3の成膜に使用することが好ましい。
In the method of the present invention, the background pressure in the chamber is 1 × 10 −9 to 1 × 10 −11 Torr, and the pressure of O 2 including O 3 in the vicinity of the substrate is 1.
It is preferably x10 -5 to 1 x 10 -6 Torr. Further, in the method of the present invention, the substrate temperature during film formation is preferably in the range of 330 to 530 ° C, particularly preferably 430 ° C. Further, the method of the present invention is particularly preferably used for forming a thin film of an oxide insulator, particularly SrTiO 3 .

【0007】[0007]

【作用】本発明の方法では、いわゆる反応性蒸着法によ
り酸化物薄膜の成膜を行う。反応性蒸着法とは、真空蒸
着法、特にMBE法に近い方法であり、真空チャンバ内
でクヌードセンセル(以下Kセルと記す)等の蒸発源か
ら供給した成分元素と、気体として供給した成分元素と
を基板表面近傍で反応させて、基板に薄膜を成長させる
方法である。特に本発明においては、クヌードセンセル
蒸発源から酸素以外の成分元素を供給し、基板近傍に供
給した酸化ガスと基板表面近傍で反応させて基板上に酸
化物薄膜を成膜する。
In the method of the present invention, an oxide thin film is formed by the so-called reactive vapor deposition method. The reactive vapor deposition method is a method similar to a vacuum vapor deposition method, particularly an MBE method, and is supplied as a gas together with a component element supplied from an evaporation source such as a Knudsen cell (hereinafter referred to as K cell) in a vacuum chamber. This is a method in which a thin film is grown on a substrate by reacting with a component element in the vicinity of the substrate surface. Particularly, in the present invention, a constituent element other than oxygen is supplied from the Knudsen cell evaporation source and reacted with the oxidizing gas supplied in the vicinity of the substrate in the vicinity of the substrate surface to form an oxide thin film on the substrate.

【0008】本発明の方法では、上記の酸化ガスにはO
3 を含むO2 を使用する。O2 のみでは酸化性が低いか
らである。O3 は2〜70体積%の範囲で含まれることが
好ましい。また、本発明の方法では、真空チャンバ内の
バックグランドの圧力は、チャンバ内の汚染防止等から
1×10-9〜1×10-11 Torr程度の圧力とすることが好ま
しく、基板近傍のO3 を含むO2 の圧力は、十分な反応
のために1×10-5〜1×10-6Torr程度の圧力とすること
が好ましい。
In the method of the present invention, the oxidizing gas is O
O 2 containing 3 is used. This is because the oxidizability is low only with O 2 . O 3 is preferably contained in the range of 2 to 70% by volume. Further, in the method of the present invention, the background pressure in the vacuum chamber is preferably about 1 × 10 −9 to 1 × 10 −11 Torr in order to prevent contamination in the chamber and the like. The pressure of O 2 containing 3 is preferably about 1 × 10 −5 to 1 × 10 −6 Torr for sufficient reaction.

【0009】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0010】[0010]

【実施例】本発明の方法で、0.05重量%のNbを添加した
SrTiO3(100)基板上にSrTiO3薄膜を成膜した。図
1に、本実施例で使用した本発明の方法を実現する装置
の概略図を示す。図1の装置は、それぞれ独立した排気
装置に接続された排気口11および12を備え、内部を高真
空に排気可能な真空チャンバ1と、真空チャンバ1の底
部に備えられたKセル21および22と、真空チャンバ1の
上部に配置された基板ホルダ3とを備える。基板ホルダ
3は、基板10をKセル21および22に対向して固定可能で
あり、基板10を加熱するヒータ4と温度センサ(不図
示)を内蔵している。また、Kセル21および22は、それ
ぞれ独立に供給量を調整可能に構成されている。
EXAMPLE In the method of the present invention, 0.05% by weight of Nb was added.
Was deposited SrTiO 3 thin film SrTiO 3 (100) substrate. FIG. 1 shows a schematic view of an apparatus for implementing the method of the present invention used in this example. The apparatus of FIG. 1 has exhaust ports 11 and 12 connected to independent exhaust systems, respectively, and a vacuum chamber 1 capable of evacuating the interior to a high vacuum, and K cells 21 and 22 provided at the bottom of the vacuum chamber 1. And a substrate holder 3 arranged above the vacuum chamber 1. The substrate holder 3 can fix the substrate 10 so as to face the K cells 21 and 22, and incorporates a heater 4 for heating the substrate 10 and a temperature sensor (not shown). Further, the K cells 21 and 22 are configured so that the supply amount can be adjusted independently.

【0011】さらに、上記の装置には、基板10近傍に酸
化ガス(O3 を含むO2 )を供給するガス供給管6と、
成膜中の薄膜の表面状態を解析するためのRHEED
(反射高速電子線回折)装置5と、各Kセルから供給さ
れる蒸発源の供給量および基板10上に堆積した薄膜の厚
さのモニタ7とが備えられている。また、チャンバ1の
内部には、基板10の近傍とKセル21、22の近傍の圧力差
を設けるための隔壁8が設けられている。
Furthermore, in the above apparatus, the gas supply pipe 6 for supplying (O 2 including O 3) substrate 10 near the oxidizing gas,
RHEED for analyzing surface condition of thin film during film formation
A (reflection high-energy electron beam diffraction) device 5 and a monitor 7 for the amount of evaporation source supplied from each K cell and the thickness of the thin film deposited on the substrate 10 are provided. Further, inside the chamber 1, a partition wall 8 for providing a pressure difference between the vicinity of the substrate 10 and the vicinity of the K cells 21, 22 is provided.

【0012】本実施例では、純度3NのSrおよび純度5
NのTiをそれぞれ別のTa製るつぼに入れ、Kセル21およ
び22にセットした。0.05重量%のNbを添加したSrTiO3
(100)基板を基板ホルダ4に取り付け、チャンバ1
内を1×10-10 Torrまで排気した。O3 を8体積%含む
2 を基板10の近傍に供給し、基板10を含むチャンバ1
内の隔壁8から上の部分の圧力を3×10-5Torrとした。
SrのKセルを 520℃、TiのKセルを1500℃、基板10を 2
80〜680 ℃の範囲の所定の温度まで加熱して成膜を行っ
た。成膜速度は 1.2nm/分であった。
In this embodiment, Sr having a purity of 3N and a purity of 5 are used.
N Ti was placed in different Ta crucibles and set in K cells 21 and 22. SrTiO 3 with 0.05% by weight Nb
The (100) substrate is attached to the substrate holder 4, and the chamber 1
The inside was evacuated to 1 × 10 -10 Torr. O 2 containing 8% by volume of O 3 is supplied to the vicinity of the substrate 10 to form a chamber 1 containing the substrate 10.
The pressure in the portion above the inner partition wall 8 was 3 × 10 −5 Torr.
Sr K cell is 520 ℃, Ti K cell is 1500 ℃, substrate 10 is 2
The film was formed by heating to a predetermined temperature in the range of 80 to 680 ° C. The film formation rate was 1.2 nm / min.

【0013】上記本発明の方法では、それぞれのKセル
の温度により、それぞれの蒸発源から蒸発する量を変化
させて成膜速度を変更する。一方、基板温度は薄膜の結
晶性に影響し、特に基板温度が低い場合には結晶性が保
てなくなる。さらに、酸化物の酸素含有量は成膜時の酸
化ガスの圧力に依存する。また、薄膜の組成は、各蒸発
源からの蒸着量の比に依存している。従って、本発明の
方法では、上記のパラメータを変更することにより、薄
膜の組成を成膜時に調整可能であり、これにより薄膜の
特性を変更することができる。
In the method of the present invention, the film formation rate is changed by changing the amount of evaporation from each evaporation source depending on the temperature of each K cell. On the other hand, the substrate temperature affects the crystallinity of the thin film, and the crystallinity cannot be maintained especially when the substrate temperature is low. Furthermore, the oxygen content of the oxide depends on the pressure of the oxidizing gas during film formation. Further, the composition of the thin film depends on the ratio of the vapor deposition amount from each evaporation source. Therefore, in the method of the present invention, the composition of the thin film can be adjusted at the time of film formation by changing the above parameters, and thus the characteristics of the thin film can be changed.

【0014】上記本実施例により、成膜したSrTiO3
膜の各特性を評価した。RHEEDによる観測では、基
板温度 300℃以上で結晶性のよい薄膜が成膜できること
がわかった。図3(a)〜(d)にそれぞれ基板温度 280、 3
30、 530および 680℃で成膜したSrTiO3薄膜のRHE
ED像を示す。さらに、比誘電率の測定から本発明の方
法で330〜 530℃の基板温度で成膜されたSrTiO3薄膜
は、20Kでの比誘電率が300程度の優れた絶縁特性を有
し、特に基板温度 430℃で成膜されたSrTiO3薄膜の比
誘電率が最大となることがわかった。比誘電率と成膜温
度との関係を図2のグラフに示す。図2には、それぞれ
のSrTiO3薄膜の比誘電率を室温と20Kで測定した結果
が示されている。さらに、原子間力顕微鏡(AFM)に
よる観察によれば、本発明の方法で330 〜 530℃の基板
温度で成膜したSrTiO3薄膜の表面は5nm以下の平坦性
を有することがわかった。また、
The characteristics of the SrTiO 3 thin film thus formed were evaluated in accordance with the present embodiment. Observation by RHEED revealed that a thin film with good crystallinity can be formed at a substrate temperature of 300 ° C or higher. Substrate temperatures of 280 and 3 are shown in Figs.
RHE of SrTiO 3 thin films deposited at 30, 530 and 680 ℃
An ED image is shown. Furthermore, from the measurement of the relative dielectric constant, the SrTiO 3 thin film formed by the method of the present invention at a substrate temperature of 330 to 530 ° C. has excellent insulating properties with a relative dielectric constant of about 300 at 20 K, It was found that the SrTiO 3 thin film formed at a temperature of 430 ° C. has the maximum relative dielectric constant. The relationship between the relative dielectric constant and the film forming temperature is shown in the graph of FIG. FIG. 2 shows the results of measuring the relative permittivity of each SrTiO 3 thin film at room temperature and 20K. Further, observation by an atomic force microscope (AFM) revealed that the surface of the SrTiO 3 thin film formed by the method of the present invention at a substrate temperature of 330 to 530 ° C. has a flatness of 5 nm or less. Also,

【0015】本発明の方法によれば、SrTiO薄膜
の組成を変更して、半導体特性としたり、絶縁体特性と
することも可能である。また、例えば、Y−Ba−Cu
−O系酸化物超電導薄膜に連続してin situの成
膜を行うことも可能である。本実施例では、SrTiO
薄膜について説明を行ったが、本発明の方法は、Sr
TiO以外にも酸化物に広く適用することができる。
According to the method of the present invention, it is possible to change the composition of the SrTiO 3 thin film to have semiconductor characteristics or insulator characteristics. Also, for example, Y-Ba-Cu
It is also possible to continuously form an in-situ film on the -O-based oxide superconducting thin film. In this embodiment, SrTiO 3
Although three thin films have been described, the method of the present invention uses Sr
It can be widely applied to oxides other than TiO 3 .

【0016】[0016]

【発明の効果】本発明の方法を用いることによって、結
晶性、絶縁特性が優れた酸化物薄膜を成膜することがで
きる。従って、本発明の方法を、各種素子、特に酸化物
超電導体を使用した超電導素子の作製に応用すると効果
的である。特に、極薄の酸化物超電導薄膜で構成された
超電導チャネルと、この超電導チャネル上に形成された
ゲート絶縁層と、ゲート絶縁層上に形成されたゲート電
極とを有する超電導電界効果型素子のゲート絶縁層の作
製に応用すると有利である。また、酸化物超電導薄膜に
よる超電導電極と、その上に積層された障壁層と、さら
にその上に積層された酸化物超電導薄膜による超電導電
極とを備えるトンネル型ジョセフソン素子の障壁層の形
成にも有利に適用できる。
By using the method of the present invention, an oxide thin film having excellent crystallinity and insulating properties can be formed. Therefore, it is effective to apply the method of the present invention to the production of various devices, particularly superconducting devices using oxide superconductors. In particular, a gate of a superconducting field effect device having a superconducting channel composed of an ultrathin oxide superconducting thin film, a gate insulating layer formed on the superconducting channel, and a gate electrode formed on the gate insulating layer. It is advantageous to apply it to the production of an insulating layer. Also, for forming a barrier layer of a tunnel-type Josephson device including a superconducting electrode made of an oxide superconducting thin film, a barrier layer laminated thereon, and a superconducting electrode made of an oxide superconducting thin film further laminated thereon. It can be applied to advantage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するのに使用する装置の一
例の概略図である。
FIG. 1 is a schematic diagram of an example of an apparatus used to carry out the method of the present invention.

【図2】本発明の方法により成膜されたSrTiO3薄膜
の、成膜温度と比誘電率との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the film forming temperature and the relative dielectric constant of the SrTiO 3 thin film formed by the method of the present invention.

【図3】(a)〜(d)は、それぞれ基板温度280、330、530
および680℃で成膜したSrTiO3薄膜のRHEED(反射
高速電子線回折)写真である。
3A to 3D show substrate temperatures 280, 330, and 530, respectively.
3 is a RHEED (reflection high energy electron diffraction) photograph of SrTiO 3 thin films formed at 680 ° C.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 3 基板ホルダ 4 ヒータ 5 RHEED 6 ガス供給管 7 膜厚モニタ 10 基板 11、12 排気口 21、22 Kセル 1 vacuum chamber 3 substrate holder 4 heater 5 RHEED 6 gas supply pipe 7 Film thickness monitor 10 board 11, 12 exhaust port 21, 22 K cell

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−97402(JP,A) 特開 平1−290758(JP,A) 特開 平4−183850(JP,A) 特開 平4−32279(JP,A) 特表 平4−500198(JP,A) 堂山昌男 外1名編,材料テクノロジ ー9 材料のプロセス技術[I],日 本,東京大学出版会,1987年11月30日, 初版,P159−163 金原 あきら,薄膜の基本技術,日 本,東京大学出版会,1987年 9月25 日,第2版,P52−53 (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C30B 29/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-2-97402 (JP, A) JP-A-1-290758 (JP, A) JP-A-4-183850 (JP, A) JP-A-4- 32279 (JP, A) Tokumei Hira 4-500198 (JP, A) Masao Doyama, First Edition, Material Technology 9 Material Process Technology [I], Japan, The University of Tokyo Press, November 30, 1987 , First edition, P159-163 Akira Kanehara, Basic technology of thin film, Japan, The University of Tokyo Press, September 25, 1987, Second edition, P52-53 (58) Fields investigated (Int.Cl. 7 , DB Name) C23C 14/00-14/58 C30B 29/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に酸化物の絶縁体薄膜を成膜する方
法において、高真空に排気可能なチャンバ内に、基板を
加熱可能に収容し、該基板を330℃以上、530℃以
に加熱して該基板の近傍にOを含むOガスを供給
し、前記基板近傍での前記Oを含むOガスの圧力を
1×10 −6 Torr以上、1×10 −5 Torr未満
とし、前記チャンバ内で基板に対向して配置した複数の
Kセル蒸着源から、前記酸化物の絶縁体の酸素以外の成
分元素を個別に供給して成膜を行うことを特徴とする酸
化物薄膜の成膜方法。
1. A method for forming an oxide insulator thin film on a substrate, wherein the substrate is housed in a chamber capable of being evacuated to a high vacuum so that it can be heated, and the substrate is 330 ° C. or higher and 530 ° C. or higher.
The substrate is heated downward to supply O 2 gas containing O 3 to the vicinity of the substrate, and the pressure of the O 2 gas containing O 3 in the vicinity of the substrate is controlled.
1 × 10 −6 Torr or more and less than 1 × 10 −5 Torr
The oxide film is characterized in that the constituent elements other than oxygen of the oxide insulator are individually supplied from a plurality of K cell vapor deposition sources arranged facing the substrate in the chamber to form a film. Thin film forming method.
【請求項2】前記チャンバ内のバックグラウンド圧力
が、1×10 −11 Torr以上、1×10 −9 Tor
r以下であることを特徴とする請求項1に記載された方
法。
2. A background pressure in the chamber is, 1 × 10 -11 Torr or more, 1 × 10 -9 Tor
The method according to claim 1, wherein r is less than or equal to r .
【請求項3】前記酸化物の絶縁体が、SrTiOであ
ることを特徴とする請求項1または2に記載された方
法。
3. The method according to claim 1, wherein the oxide insulator is SrTiO 3 .
【請求項4】前記Oを含むOガスにおいて、O
2体積%以上、70体積%以下の範囲で含まれることを
特徴とする請求項1から請求項3までのいずれか1項に
記載された方法。
4. The O 2 gas containing O 3, is O 3
The method according to any one of claims 1 to 3, wherein the method is contained in the range of 2% by volume or more and 70% by volume or less .
【請求項5】前記成膜時の基板温度が430℃であるこ
とを特徴とする請求項から請求項4までのいずれか1
項に記載された方法。
5. The one of the preceding claims, characterized in that the substrate temperature during the film formation is 430 ° C. to claim 4 1
The method described in section.
JP19085493A 1993-07-02 1993-07-02 Method of forming oxide thin film Expired - Fee Related JP3413888B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19085493A JP3413888B2 (en) 1993-07-02 1993-07-02 Method of forming oxide thin film
DE69422666T DE69422666T2 (en) 1993-07-02 1994-07-01 Process for the production of a highly crystalline, thin SrTiO3 oxide film
EP94401516A EP0633331B1 (en) 1993-07-02 1994-07-01 Process for preparing high crystallinity SrTiO3 oxide thin film
US08/269,777 US5501175A (en) 1993-07-02 1994-07-01 Process for preparing high crystallinity oxide thin film
CA002127323A CA2127323C (en) 1993-07-02 1994-07-04 Process for preparing high crystallinity oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19085493A JP3413888B2 (en) 1993-07-02 1993-07-02 Method of forming oxide thin film

Publications (2)

Publication Number Publication Date
JPH0718417A JPH0718417A (en) 1995-01-20
JP3413888B2 true JP3413888B2 (en) 2003-06-09

Family

ID=16264884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19085493A Expired - Fee Related JP3413888B2 (en) 1993-07-02 1993-07-02 Method of forming oxide thin film

Country Status (1)

Country Link
JP (1) JP3413888B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051242A (en) * 2013-02-25 2015-11-11 应用材料公司 Deposition apparatus with gas supply and method for depositing material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
堂山昌男 外1名編,材料テクノロジー9 材料のプロセス技術[I],日本,東京大学出版会,1987年11月30日,初版,P159−163
金原 あきら,薄膜の基本技術,日本,東京大学出版会,1987年 9月25日,第2版,P52−53

Also Published As

Publication number Publication date
JPH0718417A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
Amor et al. Characterization of zirconia films deposited by rf magnetron sputtering
US5801105A (en) Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
US6541079B1 (en) Engineered high dielectric constant oxide and oxynitride heterostructure gate dielectrics by an atomic beam deposition technique
EP0633331B1 (en) Process for preparing high crystallinity SrTiO3 oxide thin film
JPH06280023A (en) Formation of ferroelectric film by organometallic vapor deposition
Kijima et al. New low-temperature processing of metalorganic chemical vapor deposition-Bi4Ti3O12 thin films using BiOx buffer layer
Myllymäki et al. High-permittivity YScO 3 thin films by atomic layer deposition using two precursor approaches
US5480861A (en) Layered structure comprising insulator thin film and oxide superconductor thin film
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
WO2000008680A1 (en) Vapor growth method for metal oxide dielectric film and vapor growth device for metal oxide dielectric material
JP3413888B2 (en) Method of forming oxide thin film
Gao et al. Band gap energy of SrTiO 3 thin film prepared by the liquid phase deposition method
Guoping et al. Structures and properties of a Ta2O5 thin film deposited by dc magnetron reactive sputtering in a pure O2 atmosphere
EP0754776B1 (en) Method of producing dielectric thin film element
JPH07268612A (en) Formation of oxide thin film
Li et al. High dielectric constant BaxSr1-xTiO3 (BST) thin films made by mocvd techniques for dram applications
US5976624A (en) Process for producing bismuth compounds, and bismuth compounds
CA2117411C (en) Layered structure comprising insulator thin film and oxide superconductor thin film
Itoh et al. MOCVD for PZT thin films by using novel metalorganic sources
Yanase et al. Epitaxial Growth of Ti1-xAl xN Buffer Layer for a Ferroelectric (Ba, Sr) TiO3 Capacitor on Si Substrate
JPH02258700A (en) Ferroelectric thin film and production thereof
JP3171246B2 (en) Vapor phase growth method of metal oxide dielectric film
JPH07172996A (en) Production of thin film of dielectric material and production device therefor
JP3353835B2 (en) Vapor phase growth method of metal oxide dielectric film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

LAPS Cancellation because of no payment of annual fees