JP3407039B2 - Arsenic-contaminated soil cleaner, arsenic-contaminated soil stabilizer, and method for remediating arsenic-contaminated soil using the same - Google Patents

Arsenic-contaminated soil cleaner, arsenic-contaminated soil stabilizer, and method for remediating arsenic-contaminated soil using the same

Info

Publication number
JP3407039B2
JP3407039B2 JP2000208465A JP2000208465A JP3407039B2 JP 3407039 B2 JP3407039 B2 JP 3407039B2 JP 2000208465 A JP2000208465 A JP 2000208465A JP 2000208465 A JP2000208465 A JP 2000208465A JP 3407039 B2 JP3407039 B2 JP 3407039B2
Authority
JP
Japan
Prior art keywords
arsenic
soil
contaminated soil
acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000208465A
Other languages
Japanese (ja)
Other versions
JP2002018421A (en
Inventor
修三 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000208465A priority Critical patent/JP3407039B2/en
Publication of JP2002018421A publication Critical patent/JP2002018421A/en
Application granted granted Critical
Publication of JP3407039B2 publication Critical patent/JP3407039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有害化学物質の不
適切な取扱い、不法投棄、鉱物資源の開発利用などの行
為の結果として発生しうるヒ素で汚染された土壌の修復
に関するものであり、更に詳しくは、ヒ素で汚染された
土壌からヒ素を高効率で除去することにより、ヒ素によ
る環境負荷を大幅に減らしてリスクを軽減すると共に、
微量に残留するヒ素を安定化してその溶出を抑制して土
壌環境基準を満足し、土壌の再利用を可能にするヒ素汚
染土壌洗浄剤、安定化剤及びこれらを用いたヒ素汚染土
壌の修復方法に関する。
TECHNICAL FIELD The present invention relates to restoration of arsenic-contaminated soil which may be generated as a result of actions such as improper handling of hazardous chemical substances, illegal dumping, development and utilization of mineral resources, More specifically, by removing arsenic from soil contaminated with arsenic with high efficiency, the environmental load of arsenic can be significantly reduced and risk can be reduced.
Arsenic-contaminated soil cleaning agent, stabilizer that stabilizes trace amount of arsenic and suppresses its elution to satisfy soil environmental standards and enables reuse of soil, and method for repairing arsenic-contaminated soil using these Regarding

【0002】[0002]

【従来の技術】ヒ素及びその化合物は生体に対する有害
性が顕著であるため、土壌環境基準の対象物質に指定さ
れている。環境庁の報告資料「平成10年度土壌汚染事
例及び対応状況に関する調査結果の概要」(環境庁水質
保全局土壌農薬課 平成12年3月22日)によると昭
和50年度〜平成10年度に報告された土壌汚染事例の
総数は累積で292件であり、その数は工場跡地などで
年々増加している。土壌汚染の原因物質のうち、ヒ素
は、鉛、トリクロロエチレンに次いで多い。こうした汚
染土壌については、これまでは掘削除去、封じ込め、飛
散防止、セメントによる固形化・不溶化、最終処分場へ
の埋立処分といった対策がとられてきた。
2. Description of the Related Art Arsenic and its compounds are markedly harmful to living organisms and are therefore designated as substances subject to soil environmental standards. According to the report material “Summary of Survey Results on Soil Contamination Cases and Countermeasures for the Fiscal Year 1998” (Environmental Agency Water Quality Conservation Bureau, Soil Agricultural Chemicals Division, March 22, 2000), it was reported from 1975 to 1998. The total number of soil pollution cases is 292, and the number is increasing year by year on the site of a factory. Of the causative substances of soil pollution, arsenic is the second most abundant substance after lead and trichlorethylene. For such contaminated soil, measures such as excavation removal, containment, scattering prevention, solidification / insolubilization with cement, and landfill disposal at the final disposal site have been taken so far.

【0003】しかしこれらの方法では、ヒ素は土壌中に
残留したままであるため、長期間その対策効果が持続す
るものではない。風雨や地下水の浸透などによってヒ素
が溶出して、二次的環境汚染を引き起こすことが心配さ
れる。特に、地中のヒ素は溶出しやすく、環境庁の報告
資料「平成10年度地下水質測定結果について」(環境
庁水質保全局企画課地下水・地盤環境室 平成11年1
2月7日)によると、調査の対象となった 3,424 本の
井戸のうち 1.3 % の井戸でヒ素濃度が地下水質基準
(0.01 mg/L)を超過しており、その超過率は他の汚染
物質よりも飛び抜けて高い。
However, in these methods, since arsenic remains in the soil, its countermeasure effect does not last for a long time. It is feared that arsenic will elute due to wind and rain or infiltration of groundwater, causing secondary environmental pollution. In particular, arsenic in the ground is liable to elute, and the “Annual report on the results of groundwater quality measurement in 1998” by the Environment Agency (Environmental Agency Water Quality Conservation Bureau Planning Division Groundwater and Ground Environment Office, 1999 1
According to (February 7), 1.3% of the 3,424 wells surveyed had an arsenic concentration exceeding the groundwater quality standard (0.01 mg / L), and the excess rate was other pollutants. By far higher than the substance.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記このよ
うな技術的背景の下でなされたものであって、第一の目
的は、ヒ素汚染土壌からヒ素を効率的に洗浄できるヒ素
汚染土壌洗浄剤を提供することにあり、第二の目的は、
ヒ素汚染土壌からヒ素を効率的に安定・不溶化し得るヒ
素汚染土壌安定化剤を提供することにあり、第三の目的
は、洗浄処理によってヒ素を汚染土壌から効率よく抽出
除去することにより、ヒ素による環境負荷を大幅に減ら
してそのリスクを軽減し得るヒ素汚染土壌の洗浄方法を
提供することにあり、第四の目的は、該洗浄処理後にお
いても残留する微量ヒ素を不溶化しその溶出を最低限に
抑制して土壌の再利用を可能ならしめるヒ素汚染土壌の
修復方法を提供することにある。
The present invention has been made under the above-mentioned technical background, and the first object is to provide an arsenic-contaminated soil capable of efficiently cleaning arsenic from arsenic-contaminated soil. The second purpose is to provide a cleaning agent.
The third objective is to provide an arsenic-contaminated soil stabilizer capable of efficiently stabilizing and insolubilizing arsenic from arsenic-contaminated soil. A third object is to efficiently extract and remove arsenic from contaminated soil by a washing treatment. The purpose of the present invention is to provide a method for cleaning arsenic-contaminated soil, which can significantly reduce the environmental load caused by arsenic, and a fourth object is to insolubilize the trace amount of arsenic remaining even after the cleaning treatment and minimize its elution. An object of the present invention is to provide a method for repairing arsenic-contaminated soil, which suppresses the soil as much as possible and enables reuse of the soil.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
達成するために、数多くの酸によるヒ素汚染土壌の洗浄
処理の有効性について、試行錯誤により鋭意検討した結
果、意外にもリン酸、硫酸、塩酸のみが特異的な作用・
効果を発現すること、及びランタン化合物、セリウム化
合物、及び鉄化合物が土壌中のヒ素の安定化(不溶化)
効果に極めて有効であることを見出し、本発明を完成す
るに至った。すなわち、本発明によれば、第一に、リン
酸水溶液、硫酸水溶液、及び塩酸水溶液から選ばれる少
なくとも一種の水溶液からなるヒ素汚染土壌洗浄剤が提
供される。第二に、ランタン塩水溶液、セリウム(II
I)塩水溶液、及び鉄(III)塩水溶液から選ばれる少な
くとも一種の水溶液からなるヒ素汚染土壌安定化剤が提
供される。第三に、酸化ランタン、水酸化ランタン、酸
化セリウム(IV)、及び水酸化セリウム(IV)から選ば
れる少なくとも一種の酸化物からなるヒ素汚染土壌安定
化剤が提供される。第四に、ヒ素汚染土壌を第一発明の
ヒ素汚染土壌洗浄剤で処理して、ヒ素を抽出除去するこ
とを特徴とするヒ素汚染土壌洗浄方法が提供される。第
五に、第四発明のヒ素汚染土壌洗浄方法で処理された土
壌に第二発明の安定化剤を添加混合し、更にアルカリで
中和処理して土壌中のヒ素を不溶化することを特徴とす
るヒ素汚染土壌修復方法が提供される。第六に、第四発
明のヒ素汚染土壌洗浄方法で処理された土壌に第三発明
の安定化剤を添加混合し、土壌中のヒ素を不溶化するこ
とを特徴とするヒ素汚染土壌修復方法が提供される。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventor has surprisingly studied through trial and error the effectiveness of washing treatment of arsenic-contaminated soil with many acids, and as a result, surprisingly, phosphoric acid , Sulfuric acid, hydrochloric acid only
The effect is exhibited, and lanthanum compounds, cerium compounds, and iron compounds stabilize (insolubilize) arsenic in soil.
It was found that the effect was extremely effective, and the present invention was completed. That is, according to the present invention, firstly, there is provided an arsenic-contaminated soil cleaning agent comprising at least one aqueous solution selected from an aqueous phosphoric acid solution, an aqueous sulfuric acid solution, and an aqueous hydrochloric acid solution. Second, lanthanum salt solution, cerium (II
There is provided an arsenic-contaminated soil stabilizer comprising at least one kind of aqueous solution selected from I) salt aqueous solution and iron (III) salt aqueous solution. Thirdly, there is provided an arsenic-contaminated soil stabilizer comprising at least one oxide selected from lanthanum oxide, lanthanum hydroxide, cerium (IV) oxide, and cerium (IV) hydroxide. Fourthly, there is provided an arsenic-contaminated soil cleaning method, which comprises treating arsenic-contaminated soil with the arsenic-contaminated soil cleaning agent of the first invention to extract and remove arsenic. Fifth, by adding and mixing the stabilizer of the second invention to the soil treated by the arsenic-contaminated soil cleaning method of the fourth invention, further neutralizing with an alkali to insolubilize the arsenic in the soil, An arsenic-contaminated soil restoration method is provided. Sixth, there is provided a method for repairing arsenic-contaminated soil, which comprises adding and mixing the stabilizer of the third invention to soil treated by the method for cleaning arsenic-contaminated soil according to the fourth invention to insolubilize arsenic in the soil. To be done.

【0006】[0006]

【発明の実施の形態】本発明者は、上記課題を達成する
ために、フッ化水素酸、リン酸、硫酸、塩酸、硝酸、過
塩素酸、臭化水素酸、酢酸、過酸化水素などの数多くの
広く工業的に使用されている酸のヒ素汚染土壌の洗浄処
理の有効性を、高いヒ素抽出除去効果、洗浄処理後
の土壌自体の損傷の有無、耐久性、後処理の容易
さ、処理剤コストの節減、などを指標にして、鋭意研
究を重ねた結果、これらの中でもリン酸、硫酸、塩酸の
みが他の酸と大きく異なり、汚染土壌中のヒ素の洗浄剤
として極めて有効であることを知見した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to achieve the above-mentioned object, the present inventor has selected hydrofluoric acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, hydrobromic acid, acetic acid, hydrogen peroxide and the like. The effectiveness of cleaning treatment of arsenic-contaminated soil with many widely used acids, high arsenic extraction and removal effect, presence or absence of damage of soil itself after cleaning treatment, durability, ease of post-treatment, treatment As a result of earnest researches using the reduction of agent cost as an index, among them, only phosphoric acid, sulfuric acid and hydrochloric acid are significantly different from other acids, and it is extremely effective as a cleaning agent for arsenic in contaminated soil. I found out.

【0007】すなわち、本発明者は、フッ化水素酸、リ
ン酸、硫酸、塩酸、硝酸、過塩素酸、臭化水素酸、酢
酸、過酸化水素、混酸(塩酸+硝酸)、混酸(硝酸+過
塩素酸)の濃度を段階的に調節した水溶液に、ヒ素汚染
土壌を加え、その土壌洗浄効果についての考察実験を行
った(実施例1;図1)。
That is, the present inventor has found that hydrofluoric acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, hydrobromic acid, acetic acid, hydrogen peroxide, mixed acid (hydrochloric acid + nitric acid), mixed acid (nitric acid + nitric acid + Arsenic-contaminated soil was added to an aqueous solution in which the concentration of perchloric acid) was adjusted stepwise, and a consideration experiment was conducted on the soil cleaning effect (Example 1; FIG. 1).

【0008】その結果、酸濃度約10(w/v)%における各
種の酸によるヒ素の抽出除去効果は、リン酸、硫酸、塩
酸は70%以上の高いヒ素除去率を示し、他の酸化性の
硝酸、過塩素酸、過酸化水素及び有機酸である酢酸のヒ
素除去効果は低いことが判明した。なお、フッ化水素酸
はリン酸と並んで最も高いヒ素抽出除去効果を有するも
のであるが、フッ化水素酸の成分であるフッ素は土壌環
境基準の対象とされている有害元素のひとつであり、ま
た、フッ化水素酸による洗浄処理に伴って、シリカ及び
アルミナなどの土壌成分の大部分が溶出し、土壌を著し
く損傷するため、フッ化水素酸は汚染土壌の洗浄剤とし
ては好ましくないものである。こうした観点から、本発
明者は、ヒ素汚染土壌洗浄剤としては、リン酸、硫酸、
及び塩酸が最も適しているものと判断した。従って、こ
れらの酸でヒ素汚染土壌を洗浄すると、土壌に損傷を与
えることなく、低廉な価格で、大部分のヒ素を高い抽出
効率で除去することができ、ヒ素による環境負荷を大幅
に減らしてリスクを軽減することができる。
As a result, as for the arsenic extraction and removal effect by various acids at an acid concentration of about 10 (w / v)%, phosphoric acid, sulfuric acid and hydrochloric acid show a high arsenic removal rate of 70% or more, and other oxidizing agents. It was found that nitric acid, perchloric acid, hydrogen peroxide and acetic acid, which is an organic acid, had a low arsenic removal effect. Although hydrofluoric acid has the highest arsenic extraction and removal effect along with phosphoric acid, fluorine, which is a component of hydrofluoric acid, is one of the harmful elements that are subject to the soil environmental standards. In addition, hydrofluoric acid is not preferable as a cleaning agent for contaminated soil because most of soil components such as silica and alumina are eluted with the cleaning treatment with hydrofluoric acid and the soil is significantly damaged. Is. From this point of view, the present inventor, as the arsenic-contaminated soil cleaning agent, phosphoric acid, sulfuric acid,
And hydrochloric acid was judged to be the most suitable. Therefore, washing arsenic-contaminated soil with these acids can remove most of the arsenic with high extraction efficiency at a low price without damaging the soil, greatly reducing the environmental burden of arsenic. The risk can be reduced.

【0009】本発明の土壌洗浄剤は通常水溶液の形態で
使用される。水溶液中のリン酸、硫酸、又は塩酸の濃度
は処理対象土壌のヒ素汚染濃度にもよるが、通常10(w
/v)%濃度としておけば充分である。
The soil cleaning agent of the present invention is usually used in the form of an aqueous solution. The concentration of phosphoric acid, sulfuric acid, or hydrochloric acid in the aqueous solution is usually 10 (w
/ v)% concentration is sufficient.

【0010】また、本発明の土壌洗浄剤の使用量は、土
壌中のヒ素濃度と用いる洗浄剤の水溶液濃度とを適宜勘
案して決めればよいが、通常汚染土壌1kg当たり10
Lとしておけば充分である。
The amount of the soil cleaning agent of the present invention to be used may be determined by appropriately considering the concentration of arsenic in the soil and the concentration of the cleaning agent used in the aqueous solution.
It is sufficient to set it as L.

【0011】また、本発明に係るリン酸、硫酸、又は塩
酸水溶液による汚染土壌からのヒ素の除去速度は反応初
期において非常に大きく、その後比較的緩やかな上昇を
描くので、洗浄処理時間は短時間で充分である。
Further, the removal rate of arsenic from contaminated soil with the phosphoric acid, sulfuric acid or hydrochloric acid aqueous solution according to the present invention is very large in the initial stage of the reaction, and thereafter, it gradually rises relatively, so that the cleaning treatment time is short. Is enough.

【0012】また、本発明に係る洗浄剤処理による土壌
成分のうちのシリカ及びカルシウムの溶出量は数%以下
であり、洗浄処理後の土壌は比較的安定である。なお、
アルミニウム、鉄、マグネシウムの溶出はかかる酸洗浄
処理により溶出するが、、これらの成分の溶出は、ヒ素
の除去速度と比較して緩慢であるため、酸による洗浄を
短時間で終了することにより土壌成分の溶出を低く抑え
ることが可能である。これらのことから、本発明による
汚染土壌の酸による洗浄処理は約1〜2時間にすること
が望ましい。
Further, the amount of silica and calcium eluted from the soil components by the detergent treatment according to the present invention is several% or less, and the soil after the washing treatment is relatively stable. In addition,
Elution of aluminum, iron, and magnesium is eluted by such an acid cleaning treatment, but since the elution of these components is slow compared to the removal rate of arsenic, it is necessary to finish the acid cleaning in a short time. It is possible to keep the elution of components low. For these reasons, it is desirable that the acid cleaning of the contaminated soil according to the present invention is performed for about 1 to 2 hours.

【0013】本発明に係るリン酸、硫酸、又は塩酸から
なる洗浄剤が、このように優れたヒ素抽出除去機能を有
する理由は現時点では定かではないが、これらの酸が土
壌中のヒ素吸着能を有する遊離酸化アルミニウム或いは
遊離酸化鉄に作用してそれらを溶解させることにより、
吸着されていたヒ素も溶出することによるものと推定さ
れる。
The reason why the cleaning agent comprising phosphoric acid, sulfuric acid or hydrochloric acid according to the present invention has such an excellent arsenic extraction / removal function is not clear at present, but these acids are capable of adsorbing arsenic in soil. By acting on free aluminum oxide or free iron oxide having
It is presumed that the adsorbed arsenic is also eluted.

【0014】本発明に係る土壌洗浄剤を用いて、ヒ素汚
染土壌を処理するには、該ヒ素汚染土壌を掘削などの手
段で地中から取り出し、所定の洗浄装置に搬入した後、
洗浄剤であるリン酸、硫酸、又は塩酸水溶液を適量添加
し、混合攪拌し、ヒ素を抽出し、ついで抽出されたヒ素
を含む洗浄液を回収する方法をとればよい。回収した洗
浄剤は、ヒ素濃度及び溶解成分濃度が所定値に達するま
で循環使用できる。
In order to treat arsenic-contaminated soil with the soil cleaning agent of the present invention, the arsenic-contaminated soil is taken out from the ground by means such as excavation and carried into a predetermined cleaning device.
A suitable method is to add an appropriate amount of a cleaning solution of phosphoric acid, sulfuric acid, or hydrochloric acid, mix and stir, extract arsenic, and then collect the extracted cleaning solution containing arsenic. The collected cleaning agent can be circulated and used until the arsenic concentration and the dissolved component concentration reach predetermined values.

【0015】本発明においては、前記した土壌洗浄剤を
用いることにより、ヒ素汚染土壌に損傷を与えることな
く、低廉な価格で、大部分のヒ素を高い抽出効率で除去
することができるが、更に、洗浄後の土壌に、ランタン
塩水溶液、セリウム(III)塩水溶液及び鉄(III)塩水
溶液から選ばれる少なくとも一種の水溶液、あるいは酸
化ランタン、水酸化ランタン、酸化セリウム(IV)及び
水酸化セリウム(IV)から選ばれる少なくとも一種の酸
化物からなるヒ素汚染土壌安定化剤を混合することによ
り、ヒ素による環境負荷を更に大幅に低減することでき
る。
In the present invention, by using the above-mentioned soil cleaning agent, most arsenic can be removed with high extraction efficiency at a low price without damaging arsenic-contaminated soil. , At least one aqueous solution selected from a lanthanum salt aqueous solution, a cerium (III) salt aqueous solution and an iron (III) salt aqueous solution, or lanthanum oxide, lanthanum hydroxide, cerium (IV) oxide and cerium hydroxide ( By mixing an arsenic-contaminated soil stabilizer consisting of at least one oxide selected from IV), the environmental load due to arsenic can be further reduced significantly.

【0016】すなわち、かかる安定化剤を利用すること
により、ヒ素汚染土壌を修復しその土地、土壌の再利用
を可能にするために環境庁が定めた、「溶出ヒ素濃度が
土壌環境基準(0.01mg/L)以下にならなければ
ならない」とする土壌環境基準(環境庁水質保全局編
「土壌・地下水汚染に係る調査・対策指針運用基準」、
133頁、平成11年3月8日大蔵省印刷局発行)を満
たすことが可能となる。例えば、後記実施例3の結果の
表3に示すように、リン酸、硫酸、又は塩酸で参考例1
の汚染土壌を後記参考例2に従って2時間洗浄処理した
ときのヒ素除去率は、それぞれ97.9%、87.7
%、82.3%であり、洗浄処理後もある程度のヒ素が
土壌中に残留している。そして、これらの酸で洗浄処理
した後の土壌について溶出試験を行うと、それぞれ0.
177、0.375、0.232mg/Lのヒ素が溶出
する。しかし、該酸洗浄処理後の土壌を、ランタン塩水
溶液、セリウム(III)塩水溶液、鉄(III)塩水溶液で
処理しついでアルカリで中和し、土壌中のヒ素を不溶化
させた土壌、あるいは該酸洗浄処理後の土壌を酸化ラン
タン、水酸化ランタン、酸化セリウム(IV)又は水酸化
セリウム(IV)で処理し土壌中のヒ素を不溶化させた土
壌は、その後の溶出試験を行っても、ヒ素の溶出量は後
記実施例3にみられるように、極めて少なくなり前記土
壌環境基準を満足したものとなる。
That is, by using such a stabilizer, the "Environmental concentration of dissolved arsenic is a soil environmental standard (0 Soil environmental standards (“Environmental Agency Water Quality Conservation Bureau,“ Soil / Groundwater Contamination Survey / Countermeasure Guideline Operation Standards ”,
Page 133, published by the Ministry of Finance, Printing Bureau on March 8, 1999). For example, as shown in Table 3 of the results of Example 3 below, phosphoric acid, sulfuric acid, or hydrochloric acid was used for Reference Example 1.
The arsenic removal rates when the contaminated soil of No. 2 was washed for 2 hours according to Reference Example 2 described later were 97.9% and 87.7, respectively.
%, 82.3%, and some arsenic remains in the soil even after the washing treatment. Then, when a dissolution test was performed on the soil after the washing treatment with these acids, the results were 0.
177, 0.375 and 0.232 mg / L of arsenic elute. However, the soil after the acid washing treatment is treated with an aqueous lanthanum salt solution, an aqueous cerium (III) salt solution, an aqueous iron (III) salt solution and then neutralized with an alkali to insolubilize arsenic in the soil, or Soil after acid washing is treated with lanthanum oxide, lanthanum hydroxide, cerium (IV) oxide or cerium (IV) hydroxide to insolubilize the arsenic in the soil, but the soil will be arsenic As will be seen in Example 3 below, the amount of elution was extremely small and the soil environmental standard was satisfied.

【0017】本発明に係る安定化剤のうち、ランタン
塩、セリウム(III)塩、又は鉄(III)塩を用いて、土
壌中のヒ素を安定化(不溶化)するには、汚染土壌を上
記の洗浄処理を行った後、該安定化剤水溶液を適量添加
し、混合攪拌し、アルカリで中和し、しばらく放置した
後、余分の水を脱水する方法をとればよい。
To stabilize (insolubilize) arsenic in the soil by using lanthanum salt, cerium (III) salt or iron (III) salt among the stabilizers according to the present invention, the contaminated soil is treated as described above. After the washing treatment described in (1), an appropriate amount of the stabilizer aqueous solution is added, mixed and stirred, neutralized with an alkali, left for a while, and then excess water is dehydrated.

【0018】ランタン塩、セリウム(III)塩、及び鉄
(III)塩としては、それら無機酸塩、有機酸塩が挙げ
られ、具体的には塩化物、硝酸塩、硫酸塩などを例示す
ることができる。これらの安定化剤は通常水溶液の形態
で使用される。水溶液中のランタン塩、セリウム(II
I)塩、又は鉄(III)塩の濃度は処理対象土壌中の残留
ヒ素濃度にもよるが、通常1当量濃度としておけば充分
である。また、これらの安定化剤の使用量は、土壌中の
残留ヒ素濃度を適宜勘案して決めればよいが、通常土壌
1kg当たり1Lとしておけば充分である。
Examples of the lanthanum salt, cerium (III) salt, and iron (III) salt include inorganic acid salts and organic acid salts thereof, and specific examples thereof include chlorides, nitrates, and sulfates. it can. These stabilizers are usually used in the form of an aqueous solution. Lanthanum salt, cerium (II
The concentration of I) salt or iron (III) salt depends on the concentration of residual arsenic in the soil to be treated, but it is usually sufficient to set the concentration to 1 equivalent. The amount of these stabilizers to be used may be determined in consideration of the residual arsenic concentration in the soil, but usually 1 L per 1 kg of soil is sufficient.

【0019】また、本発明に係る安定化剤のうち、酸化
ランタン又は酸化セリウム(IV)を用いて、土壌中のヒ
素を安定化するには、汚染土壌を上記の洗浄処理を行っ
た後、安定化剤の適量を粉体のままもしくは少量の水に
懸濁させて添加し、混合攪拌し、しばらく放置した後、
余分の水を脱水する方法をとればよい。また、酸化ラン
タン又は酸化セリウム(IV)の代わりに、水酸化ランタ
ン又は水酸化セリウム(IV)を用いてもよい。
In order to stabilize arsenic in the soil by using lanthanum oxide or cerium (IV) oxide among the stabilizers according to the present invention, after contaminated soil is subjected to the above-mentioned washing treatment, Add an appropriate amount of stabilizer as a powder or suspend it in a small amount of water, mix and stir, and leave it for a while,
The method of dehydrating excess water may be used. Further, lanthanum hydroxide or cerium (IV) hydroxide may be used instead of lanthanum oxide or cerium (IV) oxide.

【0020】これらの安定化剤の使用量は、土壌中の残
留ヒ素濃度と用いる安定化剤の水溶液濃度とを適宜勘案
して決めればよいが、通常土壌1kg当たり10〜20
gとしておけば充分である。
The amount of these stabilizers used may be determined in consideration of the concentration of residual arsenic in the soil and the concentration of the aqueous solution of the stabilizer to be used, but usually 10 to 20 per 1 kg of soil.
It is sufficient to use g.

【0021】本発明に係るヒ素汚染土壌修復方法は要約
すれば、図5に示す通りである。即ち、ヒ素で汚染され
た土壌を掘削して、所定の洗浄装置に搬入する。リン
酸、硫酸、又は塩酸水溶液の適量を加え、例えば1〜2
時間混合かくはんする。次に、重力沈降法、遠心分離な
どにより固液分離し、洗浄液は回収して循環使用する。
但し、洗浄液中のヒ素或いは溶解成分の濃度が所定値以
上になれば、次の工程からの廃液と合わせる。洗浄処理
した土壌は、残留する酸を除去するために、適宜水洗す
る。洗液及び前記の使用ずみ洗浄液は既存の水処理法に
より処理する。こうした酸洗浄により、汚染土壌中の大
部分のヒ素を抽出除去して、リスクを軽減する。洗浄処
理した土壌は、微量のヒ素を含有しているため、次のい
ずれかの安定化法でヒ素を不溶化する。ひとつは、洗浄
処理した土壌にランタン塩、セリウム(III)塩、又は
鉄(III)塩水溶液を加えた後、中和する方法である。
もうひとつは、酸化ランタン又は酸化セリウム(IV)の
粉末もしくは懸濁液を添加混合する方法である。こうし
て安定化処理を施した土壌は、環境庁が定める土壌環境
基準を満足し、該土壌の再利用が可能となる。
The arsenic-contaminated soil restoration method according to the present invention is summarized as shown in FIG. That is, the soil contaminated with arsenic is excavated and carried into a predetermined cleaning device. Add an appropriate amount of phosphoric acid, sulfuric acid, or hydrochloric acid aqueous solution, for example, 1-2
Stir for hours. Next, solid-liquid separation is performed by a gravity sedimentation method, centrifugal separation, etc., and the washing liquid is recovered and reused.
However, if the concentration of arsenic or dissolved components in the cleaning liquid exceeds a predetermined value, it is combined with the waste liquid from the next step. The washed soil is appropriately washed with water to remove residual acid. The washing liquid and the used washing liquid are treated by the existing water treatment method. Such acid washing extracts and removes most of the arsenic in the contaminated soil, reducing risk. Since the washed soil contains a small amount of arsenic, arsenic is insolubilized by one of the following stabilization methods. One is a method of neutralizing after adding lanthanum salt, cerium (III) salt or iron (III) salt aqueous solution to the washed soil.
The other is a method of adding and mixing a powder or suspension of lanthanum oxide or cerium (IV) oxide. The thus stabilized soil satisfies the soil environmental standards set by the Environmental Agency and can be reused.

【0022】[0022]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。なお、モデルヒ素汚染土壌の調製は参考例1に
より、また土壌洗浄実験は参考例2によった。
EXAMPLES The present invention will now be described in more detail with reference to examples. The model arsenic-contaminated soil was prepared according to Reference Example 1, and the soil washing experiment was performed according to Reference Example 2.

【0023】参考例1(モデルヒ素汚染土壌の調製) 茨城県つくば市において採集した黒ボク土を1週間風乾
したのち、標準ふるいで粒径2mm以下の土壌をふるい
分けた。その1.5kgを5L容塩化ビニル製容器にと
り、25mMのヒ酸ナトリウム水溶液4.0Lを加え、
pHを約4に調節し、ときどきしんとうしながら3カ月
間処理して汚染させた。水相をろ別し、得られたろ過残
渣を数回水洗した後風乾して、モデルヒ素汚染土壌を調
製した。汚染土壌の特性及び化学組成はそれぞれ表1及
び表2に示すとおりである。該汚染土壌のヒ素含有量は
37.8mmol/kg = 2,830mg/kg
(Asとして)であった。該土壌は日本の代表的な土壌
のひとつであり、有機質に富み弱酸性を示す。また、遊
離酸化アルミニウム及び遊離酸化鉄に富んでいるため、
比較的高いヒ素吸着容量を有するものである。
Reference Example 1 (Preparation of model arsenic-contaminated soil) After the black soil Ikki collected in Tsukuba City, Ibaraki Prefecture was air-dried for 1 week, the soil having a particle size of 2 mm or less was sieved with a standard sieve. 1.5 kg of the solution was placed in a 5 L vinyl chloride container, and 4.0 L of a 25 mM sodium arsenate aqueous solution was added.
The pH was adjusted to about 4 and treated for 3 months with occasional agitation to contaminate. The aqueous phase was filtered off, the obtained filtration residue was washed with water several times and then air-dried to prepare a model arsenic-contaminated soil. The characteristics and chemical composition of the contaminated soil are shown in Table 1 and Table 2, respectively. The arsenic content of the contaminated soil is 37.8 mmol / kg = 2,830 mg / kg
(As As). This soil is one of the representative soils in Japan and is rich in organic matter and shows weak acidity. Also, since it is rich in free aluminum oxide and free iron oxide,
It has a relatively high arsenic adsorption capacity.

【0024】参考例2(土壌洗浄実験) 35mL容ポリカーボネート製遠心沈殿管に参考例1で
調製したヒ素汚染土壌1gと洗浄剤水溶液25mLを入
れ、20℃に保持した恒温槽中でしんとう器にて横方向
(振幅10cm)に所定時間しんとうした。ついで、冷
凍機付き高速遠心機を用いて9,000rpmで20分
間遠心分離し、分離した上澄液を孔径0.45μmのメ
ンブレンフィルタでろ過した。得られたろ液について、
ヒ素濃度を水素化物発生原子吸光法により、またアルミ
ニウム、鉄、マグネシウム、カルシウム、シリカ濃度を
ICP発光分析法により測定した。
Reference Example 2 (Soil Washing Experiment) 1 g of the arsenic-contaminated soil prepared in Reference Example 1 and 25 mL of an aqueous detergent solution were placed in a 35-mL polycarbonate centrifuge settling tube and placed in a thermostat at 20 ° C. in a thermostat. Strained in the lateral direction (amplitude 10 cm) for a predetermined time. Then, it was centrifuged at 9,000 rpm for 20 minutes using a high-speed centrifuge with a refrigerator, and the separated supernatant was filtered with a membrane filter having a pore size of 0.45 μm. About the obtained filtrate,
The arsenic concentration was measured by a hydride generation atomic absorption method, and the concentrations of aluminum, iron, magnesium, calcium and silica were measured by an ICP emission spectrometry.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】実施例1 ヒ素汚染土壌の洗浄処理の目的は、土壌中からヒ素をで
きるだけ除去して、ヒ素によるリスクを軽減することで
ある。この実施例では、広く工業的に使用されている数
多くの酸について、ヒ素汚染土壌に対する洗浄効果を比
較検討した。初濃度を段階的に変化させたフッ化水素
酸、リン酸、硫酸、塩酸、硝酸、過塩素酸、臭化水素
酸、酢酸、過酸化水素、混酸(3:1塩酸+硝酸)、混
酸(2:1硝酸+過塩素酸)水溶液に参考例1のヒ素汚
染土壌1gを加え、参考例2に従って6時間洗浄処理を
行った。その結果を図1に示す。なお、グラフの縦軸の
ヒ素除去率は、水相のヒ素溶出量の未処理土壌中のヒ素
含有量に対する割合で示したものである。図1において
酸濃度約10(w/v)%における各種の酸によるヒ素の抽出
除去効果を見てみると、フッ化水素酸=リン酸>硫酸>
塩酸>混酸(塩酸+硝酸)>臭化水素酸=硝酸=混酸
(硝酸+過塩素酸)>過塩素酸>酢酸>過酸化水素 の
順であった。即ち、リン酸、硫酸、塩酸は70%以上の
高いヒ素除去率を示している。なお、フッ化水素酸はリ
ン酸と並んで最も高いヒ素抽出除去効果を示したが、フ
ッ化水素酸の成分であるフッ素は土壌環境基準の対象と
されている有害元素のひとつであること、及びフッ化水
素酸による洗浄処理に伴って、シリカ及びアルミナなど
の土壌成分の大部分が溶出し、土壌を著しく損傷するこ
とから、フッ化水素酸はヒ素汚染土壌の洗浄剤としては
好ましくないものである。従って、これらの酸のうち、
高いヒ素抽出除去効果、低い有害性及び価格の点から、
リン酸、硫酸、塩酸がヒ素汚染土壌の洗浄剤として最も
適したものであり、これらの酸でヒ素汚染土壌を洗浄し
て、ヒ素の大部分を抽出除去することにより、ヒ素によ
る環境負荷を大幅に減らしてリスクを軽減することがで
きる。
Example 1 The purpose of cleaning treatment of arsenic-contaminated soil is to remove arsenic from the soil as much as possible to reduce the risk of arsenic. In this example, cleaning effects on arsenic-contaminated soil were comparatively examined with respect to a number of widely-used industrial acids. Hydrofluoric acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, hydrobromic acid, acetic acid, hydrogen peroxide, mixed acid (3: 1 hydrochloric acid + nitric acid), mixed acid ( 1 g of the arsenic-contaminated soil of Reference Example 1 was added to a 2: 1 nitric acid + perchloric acid) aqueous solution, and a washing treatment was performed for 6 hours according to Reference Example 2. The result is shown in FIG. The arsenic removal rate on the vertical axis of the graph is the ratio of the arsenic elution amount in the aqueous phase to the arsenic content in the untreated soil. Looking at the extraction and removal effect of arsenic by various acids at an acid concentration of about 10 (w / v)% in Fig. 1, hydrofluoric acid = phosphoric acid> sulfuric acid>
The order was hydrochloric acid> mixed acid (hydrochloric acid + nitric acid)> hydrobromic acid = nitric acid = mixed acid (nitric acid + perchloric acid)> perchloric acid> acetic acid> hydrogen peroxide. That is, phosphoric acid, sulfuric acid and hydrochloric acid show a high arsenic removal rate of 70% or more. In addition, hydrofluoric acid showed the highest arsenic extraction removal effect along with phosphoric acid, but fluorine, which is a component of hydrofluoric acid, is one of the harmful elements that are the targets of soil environmental standards, Also, with the cleaning treatment with hydrofluoric acid, most of the soil components such as silica and alumina are eluted, and the soil is significantly damaged. Therefore, hydrofluoric acid is not preferable as a cleaning agent for arsenic-contaminated soil. Is. Therefore, of these acids,
In terms of high arsenic extraction and removal effect, low toxicity and price,
Phosphoric acid, sulfuric acid, and hydrochloric acid are the most suitable cleaners for arsenic-contaminated soil, and by cleaning arsenic-contaminated soil with these acids and extracting and removing most of arsenic, the environmental load caused by arsenic can be significantly reduced. To reduce the risk.

【0028】実施例2 9.4(w/v)%リン酸、10.3(w/v)%硫酸、又は12.
0(w/v)%塩酸水溶液500mLに参考例1のヒ素汚染土
壌20gを加え、マグネチックスターラを用いて連続的
にかくはんした。所定時間ごとに該懸濁試料の約10m
Lをプラスチック製注射筒を用いてとり、ただちに孔径
0.45μmのメンブレンフィルタでろ過した。得られ
たろ液について、ヒ素濃度を水素化物発生原子吸光法に
より、またアルミニウム、鉄、マグネシウム、カルシウ
ム、シリカ濃度をICP発光分析法により測定した。得
られた結果を図2、3、及び4に示す。この結果から、
いずれの酸による洗浄処理においても、ヒ素の抽出除去
は処理開始60分後にはほぼ平衡に到達しており、汚染
土壌の洗浄処理に要する時間は短時間でよいことが分か
る。また、土壌成分のうちシリカ及びカルシウムの溶出
量は数%以下であり、本発明による洗浄処理においては
比較的安定であることが分かる。一方、アルミニウム、
鉄、マグネシウムの溶出は、処理開始6時間後にはそれ
らの溶出率はそれぞれ、35〜40%、35〜40%、
25〜40%に達している。しかし、これらの成分の溶
出は、ヒ素の除去速度と比較して緩慢であるため、酸に
よる洗浄処理を短時間で終了することにより土壌成分の
溶出を低く抑えることが可能である。
Example 2 9.4 (w / v)% phosphoric acid, 10.3 (w / v)% sulfuric acid, or 12.
20 g of the arsenic-contaminated soil of Reference Example 1 was added to 500 mL of 0 (w / v)% hydrochloric acid aqueous solution, and continuously stirred using a magnetic stirrer. Approximately 10 m of the suspension sample every predetermined time
L was taken using a plastic injection cylinder and immediately filtered with a membrane filter having a pore size of 0.45 μm. With respect to the obtained filtrate, the arsenic concentration was measured by a hydride generation atomic absorption method, and the concentrations of aluminum, iron, magnesium, calcium and silica were measured by an ICP emission spectrometry. The obtained results are shown in FIGS. from this result,
In any of the acid washing treatments, the extraction and removal of arsenic reached almost equilibrium 60 minutes after the treatment was started, and it can be seen that the time required for the washing treatment of the contaminated soil is short. Further, the elution amount of silica and calcium among the soil components is several% or less, which shows that the washing treatment according to the present invention is relatively stable. On the other hand, aluminum,
The elution rate of iron and magnesium was 35-40%, 35-40%, respectively, 6 hours after the start of treatment.
It has reached 25-40%. However, since the elution of these components is slower than the arsenic removal rate, it is possible to suppress the elution of soil components to a low level by finishing the acid cleaning treatment in a short time.

【0029】実施例3 9.4(w/v)%リン酸、10.3(w/v)%硫酸、又は12.
0(w/v)%塩酸水溶液25mLに参考例1に示すヒ素汚染
土壌1gを加え、実施例1に従って2時間洗浄処理し
た。処理後の土壌に少量の水を加え水洗した。得られた
洗浄土壌に1当量濃度の塩化ランタン、塩化セリウム
(III)、塩化鉄(III)、又は塩化カルシウム水溶液1
mL及び水20mLを加え、十分にかき混ぜた。1規定
水酸化ナトリウム水溶液を用いて、pH値が約7になる
ように中和した。一夜放置したのち遠心分離し、得られ
た残渣について溶出試験を行った。一方、上記の安定化
剤水溶液の代わりに、洗浄処理を行った土壌に酸化ラン
タン、酸化セリウム(IV)、水酸化鉄、水酸化カルシウ
ム懸濁液を加え十分にかき混ぜた。一夜放置したのち遠
心分離し、得られた残渣について溶出試験を行った。そ
の結果を表3に示す。リン酸、硫酸、又は塩酸によるヒ
素除去率は、それぞれ97.9%、87.7%、82.
3%であり、洗浄処理後もある程度のヒ素が土壌中に残
留している。これらの酸で洗浄処理した後の土壌につい
て溶出試験を行うと、それぞれ0.177、0.37
5、0.232 mg/Lのヒ素が溶出している。しか
し、酸洗浄処理後の土壌に塩化ランタン、塩化セリウム
(III)、又は塩化鉄(III)水溶液を添加混合し、更に
前記の金属塩を加水分解するために、水酸化ナトリウム
水溶液を用いてpH値が約7になるように中和し、一夜
放置した土壌について、その溶出試験を行った結果、ヒ
素の溶出量は、塩酸洗浄処理後の鉄(III)塩添加の場
合を除いて、それぞれ、1.5ppb以下、8.6pp
b以下、6.8ppb以下となり、該安定化処理した土
壌は前記土壌環境基準を満たすことが判った。一方、凝
集沈殿剤などとして広く使用されている塩化カルシウム
で処理したものは、いずれの場合も土壌環境基準を満足
せず、安定化効果は認められなかった。また、表3か
ら、リン酸、硫酸、塩酸で洗浄処理を行った土壌に適量
の酸化ランタン又は酸化セリウム(IV)を添加混合する
ことにより、ヒ素の溶出量はそれぞれ0.7ppb以
下、303ppb以下であり、ヒ素の溶出を大幅に抑制
できることが認められた。しかし、水酸化鉄(III)及
び水酸化カルシウムの添加は効果的ではなかった。
Example 3 9.4 (w / v)% phosphoric acid, 10.3 (w / v)% sulfuric acid, or 12.
1 g of the arsenic-contaminated soil shown in Reference Example 1 was added to 25 mL of a 0 (w / v)% hydrochloric acid aqueous solution, and washed according to Example 1 for 2 hours. A small amount of water was added to the treated soil and washed. 1 equivalent concentration of lanthanum chloride, cerium (III) chloride, iron (III) chloride, or calcium chloride aqueous solution 1 in the obtained washed soil
mL and 20 mL of water were added and mixed well. The mixture was neutralized with a 1N aqueous sodium hydroxide solution so that the pH value was about 7. After leaving it overnight, it was centrifuged, and the obtained residue was subjected to a dissolution test. On the other hand, instead of the above stabilizer aqueous solution, lanthanum oxide, cerium (IV) oxide, iron hydroxide, and calcium hydroxide suspensions were added to the washed soil and stirred thoroughly. After leaving it overnight, it was centrifuged, and the obtained residue was subjected to a dissolution test. The results are shown in Table 3. The removal rates of arsenic with phosphoric acid, sulfuric acid, or hydrochloric acid were 97.9%, 87.7%, and 82.
3%, and some arsenic remains in the soil even after the washing treatment. Dissolution tests on the soil after washing with these acids gave 0.177 and 0.37, respectively.
5, 0.232 mg / L of arsenic is eluted. However, lanthanum chloride, cerium (III) chloride, or iron (III) chloride aqueous solution is added to and mixed with the acid-washed soil, and the pH is adjusted with sodium hydroxide aqueous solution to further hydrolyze the metal salts. The soil was neutralized to a value of about 7, and the soil was left overnight. As a result of the dissolution test, the amount of arsenic released was measured except for the case of adding iron (III) salt after hydrochloric acid washing treatment. , 1.5 ppb or less, 8.6 pp
b or less and 6.8 ppb or less, and it was found that the stabilized soil satisfies the soil environmental standards. On the other hand, those treated with calcium chloride, which is widely used as a coagulant / precipitant, did not satisfy the soil environmental standard in any case, and the stabilizing effect was not recognized. Further, from Table 3, by adding and mixing an appropriate amount of lanthanum oxide or cerium (IV) oxide to the soil washed with phosphoric acid, sulfuric acid, hydrochloric acid, the elution amount of arsenic is 0.7 ppb or less and 303 ppb or less, respectively. It was confirmed that the elution of arsenic can be suppressed significantly. However, the addition of iron (III) hydroxide and calcium hydroxide was not effective.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】本発明のヒ素汚染土壌洗浄剤は、ヒ素
抽出除去効果が高い、洗浄処理しても土壌自体を損傷
させない、耐久性に優れる、後処理が容易である、
コストが低廉である、などの多くの利点を有するもの
である。従って、これらの酸でヒ素汚染土壌を洗浄する
と、土壌に損傷を与えることなく、低廉な価格で、大部
分のヒ素を高い抽出効率で除去することができ、ヒ素に
よる環境負荷を大幅に減らしてリスクを軽減することが
できる。また、本発明のヒ素汚染土壌安定化剤は、土壌
中の微量のヒ素を強く不溶化して、溶出試験において土
壌環境基準を満足する程度までヒ素の溶出を低く抑える
機能をもつものであり、しかも安価なものである。従っ
て、本発明の土壌洗浄剤及び安定化剤を用いた汚染土壌
修復方法は、ヒ素汚染土壌からヒ素を簡単に抽出除去す
ることができ、ヒ素による環境負荷を大幅に軽減すると
ともに、土壌中に残留する微量のヒ素を安定化させて汚
染土壌を確実に修復して該土壌の再利用を可能ならしめ
るものである。
The arsenic-contaminated soil cleaning agent of the present invention has a high arsenic extraction / removal effect, does not damage the soil itself even if washed, has excellent durability, and is easy to post-treat.
It has many advantages such as low cost. Therefore, washing arsenic-contaminated soil with these acids can remove most of the arsenic with high extraction efficiency at a low price without damaging the soil, greatly reducing the environmental burden of arsenic. The risk can be reduced. Further, the arsenic-contaminated soil stabilizer of the present invention strongly insolubilizes a trace amount of arsenic in the soil, and has a function of suppressing the elution of arsenic to the extent that the soil environmental standard is satisfied in the elution test, and It is cheap. Therefore, the contaminated soil restoration method using the soil cleaning agent and the stabilizer of the present invention can easily extract and remove arsenic from arsenic-contaminated soil, and significantly reduce the environmental load caused by arsenic, and It stabilizes a trace amount of arsenic that remains and reliably repairs contaminated soil so that the soil can be reused.

【図面の簡単な説明】[Brief description of drawings]

【図1】フッ化水素酸、リン酸、硫酸、塩酸、硝酸、過
塩素酸、臭化水素酸、酢酸、過酸化水素、混酸(塩酸+
硝酸)、混酸(硝酸+過塩素酸)によるヒ素汚染土壌か
らのヒ素除去効果の説明図。
FIG. 1 Hydrofluoric acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, hydrobromic acid, acetic acid, hydrogen peroxide, mixed acid (hydrochloric acid +
Explanatory drawing of the arsenic removal effect from arsenic contaminated soil by nitric acid) and mixed acid (nitric acid + perchloric acid).

【図2】リン酸水溶液によるヒ素汚染土壌の洗浄処理に
おけるヒ素除去率及び土壌成分溶出率の時間変化を表す
図。
FIG. 2 is a diagram showing a time change of an arsenic removal rate and a soil component elution rate in a cleaning treatment of an arsenic-contaminated soil with a phosphoric acid aqueous solution.

【図3】硫酸水溶液によるヒ素汚染土壌の洗浄処理にお
けるヒ素除去率及び土壌成分溶出率の時間変化を表す
図。
FIG. 3 is a diagram showing a time change of an arsenic removal rate and a soil component elution rate in a cleaning treatment of an arsenic-contaminated soil with a sulfuric acid aqueous solution.

【図4】塩酸水溶液によるヒ素汚染土壌の洗浄処理にお
けるヒ素除去率及び土壌成分溶出率の時間変化を表す
図。
FIG. 4 is a view showing a time change of an arsenic removal rate and a soil component elution rate in a cleaning treatment of an arsenic-contaminated soil with a hydrochloric acid aqueous solution.

【図5】本発明に係る土壌洗浄剤及び安定化剤を用いた
ヒ素汚染土壌修復方法の概要説明図。
FIG. 5 is a schematic explanatory diagram of an arsenic-contaminated soil restoration method using a soil cleaning agent and a stabilizer according to the present invention.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リン酸水溶液、硫酸水溶液、及び塩酸水溶
液から選ばれる少なくとも一種の水溶液からなるヒ素汚
染土壌洗浄剤。
1. An arsenic-contaminated soil cleaner comprising at least one aqueous solution selected from a phosphoric acid aqueous solution, a sulfuric acid aqueous solution, and a hydrochloric acid aqueous solution.
【請求項2】ランタン塩水溶液、セリウム(III)塩水
溶液、及び鉄(III)塩水溶液から選ばれる少なくとも
一種の水溶液からなるヒ素汚染土壌安定化剤。
2. An arsenic-contaminated soil stabilizer comprising at least one aqueous solution selected from an aqueous lanthanum salt solution, an aqueous cerium (III) salt solution, and an aqueous iron (III) salt solution.
【請求項3】酸化ランタン、水酸化ランタン、酸化セリ
ウム(IV)、及び水酸化セリウム(IV)から選ばれる少
なくとも一種の酸化物からなるヒ素汚染土壌安定化剤。
3. An arsenic-contaminated soil stabilizer comprising at least one oxide selected from lanthanum oxide, lanthanum hydroxide, cerium (IV) oxide and cerium (IV) hydroxide.
【請求項4】ヒ素汚染土壌を請求項1に記載のヒ素汚染
土壌洗浄剤で処理して、ヒ素を抽出除去することを特徴
とするヒ素汚染土壌洗浄方法。
4. A method for cleaning arsenic-contaminated soil, which comprises treating arsenic-contaminated soil with the cleaning agent for arsenic-contaminated soil according to claim 1 to extract and remove arsenic.
【請求項5】請求項4に記載のヒ素汚染土壌洗浄方法で
処理された土壌に請求項2に記載の安定化剤を添加混合
し、更にアルカリで中和処理して土壌中のヒ素を不溶化
することを特徴とするヒ素汚染土壌修復方法。
5. The soil treated by the arsenic-contaminated soil washing method according to claim 4 is admixed with the stabilizer according to claim 2 and neutralized with an alkali to insolubilize arsenic in the soil. A method for repairing arsenic-contaminated soil, which comprises:
【請求項6】請求項4に記載のヒ素汚染土壌洗浄方法で
処理された土壌に請求項3に記載の安定化剤を添加混合
し、土壌中のヒ素を不溶化することを特徴とするヒ素汚
染土壌修復方法。
6. Arsenic contamination characterized by insolubilizing arsenic in soil by adding and mixing the stabilizer according to claim 3 to the soil treated by the arsenic-contaminated soil cleaning method according to claim 4. Soil remediation method.
JP2000208465A 2000-07-10 2000-07-10 Arsenic-contaminated soil cleaner, arsenic-contaminated soil stabilizer, and method for remediating arsenic-contaminated soil using the same Expired - Lifetime JP3407039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208465A JP3407039B2 (en) 2000-07-10 2000-07-10 Arsenic-contaminated soil cleaner, arsenic-contaminated soil stabilizer, and method for remediating arsenic-contaminated soil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208465A JP3407039B2 (en) 2000-07-10 2000-07-10 Arsenic-contaminated soil cleaner, arsenic-contaminated soil stabilizer, and method for remediating arsenic-contaminated soil using the same

Publications (2)

Publication Number Publication Date
JP2002018421A JP2002018421A (en) 2002-01-22
JP3407039B2 true JP3407039B2 (en) 2003-05-19

Family

ID=18705036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208465A Expired - Lifetime JP3407039B2 (en) 2000-07-10 2000-07-10 Arsenic-contaminated soil cleaner, arsenic-contaminated soil stabilizer, and method for remediating arsenic-contaminated soil using the same

Country Status (1)

Country Link
JP (1) JP3407039B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060083791A1 (en) 2002-05-24 2006-04-20 Moerck Rudi E Rare earth metal compounds methods of making, and methods of using the same
US20040161474A1 (en) * 2002-05-24 2004-08-19 Moerck Rudi E. Rare earth metal compounds methods of making, and methods of using the same
CA3224506A1 (en) 2010-05-12 2011-11-17 Unicycive Therapeutics, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
KR101026753B1 (en) * 2010-08-20 2011-04-08 한국지질자원연구원 Method for soil washing of arsenic contaminated soil
JP5615101B2 (en) * 2010-08-31 2014-10-29 Jfeミネラル株式会社 Purification material
CN112122325A (en) * 2020-08-03 2020-12-25 广州润方环保科技有限公司 Arsenic-polluted soil eluting agent and preparation method and application thereof
CN114410311B (en) * 2022-01-25 2023-08-15 生态环境部华南环境科学研究所 Efficient low-disturbance arsenic-polluted soil leaching agent and preparation method and application thereof
CN116078804A (en) * 2023-02-17 2023-05-09 岭南现代农业科学与技术广东省实验室 Method for controlling concentration of methyl arsenic in soil

Also Published As

Publication number Publication date
JP2002018421A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
Wuana et al. Removal of heavy metals from a contaminated soil using organic chelating acids
Semer et al. Evaluation of soil washing process to remove mixed contaminants from a sandy loam
Reddy et al. Comparison of extractants for removing heavy metals from contaminated clayey soils
Elliott et al. Role of Fe in extractive decontamination of Pb-polluted soils
Davis et al. Desorption of cadmium from goethite (α-FeOOH)
JP3407039B2 (en) Arsenic-contaminated soil cleaner, arsenic-contaminated soil stabilizer, and method for remediating arsenic-contaminated soil using the same
Sarkar et al. Chelant-aided enhancement of lead mobilization in residential soils
CA2094091A1 (en) In-situ restoration of contaminated soils and groundwater using calcium chloride
Zhang et al. Washing reagents for remediating heavy-metal-contaminated soil: a review
CN106077061A (en) A kind of surfactant wash-out and the method for fenton-type reagent combine d bioremediation organochlorine pesticide pollution soil
JP3407041B2 (en) Cleaning agent and stabilizer for selenium-contaminated soil and method for remediating selenium-contaminated soil using the same
Macauley et al. Chelation extraction of lead from soil using pyridine-2, 6-dicarboxylic acid
CN109877149B (en) Inhibiting toxic emissions in repair matrices
Wasay et al. Organic acids to remediate a clay loam polluted by heavy metals
Hong et al. Selective removal of heavy metals from contaminated kaolin by chelators
JP4443290B2 (en) Purification method for heavy metal contaminated soil
Ni et al. Remediation of cadmium-contaminated soil: GLDA-assisted extraction and sequential FeCl3–CaO-based post-stabilization
CN111908585B (en) Fenton-like water treatment method based on generation of hydroxyl free radicals by iron-containing clay minerals
JP2004066129A (en) Method of restoring soil polluted with heavy metal
JP2010207675A (en) Method of cleaning heavy metal-contaminated soil
JP2006326551A (en) Cleaning agent for soil contaminated with organoarsenic compound and cleaning method
JP2004321887A (en) Decontamination method for contaminated soil
JP2001225052A (en) Cleaning agent for arsenic-contaminated soil and method for cleaning arsenic contaminated soil by using the same
JP2004066132A (en) Method of restoring heavy metal-polluted soil with ultrasonic irradiation
JP2001300506A5 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3407039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term