JP3413234B2 - Synthesis gas production method - Google Patents

Synthesis gas production method

Info

Publication number
JP3413234B2
JP3413234B2 JP06527593A JP6527593A JP3413234B2 JP 3413234 B2 JP3413234 B2 JP 3413234B2 JP 06527593 A JP06527593 A JP 06527593A JP 6527593 A JP6527593 A JP 6527593A JP 3413234 B2 JP3413234 B2 JP 3413234B2
Authority
JP
Japan
Prior art keywords
catalyst
hours
ruthenium
carrier
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06527593A
Other languages
Japanese (ja)
Other versions
JPH06279003A (en
Inventor
正一 西山
哲夫 淺川
好文 佐々木
宗太郎 中村
久則 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Center for Environmental Technology Transfer
Tosoh Corp
Original Assignee
International Center for Environmental Technology Transfer
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Center for Environmental Technology Transfer, Tosoh Corp filed Critical International Center for Environmental Technology Transfer
Priority to JP06527593A priority Critical patent/JP3413234B2/en
Publication of JPH06279003A publication Critical patent/JPH06279003A/en
Application granted granted Critical
Publication of JP3413234B2 publication Critical patent/JP3413234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタンを還元剤として
地球温暖化の主要な原因物質となっている二酸化炭素
を、工業的に有用な一酸化炭素と水素(以下、合成ガス
と略す)に変換する方法に関する。
The present invention relates to industrially useful carbon monoxide and hydrogen (hereinafter abbreviated as syngas) for carbon dioxide, which is a major causative substance of global warming using methane as a reducing agent. On how to convert to.

【0002】[0002]

【従来の技術】二酸化炭素は地球温暖化の主要原因物質
として、排出の削減、有効利用が緊急の課題として求め
られ、近年、二酸化炭素の化学的変換法が多方面(電気
的還元法、光合成法、接触水素還元法等)で検討されて
いる。
2. Description of the Related Art As carbon dioxide is a major causative agent of global warming, it is urgently required to reduce and effectively use carbon dioxide. In recent years, carbon dioxide chemical conversion methods have been widely used (electric reduction method, photosynthesis method). Method, catalytic hydrogen reduction method, etc.).

【0003】そのなかで、メタンを還元剤として二酸化
炭素を各種有機化合物を合成する際の原料等として有用
な合成ガスに変換する報告例は少なく、アルミナ及びシ
リカ担持貴金属或いはVIII族遷移金属触媒を使用した接
触法(React.Kinet.catal.,24
(3―4),253(1984)、第68回触媒討論会
(A)予稿集,3H327(1991)及び第70回触
媒討論会(A)予稿集,3F420(1992))があ
るにすぎない。
[0003] Among them, there are few reports of converting carbon dioxide into a synthesis gas useful as a raw material when synthesizing various organic compounds by using methane as a reducing agent, and alumina and silica-supported noble metals or Group VIII transition metal catalysts are used. The contact method used (React. Kinet. Catal., 24
(3-4), 253 (1984), 68th catalyst debate (A) Proceedings, 3H327 (1991) and 70th catalyst debate (A) Proceedings, 3F420 (1992)) .

【0004】特に、アルミナに担持されたVIII族遷移金
属に属するニッケル触媒や貴金属であるロジウム、ルテ
ニウム触媒が反応初期において高活性であることが記載
されている。
In particular, it is described that a nickel catalyst belonging to a Group VIII transition metal supported on alumina and a noble metal rhodium or ruthenium catalyst are highly active in the initial stage of the reaction.

【0005】しかし、より長時間の反応においてアルミ
ナに担持されたニッケル触媒は、触媒表面上での炭素析
出が激しく短時間で活性が減少する。
However, the activity of the nickel catalyst supported on alumina during the reaction for a longer period of time is prone to carbon deposition on the surface of the catalyst and decreases in a short period of time.

【0006】一方、アルミナに担持されたロジウム、ル
テニウム触媒は、ニッケル触媒との比較において炭素析
出が小さい結果、触媒寿命の面で優れているが、アルミ
ナに担持されたロジウム触媒及びルテニウム触媒を比較
すると、ルテニウム触媒はロジウム触媒と同等の活性は
あるものの触媒寿命の点で劣るという報告がある(Ap
plied Catalysis,61(199
0))。
On the other hand, the rhodium and ruthenium catalysts supported on alumina are superior in terms of catalyst life as a result of less carbon deposition as compared with nickel catalysts, but the rhodium catalyst and ruthenium catalyst supported on alumina are compared. Then, it is reported that the ruthenium catalyst has the same activity as the rhodium catalyst, but is inferior in the catalyst life (Ap.
plied Catalysis, 61 (199
0)).

【0007】[0007]

【発明が解決しようとする課題】しかし、ロジウム触媒
は、高価であり経済的にも不利であることから、より安
価なルテニウム蝕媒を用い、ロジウム触媒と同等の活性
及び触媒寿命を有する触媒の開発が望まれている。
However, since the rhodium catalyst is expensive and economically disadvantageous, a less expensive ruthenium etchant is used and a catalyst having the same activity and catalyst life as the rhodium catalyst is used. Development is desired.

【0008】[0008]

【課題を解決するための手段】本発明者らは、ルテニウ
ム触媒について鋭意検討した結果、合成ガスを製造する
にあたりアルカリ土類金属酸化物類のうち少なくとも1
種以上の化合物と酸化アルミニウムからなる担体を使用
することで安定した活性を示すことを見いだし本発明を
完成するに至った。
Means for Solving the Problems As a result of earnest studies on a ruthenium catalyst, the present inventors have found that at least one of alkaline earth metal oxides is used in producing synthesis gas.
It has been found that stable activity is exhibited by using a carrier composed of at least one compound and aluminum oxide, and the present invention has been completed.

【0009】即ち、本発明は、二酸化炭素及びメタンを
含有するガスを触媒に接触させ一酸化炭素と水素を製造
するにあたり、触媒としてアルカリ土類金属酸化物類の
少なくとも1種以上の化合物と酸化アルミニウムからな
る担体上に、ルテニウム金属を担持させた触媒を用いる
ことを特徴とする合成ガスの製造方法である。以下、本
発明を詳細に説明する。
That is, according to the present invention, when a gas containing carbon dioxide and methane is brought into contact with a catalyst to produce carbon monoxide and hydrogen, at least one compound of alkaline earth metal oxides and a catalyst are oxidized as a catalyst. A method for producing synthesis gas, which comprises using a catalyst in which a ruthenium metal is supported on a support made of aluminum. Hereinafter, the present invention will be described in detail.

【0010】本発明の特徴は、アルカリ土類金属駿化物
類の少なくとも1種以上の化合物と酸化アルミニウムか
らなる担体を用いることである。アルカリ土類金属酸化
物類としては、酸化マグネシウム、酸化カルシウム、酸
化バリウム、酸化ストロンチウムが挙げられる。この担
体を用いたルテニウム触媒は、優れた活性・寿命を有
し、特に酸化マグネシウム及び酸化アルミニウムからな
る担体を用いることにより更に触媒活性および寿命が向
上する。
A feature of the present invention is to use a carrier composed of at least one compound of alkaline earth metal halides and aluminum oxide. Examples of the alkaline earth metal oxides include magnesium oxide, calcium oxide, barium oxide, and strontium oxide. The ruthenium catalyst using this carrier has excellent activity and longevity, and in particular, the catalyst activity and longevity are further improved by using a carrier composed of magnesium oxide and aluminum oxide.

【0011】担体の調製法としては、通常の含浸法、共
沈法或いは物理混合法等で製造される。酸化マグネシウ
ムと酸化アルミニウムからなる担体を例にとれば、 1) マグネシウム塩及びアルミニウム塩を混合した水
溶液と炭酸ナトリウム或いはアンモニア等の塩基性化合
物とを交互に加えて沈澱を形成し、得られたゲルを乾燥
後焼成する。
The carrier is prepared by a conventional impregnation method, coprecipitation method, physical mixing method, or the like. Taking a carrier composed of magnesium oxide and aluminum oxide as an example, 1) A gel obtained by alternately adding an aqueous solution in which a magnesium salt and an aluminum salt are mixed and a basic compound such as sodium carbonate or ammonia to form a precipitate Is dried and then baked.

【0012】2) 酸化アルミナを硝酸マグネシウム、
硫酸マグネシウム等のマグネシウム金属塩溶液に浸漬し
たのち、乾操・焼成の処理を行う。 こと等が挙げられる。
2) Alumina oxide is replaced with magnesium nitrate,
After immersing in a magnesium metal salt solution such as magnesium sulfate, dry treatment and baking treatment are performed. There are such things.

【0013】なお、上記方法において焼成温度は、30
0〜1000℃で空気焼成により行われる。より好まし
くは700〜1000℃で焼成することである。
In the above method, the firing temperature is 30
It is carried out by air baking at 0 to 1000 ° C. More preferably, it is fired at 700 to 1000 ° C.

【0014】本発明において用いられる触媒の担体の酸
化物の重量比は特に制限はないが、より好ましくは酸化
アルミニウムの含有量は1.0〜99.0重量%であ
る。
The weight ratio of the oxide of the carrier of the catalyst used in the present invention is not particularly limited, but the content of aluminum oxide is more preferably 1.0 to 99.0% by weight.

【0015】担体に酸化カリウム、酸化ナトリウム等の
アルカリ金属酸化物及び希土類酸化物を先に記載した調
製法により含有させても良い。
The carrier may contain an alkali metal oxide such as potassium oxide or sodium oxide and a rare earth oxide by the above-mentioned preparation method.

【0016】更に本発明において用いられる触媒の担体
に担持させるルテニウム化合物は金属換算で、通常0.
01〜10重量%であり、より好ましくは0.1〜5重
量%である。ルテニウム含有量が0.01重量%未満で
は十分な二酸化炭素の転化率が得られないことがあり、
一方10重量%以上では期待するほどの転化率の向上が
得られないおそれがある。
Further, the ruthenium compound to be supported on the carrier of the catalyst used in the present invention is usually 0.1.
It is from 01 to 10% by weight, more preferably from 0.1 to 5% by weight. If the ruthenium content is less than 0.01% by weight, a sufficient carbon dioxide conversion rate may not be obtained,
On the other hand, if it is 10% by weight or more, the expected improvement in conversion may not be obtained.

【0017】ルテニウムを担持させる触媒の調製法とし
ては、例えばルテニウム塩を用いて通常の含浸法などの
方法で調製後、活性化処理により製造されるが、より好
ましくは、メタノール、エタノール等のアルコール類及
びアセトン等の有機溶媒中で浸漬し調製したものがよ
い。
The catalyst for supporting ruthenium is prepared, for example, by a method such as a normal impregnation method using a ruthenium salt, followed by activation treatment. More preferably, an alcohol such as methanol or ethanol is used. Those prepared by immersing the compounds in an organic solvent such as acetone or the like are preferable.

【0018】また、触媒調製に使用されるルテニウム塩
は、特に制限はないが、触媒の活性・寿命を考慮すれば
ルテニウムアセチルアセトナト、ルテニウムカルボニ
ル、塩化ルテニウムのようなアルコールに対し可溶性で
ある金属塩を用いることが好ましい。
The ruthenium salt used for preparing the catalyst is not particularly limited, but a metal soluble in alcohol such as ruthenium acetylacetonato, ruthenium carbonyl and ruthenium chloride is taken into consideration in view of the activity and life of the catalyst. It is preferable to use a salt.

【0019】更に触媒の活性化処理とは、空気等による
焼成及び水素、硫化水素等による還元をいう。十分な二
酸化炭素の転化率を得るためには300〜1000℃で
還元処理を行うことが好ましい。
Further, the catalyst activation treatment means calcination with air or the like and reduction with hydrogen, hydrogen sulfide or the like. In order to obtain a sufficient carbon dioxide conversion rate, it is preferable to carry out the reduction treatment at 300 to 1000 ° C.

【0020】触媒は成型して用いても或いは粉末のまま
用いても差し支えなく、反応方法によって所望の大きさ
に成型して用いればよい。
The catalyst may be molded or used as it is, and may be molded into a desired size according to the reaction method.

【0021】本発明におけるメタンの量は、二酸化炭素
に対するメタンのモル比として規定することができる。
具体的には、メタンと二酸化炭素の比は0.05〜25
とすることができ、0.1〜20が好ましい。メタンと
二酸化炭素との比が0.05未満ではリサイクルする二
酸化炭素の量が多くなり、一方、メタンと二酸化炭素の
比が25を越えると十分な一酸化炭素生成速度が得られ
ず不経済となり、また触媒上で炭素析出が起こり易くな
り活性の低下を引き起こすおそれがある。
The amount of methane in the present invention can be defined as the molar ratio of methane to carbon dioxide.
Specifically, the ratio of methane to carbon dioxide is 0.05 to 25
And 0.1 to 20 is preferable. If the ratio of methane to carbon dioxide is less than 0.05, the amount of carbon dioxide to be recycled increases, while if the ratio of methane to carbon dioxide exceeds 25, a sufficient carbon monoxide generation rate cannot be obtained and it becomes uneconomical. Further, carbon deposition is likely to occur on the catalyst, which may cause a decrease in activity.

【0022】なお、本発明において、系中に希釈ガスと
して窒素、空気または水蒸気を添加することは触媒寿命
の観点から好ましい。
In the present invention, it is preferable to add nitrogen, air or steam as a diluent gas to the system from the viewpoint of catalyst life.

【0023】本発明における反応温度は300〜l00
0℃でよい。より好ましくは400〜950℃である。
反応温度が300℃未満では二酸化炭素の十分な転化率
が得られず、また、l000℃を越える場合には触媒の
シンタリングによる活性の低下を起こしたりする。
The reaction temperature in the present invention is 300 to 100
0 ° C is sufficient. More preferably, it is 400-950 degreeC.
If the reaction temperature is less than 300 ° C, a sufficient conversion rate of carbon dioxide cannot be obtained, and if it exceeds 1000 ° C, the activity may decrease due to the sintering of the catalyst.

【0024】反応圧力については特に制限はなく常圧か
ら20気圧、好ましくは常圧から10気圧で反応を行う
のがよい。
The reaction pressure is not particularly limited, and the reaction may be carried out at atmospheric pressure to 20 atm, preferably atmospheric pressure to 10 atm.

【0025】触媒に対する原料供給速度は単位触媒体積
あたりの原料供給速度(SV)で規定することができ
る。本発明の方法において、SVは500〜10000
0/hである。SVが500/h未満では一酸化炭素の
生成速度が小さく、またSVがl00000/hを越え
ると原料の転化率が抵下し経済的でなくなることがあ
る。
The raw material supply rate to the catalyst can be defined by the raw material supply rate (SV) per unit catalyst volume. In the method of the present invention, the SV is 500 to 10,000.
It is 0 / h. If the SV is less than 500 / h, the production rate of carbon monoxide is low, and if the SV is more than 100000 / h, the conversion rate of the raw material is lowered, which may be uneconomical.

【0026】反応方法は触媒と原料が効率的に接触でき
れば特に制限はなく、たとえば固定床、流動床、移動床
で反応を行うことができる。
The reaction method is not particularly limited as long as the catalyst and the raw materials can be efficiently contacted, and the reaction can be carried out in a fixed bed, a fluidized bed or a moving bed, for example.

【0027】[0027]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明はこれらの実施例によって制限されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The invention is not limited by these examples.

【0028】実施例1 硝酸マグネシウム四水和物10.5g、硝酸アルミニウ
ム九水和物175gの混合塩に水を加え0.5mol/
lに調製した水溶液と、20重量%無水炭酸ナトリウム
水溶液を水素イオン濃度(以下pHと略す)を7〜8に
調整しながら、ポンプで室温で撹拌下送液した。室温下
16時間撹拌しながら熟成後ろ過した。沈澱物は1リッ
トルのイオン交換水で2回洗浄し110℃で20時間乾
燥した。その後、3mmのぺレットに打錠成型し、70
0℃で2時間空気焼成を行った。0.2重量%塩化ルテ
ニウム含有エタノール溶液7gに上記担体6gを加え3
時間浸漬し、250mmHg/50℃で減圧乾燥した。
その後10%水素気流中で700℃、2時間還元を行い
0.1重量%ルテニウム触媒とした。
Example 1 Water was added to a mixed salt of 10.5 g of magnesium nitrate tetrahydrate and 175 g of aluminum nitrate nonahydrate to give 0.5 mol / mol.
While adjusting the hydrogen ion concentration (hereinafter abbreviated as pH) to 7 to 8, the aqueous solution prepared in 1 and the 20 wt% anhydrous sodium carbonate aqueous solution were fed with stirring at room temperature with a pump. The mixture was aged at room temperature for 16 hours with stirring and then filtered. The precipitate was washed twice with 1 liter of deionized water and dried at 110 ° C. for 20 hours. After that, tablet-molded into a 3 mm pellet, 70
Air calcination was performed at 0 ° C. for 2 hours. 6 g of the above carrier was added to 7 g of an ethanol solution containing 0.2 wt% ruthenium chloride, and 3
It was immersed for a period of time and dried under reduced pressure at 250 mmHg / 50 ° C.
Thereafter, reduction was carried out at 700 ° C. for 2 hours in a 10% hydrogen stream to obtain a 0.1 wt% ruthenium catalyst.

【0029】この触媒1.5gを内径16mmのSUS
310s反応管に充填し、反応温度を700℃に保ち、
ここに二酸化炭素:メタン:窒素のモル比がl:1:3
となる混合ガスを400cc/minで供給した(SV
=12000h-1)。なお、出口ガスの分折はガスクロ
マトグラフィーにより行い、一酸化炭素の収率、転化率
減少度は以下の計算式により算出した。結果を表1に示
す。
1.5 g of this catalyst was added to SUS having an inner diameter of 16 mm.
Fill the 310s reaction tube, keep the reaction temperature at 700 ℃,
Where the carbon dioxide: methane: nitrogen molar ratio is 1: 1: 3.
The mixed gas to be supplied was supplied at 400 cc / min (SV
= 12000h- 1 ). The outlet gas was fractionated by gas chromatography, and the yield of carbon monoxide and the degree of conversion reduction were calculated by the following formulas. The results are shown in Table 1.

【0030】CO収率(%)=出口COのモル数/(供
給CO2 のモル数+供給CH4 モル数)×100 転化率減少度(%)=20時間目の転化率−反応初期の
転化率 実施例2 硝酸マグネシウム四水和物10.4g、硝酸カルシウム
四水和物9.7g、硝酸アルミニウム九水和物161g
の混合塩に水を加え0.5mol/lに調製した水溶液
と、20重量%無水炭酸ナトリウム水溶液をpHを7〜
8に調整しながらポンプで室温で撹拌下送液した。室温
下16時間撹拌しながら熟成後ろ過した。沈澱物は1リ
ットルのイオン交換水で2回洗浄し110℃で20時間
乾燥した。その後、3mmのぺレットに打錠成型し、7
00℃で2時間空気焼成を行った。
CO yield (%) = mol number of outlet CO / (mol number of supplied CO 2 + mol number of supplied CH 4 ) × 100 conversion rate reduction rate (%) = conversion rate after 20 hours−initial reaction Conversion Example 2 Magnesium nitrate tetrahydrate 10.4 g, calcium nitrate tetrahydrate 9.7 g, aluminum nitrate nonahydrate 161 g
The water was added to the mixed salt of 0.5 to prepare a 0.5 mol / l aqueous solution, and a 20 wt% anhydrous sodium carbonate aqueous solution was added to adjust the pH to 7 to 7.
While adjusting to 8, the solution was pumped and sent at room temperature with stirring. The mixture was aged at room temperature for 16 hours with stirring and then filtered. The precipitate was washed twice with 1 liter of deionized water and dried at 110 ° C. for 20 hours. After that, tablet-molded into a 3 mm pellet, and
Air calcination was performed at 00 ° C. for 2 hours.

【0031】0.2重量%塩化ルテニウム含有エタノー
ル溶液7gに上記担体6gを加え3時間浸漬し、250
mmHg/50℃で減圧乾燥した。その後10%水素気
流中で700℃、2時間還元を行い、0.1重量%ルテ
ニウム触媒とした。
6 g of the above carrier was added to 7 g of an ethanol solution containing 0.2% by weight of ruthenium chloride, and the mixture was immersed for 3 hours to give 250
It was dried under reduced pressure at mmHg / 50 ° C. Thereafter, reduction was carried out at 700 ° C. for 2 hours in a 10% hydrogen stream to obtain a 0.1 wt% ruthenium catalyst.

【0032】この触媒1.5gを、実施例1と固様の反
応条件で反応させた。結果を表1に示す。
1.5 g of this catalyst was reacted with Example 1 under solid reaction conditions. The results are shown in Table 1.

【0033】実施例3 硝酸ランタン六水和物17.7g、硝酸マグネシウム1
0.5g、硝酸アルミニウム九水和物157gの混合塩
に水を加え0.5mol/lに調製した水溶液と、20
重量%無水炭酸ナトリウム水溶液をpHを7〜8に調整
しながらポンプで室温で撹拌下送液した。室温下16時
間撹拌しながら熟成後ろ過した。沈澱物は1リットルの
イオン交換水で2回洗浄し110℃で20時間乾燥し
た。その後、3mmのぺレットに打錠成型し、700℃
で2時間空気焼成を行った。
Example 3 17.7 g of lanthanum nitrate hexahydrate, 1 magnesium nitrate
An aqueous solution prepared by adding water to a mixed salt of 0.5 g and 157 g of aluminum nitrate nonahydrate to adjust the concentration to 0.5 mol / l;
A weight% anhydrous sodium carbonate aqueous solution was pumped at room temperature with a pump while adjusting the pH to 7 to 8. The mixture was aged at room temperature for 16 hours with stirring and then filtered. The precipitate was washed twice with 1 liter of deionized water and dried at 110 ° C. for 20 hours. After that, tablet-molded into a 3 mm pellet and 700 ° C
And air-baked for 2 hours.

【0034】0.2重量%塩化ルテニウム含有エタノー
ル溶液7gに上記担体6gを加え3時間浸漬し、250
mmHg/50℃で減圧乾燥した。その後10%水素気
流中で700℃、2時間還元を行い0.1重量%ルテニ
ウム触媒とした。
6 g of the above carrier was added to 7 g of an ethanol solution containing 0.2% by weight of ruthenium chloride, and the mixture was immersed for 3 hours to give 250
It was dried under reduced pressure at mmHg / 50 ° C. Thereafter, reduction was carried out at 700 ° C. for 2 hours in a 10% hydrogen stream to obtain a 0.1 wt% ruthenium catalyst.

【0035】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。結果を表1に示す。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0036】実施例4 3mm径の球状アルミナ(住友化学、KHA−24、表
面積172m2 /g)10.2gを、硝酸マグネシウム
四水和物1.26g、および硝酸ランタン六水和物5.
6gをイオン交換水10ccに溶かした溶液に添加し、
3時間浸漬した。その後60℃の湯浴上で蒸発乾固した
後700℃で2時間焼成した。さらに得られた担体を
0.2重量%塩化ルテニウム含有エタノール溶液12g
に浸漬し、250mmHg/50℃で減圧乾燥した。そ
の後10%水素気流中で700℃、2時間還元を行い
0.1重量%ルテニウム触媒とした。
Example 4 10.2 g of spherical alumina having a diameter of 3 mm (Sumitomo Chemical, KHA-24, surface area 172 m 2 / g), 1.26 g of magnesium nitrate tetrahydrate, and lanthanum nitrate hexahydrate 5.
6 g was added to a solution prepared by dissolving 10 cc of ion-exchanged water,
It was immersed for 3 hours. After that, it was evaporated to dryness on a hot water bath at 60 ° C. and then baked at 700 ° C. for 2 hours. Furthermore, the carrier thus obtained was added with 12 g of an ethanol solution containing 0.2% by weight of ruthenium chloride.
And was dried under reduced pressure at 250 mmHg / 50 ° C. Thereafter, reduction was carried out at 700 ° C. for 2 hours in a 10% hydrogen stream to obtain a 0.1 wt% ruthenium catalyst.

【0037】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。結果を表1に示す。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0038】実施例5 硝酸バリウム四水和物10.9g、硝酸マグネシウム1
0.5g、硝酸アルミニウム九水和物160gの混合塩
に水を加え0.5mol/lに調製した水溶液と、20
重量%無水炭酸ナトリウム水溶液を、pHを7〜8に調
整しながらポンプで室温で撹拌下送液した。室温下16
時間撹拌しながら熟成後ろ過した。沈澱物は1リットル
のイオン交換水で2回洗浄し110℃で20時間乾燥し
た。その後、3mmのぺレットに打錠成型し、700℃
で2時間空気焼成を行った。
Example 5 Barium nitrate tetrahydrate 10.9 g, magnesium nitrate 1
An aqueous solution prepared by adding water to a mixed salt of 0.5 g and 160 g of aluminum nitrate nonahydrate to adjust the concentration to 0.5 mol / l;
A wt% anhydrous sodium carbonate aqueous solution was pumped at room temperature with a pump while adjusting the pH to 7 to 8. At room temperature 16
After aging with stirring for time, the mixture was filtered. The precipitate was washed twice with 1 liter of deionized water and dried at 110 ° C. for 20 hours. After that, tablet-molded into a 3 mm pellet and 700 ° C
And air-baked for 2 hours.

【0039】0.2重量%塩化ルテニウム含有エタノー
ル溶液7gに上記担体6gを加え3時間浸漬し、250
mmHg/50℃で減圧乾燥した。その後10%水素気
流中で700℃、2時間還元を行い0.1重量%ルテニ
ウム触媒とした。
6 g of the above carrier was added to 7 g of an ethanol solution containing 0.2% by weight of ruthenium chloride, and the mixture was immersed for 3 hours to give 250
It was dried under reduced pressure at mmHg / 50 ° C. Thereafter, reduction was carried out at 700 ° C. for 2 hours in a 10% hydrogen stream to obtain a 0.1 wt% ruthenium catalyst.

【0040】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。結果を表1に示す。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0041】比較例1 塩化ロジウム16.1mgを無水エタノール6ccに溶
解した溶液に、実施例1で調製した担体6.0gを加え
3時間浸漬した。減圧乾燥の後700℃で2時間水素還
元し0.1重量%ロジウム触媒を調製した。
Comparative Example 1 6.0 g of the carrier prepared in Example 1 was added to a solution prepared by dissolving 16.1 mg of rhodium chloride in 6 cc of absolute ethanol and immersed for 3 hours. After drying under reduced pressure, hydrogen was reduced at 700 ° C. for 2 hours to prepare a 0.1 wt% rhodium catalyst.

【0042】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。結果を表1に示す。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0043】比較例2 塩化ルテニウム12mgを無水エタノール5ccに溶解
した溶液に、3mm径の球状アルミナ(住友化学、表面
積172m2 /g)5.07gを加え3時間浸漬した。
比較例1と同様の活性化処理を行い0.1重量%ルテニ
ウム触媒を調製した後、実施例1と同様の反応繰作で反
応を行った。結果を表1に示す。
Comparative Example 2 5.07 g of spherical alumina having a diameter of 3 mm (Sumitomo Chemical, surface area 172 m 2 / g) was added to a solution prepared by dissolving 12 mg of ruthenium chloride in 5 cc of absolute ethanol, and immersed for 3 hours.
The same activation treatment as in Comparative Example 1 was carried out to prepare a 0.1 wt% ruthenium catalyst, and then the reaction was carried out in the same reaction cycle as in Example 1. The results are shown in Table 1.

【0044】比較例3 3mm径の球状アルミナ(住友化学、表面積172m2
/g)10.0gを、塩化ロジウム25.6mgを水1
0ccに溶かした溶液に3時間浸漬ののち、60℃の湯
浴上で蒸発乾固し、引き続き700℃で2時間水素還元
を行い、重量比で0.1%ロジウムを含有した触媒を得
た。この触媒1.5gを使用し、実施例1と同様。反応
操作を行った。結果を表1に示す。
Comparative Example 3 3 mm diameter spherical alumina (Sumitomo Chemical, surface area 172 m 2
/ G) 10.0 g, rhodium chloride 25.6 mg in water 1
After soaking in a solution of 0 cc for 3 hours, the mixture was evaporated to dryness in a hot water bath at 60 ° C., followed by hydrogen reduction at 700 ° C. for 2 hours to obtain a catalyst containing 0.1% rhodium by weight. . Same as Example 1 using 1.5 g of this catalyst. The reaction operation was performed. The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例6 実施例1で得た担体10gを塩化ルテニウムl23mg
をエタノール10ccに溶かした溶液に添加し3時間浸
漬した。減圧乾燥の後700℃で2時間水素還元し0.
5重量%ルテニウム触媒を調製した。
Example 6 10 g of the carrier obtained in Example 1 was added with 123 mg of ruthenium chloride.
Was added to a solution prepared by dissolving 10 cc of ethanol and immersed for 3 hours. After drying under reduced pressure, hydrogen reduction was performed at 700 ° C. for 2 hours to give a value of 0.1.
A 5 wt% ruthenium catalyst was prepared.

【0047】この触媒1.5gを、実施例lと同榛の反
応条件で反応させた。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1.

【0048】100時間反応を行い、転化率減少度は表
2のようになった。
After reacting for 100 hours, the degree of conversion reduction was as shown in Table 2.

【0049】実施例7 実施例2で得た担体10gを塩化ルテニウム123mg
をエタノール10ccに溶かした溶液に添加し3時間浸
漬した。減圧乾燥の後700℃で2時間水素還元し0.
5重量%ルテニウム触媒を調製した。
Example 7 10 g of the carrier obtained in Example 2 was added to 123 mg of ruthenium chloride.
Was added to a solution prepared by dissolving 10 cc of ethanol and immersed for 3 hours. After drying under reduced pressure, hydrogen reduction was performed at 700 ° C. for 2 hours to give a value of 0.1.
A 5 wt% ruthenium catalyst was prepared.

【0050】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1.

【0051】100時間反応を行い、転化率減少度は表
2のようになった。
After reacting for 100 hours, the degree of conversion reduction is shown in Table 2.

【0052】比較例4 塩化ロジウム128mgを用いて、比較例3と同様の触
媒調製により0.5重量%ロジウム触媒を得、その後実
施例1と同様の反応条件で反応させた。転化率減少度を
表2に示す。
Comparative Example 4 Rhodium chloride (128 mg) was used to obtain a 0.5 wt% rhodium catalyst by the same catalyst preparation as in Comparative Example 3, and then the reaction was carried out under the same reaction conditions as in Example 1. Table 2 shows the degree of conversion reduction.

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【発明の効果】メタンを二酸化炭素の還元剤として用
い、且つ特定の触媒を使用することで、触媒劣化を伴わ
ず安定に合成ガスを製造することができる。
EFFECTS OF THE INVENTION By using methane as a reducing agent for carbon dioxide and using a specific catalyst, it is possible to stably produce synthesis gas without catalyst deterioration.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 宗太郎 三重県鈴鹿市長太旭町6丁目19−18 (72)発明者 岡田 久則 三重県四日市市別名6丁目8−20 (56)参考文献 特開 昭50−126005(JP,A) 特開 昭60−82136(JP,A) 特表 平6−503297(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 3/40 B01J 23/58 CA(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sotaro Nakamura 6-19-18, Taiasahi-cho, Suzuka City, Mie Prefecture (72) Inventor Hisanori Okada 6-8-20, Yokkaichi City, Mie Prefecture (56) References 50-126005 (JP, A) JP-A-60-82136 (JP, A) Tokumei Hyo 6-503297 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C01B 3/40 B01J 23/58 CA (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二酸化炭素及びメタンを含有するガスを
触媒に接触させ一酸化炭素と水素を製造するにあたり、
触媒としてアルカリ土類金属酸化物類の少なくとも1種
以上の化合物と酸化アルミニウムからなる担体上に、ル
テニウム化合物を担持させた触媒を用いることを特徴と
する合成ガスの製造方法。
1. In producing carbon monoxide and hydrogen by bringing a gas containing carbon dioxide and methane into contact with a catalyst,
A method for producing synthesis gas, which comprises using as a catalyst a catalyst comprising a ruthenium compound supported on a carrier comprising at least one compound of alkaline earth metal oxides and aluminum oxide.
【請求項2】 担体が酸化マグネシウム及び酸化アルミ
ニウムからなる触媒を用いることを特徴とする請求項1
に記載の合成ガスの製造方法。
2. A catalyst which comprises magnesium oxide and aluminum oxide as a carrier is used.
The method for producing synthesis gas according to 1.
JP06527593A 1993-03-24 1993-03-24 Synthesis gas production method Expired - Fee Related JP3413234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06527593A JP3413234B2 (en) 1993-03-24 1993-03-24 Synthesis gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06527593A JP3413234B2 (en) 1993-03-24 1993-03-24 Synthesis gas production method

Publications (2)

Publication Number Publication Date
JPH06279003A JPH06279003A (en) 1994-10-04
JP3413234B2 true JP3413234B2 (en) 2003-06-03

Family

ID=13282217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06527593A Expired - Fee Related JP3413234B2 (en) 1993-03-24 1993-03-24 Synthesis gas production method

Country Status (1)

Country Link
JP (1) JP3413234B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738024B2 (en) * 2005-03-08 2011-08-03 関西電力株式会社 Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst
JP6131370B1 (en) 2016-06-10 2017-05-17 千代田化工建設株式会社 Syngas production catalyst carrier and production method thereof, synthesis gas production catalyst and production method thereof, and synthesis gas production method

Also Published As

Publication number Publication date
JPH06279003A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
WO1998046525A1 (en) Process for preparing synthesis gas by autothermal reforming
WO1998046523A1 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
WO1998046524A1 (en) Process for preparing synthesis gas
KR20020008007A (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
WO2003086627A1 (en) Modification catalyst composition
JP2003320254A (en) Catalyst for water gas shift reaction and steam reforming reaction of methanol
JPH08231204A (en) Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
JP3413234B2 (en) Synthesis gas production method
JP4226684B2 (en) Method for producing synthesis gas by partial oxidation method
JPH04305541A (en) Method of manufacturing chloroform from carbon tetrachloride and catalyst composition used therefor
JP2685130B2 (en) Ethanol production method
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
JP3773293B2 (en) Method for producing ammonia synthesis catalyst
JPH05221602A (en) Production of synthesis gas
JP3413235B2 (en) Synthesis gas production method
JPH06279012A (en) Production of carbon monoxide
JPH039772B2 (en)
JP3095497B2 (en) How to convert carbon dioxide with ethane
JP3672367B2 (en) Ammonia synthesis catalyst and production method thereof
JPH09221437A (en) Production of ethanol
JP3089677B2 (en) How to reduce carbon dioxide with propane
JP2001079398A (en) Methanol synthesis and cracking catalyst, its production and methanol synthesis and cracking method
JPH05170404A (en) Method for converting carbon dioxide by methane
JP4189068B2 (en) Method for producing dimethyl ether from lower hydrocarbon gas
JP4226685B2 (en) Method for producing hydrogen

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees