JP3405762B2 - Sludge thickening and dewatering apparatus and sludge thickening and dewatering method - Google Patents

Sludge thickening and dewatering apparatus and sludge thickening and dewatering method

Info

Publication number
JP3405762B2
JP3405762B2 JP13516693A JP13516693A JP3405762B2 JP 3405762 B2 JP3405762 B2 JP 3405762B2 JP 13516693 A JP13516693 A JP 13516693A JP 13516693 A JP13516693 A JP 13516693A JP 3405762 B2 JP3405762 B2 JP 3405762B2
Authority
JP
Japan
Prior art keywords
sludge
concentration
primary
granulation
concentrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13516693A
Other languages
Japanese (ja)
Other versions
JPH06320200A (en
Inventor
勉 安田
幸三郎 赤松
克範 西田
康彦 渡辺
宰平 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Sewerage Service Corp
Kurita Water Industries Ltd
Tomoe Engineering Co Ltd
Tsukishima Kikai Co Ltd
Original Assignee
Tokyo Metropolitan Sewerage Service Corp
Kurita Water Industries Ltd
Tomoe Engineering Co Ltd
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Sewerage Service Corp, Kurita Water Industries Ltd, Tomoe Engineering Co Ltd, Tsukishima Kikai Co Ltd filed Critical Tokyo Metropolitan Sewerage Service Corp
Priority to JP13516693A priority Critical patent/JP3405762B2/en
Publication of JPH06320200A publication Critical patent/JPH06320200A/en
Application granted granted Critical
Publication of JP3405762B2 publication Critical patent/JP3405762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水処理施設において
発生した汚泥を濃縮脱水する装置および方法に関し、さ
らに詳細には、下水処理施設において発生した汚泥を、
所謂、造粒濃縮法を利用して濃縮脱水する装置および方
法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for concentrating and dewatering sludge generated in a sewage treatment facility.
The present invention relates to an apparatus and a method for concentrating and dehydrating by utilizing a so-called granulation concentrating method.

【0002】[0002]

【従来の技術、発明が解決しようとする課題】下水処理
施設において発生した汚泥(以下 下水汚泥または原汚
泥 と記す)は、従来は一般に濃縮、(消化)、脱水お
よび焼却の一連した工程を経由して処理されている 。
下水汚泥には、余剰汚泥と初沈汚泥とがあるが、濃縮工
程で両者を混合して濃縮する方法と、両者を別途に濃縮
した後、後の焼却などの工程に送られる分離濃縮方法の
2つの方法がある。これらの何れの方法においても、そ
の濃縮工程は複数の機器で構成されているのが一般であ
り、建設費用、これらの機器の維持、整備および運転維
持管理などに多額の費用を要するとの欠点がある。
BACKGROUND OF THE INVENTION Sludge generated in a sewage treatment facility (hereinafter referred to as sewage sludge or raw sludge) has generally been subjected to a series of steps of concentration, (digestion), dehydration and incineration. Has been processed.
Sewage sludge includes surplus sludge and first settling sludge, but there is a method of mixing and concentrating both in the concentration step, and a method of separating and concentrating that both are separately concentrated and then sent to a step such as incineration later. There are two ways. In any of these methods, the concentration step is generally composed of a plurality of equipments, and it is disadvantageous that construction costs, maintenance, maintenance and operation and maintenance of these equipments require a large amount of money. There is.

【0003】このような欠点を解決するために、固形物
を凝集させ、この凝集物をさらに造粒させて汚泥を濃縮
し、その脱水性を向上させる、所謂、造粒濃縮法が採用
されている。この造粒濃縮法は、他の濃縮法とは異なっ
て、濃縮と、脱水を容易にするために汚泥の性状を変換
させる作用とを併せ持っているため、従来の重力濃縮方
式に比して建設費および脱水ケーキの処理費などの運転
経費を削減し得、かつ、リンの除去が可能であるなどの
利点がある(平成3年、日本下水道事業団技術開発部お
よび下水事業団業務普及協会発行「効率的な汚泥濃縮法
の評価に関する第1次報告書−造粒濃縮法について−」
−以下単に「第1次報告書」と記す)。しかしながら、
この脱水ケーキの処理費をさらに削減するためには、こ
の脱水ケーキの含水率をさらに低下させることが好まし
いことは言うまでもない。
In order to solve such a drawback, a so-called granulation concentration method has been adopted in which a solid substance is aggregated, and the aggregate is further granulated to concentrate sludge to improve its dehydration property. There is. Unlike other concentrating methods, this granulating and concentrating method has both the function of concentrating and the function of converting the properties of sludge to facilitate dewatering, so it is more difficult to construct than conventional gravity concentrating methods. Costs and operating costs such as dehydrated cake processing costs can be reduced, and phosphorus can be removed, etc. (issued by the Japan Sewage Works Agency Technical Development Department and the Sewage Works Agency Business Extension Association in 1991) "First Report on Evaluation of Efficient Sludge Concentration Method-Granulation Concentration Method-"
-Hereinafter, simply referred to as "First Report"). However,
It goes without saying that it is preferable to further reduce the water content of the dehydrated cake in order to further reduce the processing cost of the dehydrated cake.

【0004】他方、遠心脱水機は維持管理が容易で、一
台当りの処理能力が大きく、強いて洗浄水を使用する必
要がない利点があることから、広く採用されつつある。
前記の造粒濃縮法で得られた造粒汚泥の含水率をさらに
低下させるために、この造粒汚泥の濃縮脱水に際して、
このような遠心脱水機を使用することは、設備の単純
化、各種費用の節減および処理の安定性の見地から好ま
しいことである。しかしながら、造粒濃縮法で得られた
造粒汚泥の濃縮脱水のために遠心脱水機を使用した場合
には、造粒濃縮法で一旦造粒され、脱水性を向上せしめ
られ、かつ、濃縮された造粒汚泥は、次の遠心脱水機へ
供給する過程および遠心脱水機での脱水操作の間に破壊
されて微細化され、折角向上せしめられた脱水性を元の
ように低下させ(たとえば、前記の「第1次報告
書」)、この傾向は造粒された脱水ケーキの固形物濃度
が高い程著しく、また、脱水機が遠心脱水機の場合に
は、この傾向が特に顕著である。また、造粒濃縮工程
で、原汚泥中の固形物の回収率を良好に保つためには造
粒濃縮工程での濃縮濃度に制限があるとの欠点があっ
た。すなわち、遠心脱水機は固形物濃度が高い程、その
固形物処理量が多くなるが、造粒濃縮工程での運転にお
いては造粒汚泥の濃度を約2%程度に低くせざるを得
ず、その結果、遠心脱水機の能力を十分に発揮できない
などの障害がある。この場合において、さらに、性状お
よび固形物濃度のそれぞれの変動が激しい原汚泥の濃縮
脱水を安定して行うためには、造粒濃縮工程で、原汚泥
供給量(1次凝集汚泥)を実質的に一定にしておいて、
造粒濃縮工程から排出される造粒汚泥中の固形物濃度を
実質的に一定にするか、または、濃縮倍率を実質的に一
定にして運転するのが通例とされているが、何れの場合
も遠心脱水機に供給される汚泥の量および/または固形
物濃度を実質的に一定にすることができず、すなわち、
固形物濃度の変動に応じて量または濃度が変動し、遠心
脱水機の安定した運転が実質的に不可能であり、汚泥の
量変動の最大量に合致するような、処理能力が過大な遠
心脱水機を選定使用しなければならず、これは動力費の
浪費が伴うなどの欠点がある 。このように、造粒濃縮
槽と遠心脱水機とを組合わせた場合に、造粒濃縮槽で折
角、下水汚泥が濃縮、造粒されて脱水性が向上せしめら
れたにもかかわらず、その優れた性能を充分に活用でき
ず、また、安定した運転制御が困難なことから、造粒汚
泥の遠心脱水は実際には成り立たないとされていた。
On the other hand, the centrifugal dehydrator is being widely adopted because it is easy to maintain and manage, has a large processing capacity per unit, and has the advantage that it is not necessary to use washing water.
In order to further reduce the water content of the granulated sludge obtained by the granulation concentration method, in concentrating and dehydrating the granulation sludge,
The use of such a centrifugal dehydrator is preferable from the viewpoints of facility simplification, cost saving, and process stability. However, when a centrifugal dehydrator is used for concentrating and dewatering the granulated sludge obtained by the granulating and concentrating method, it is once granulated by the granulating and concentrating method to improve the dewatering property and to be concentrated. The granulated sludge is destroyed and miniaturized during the process of supplying it to the next centrifugal dehydrator and during the dehydration operation in the centrifugal dehydrator, and reduces the improved dehydration property to the original level (for example, In the above-mentioned “First Report”), this tendency is more remarkable as the solid concentration of the granulated dehydrated cake is higher, and this tendency is particularly remarkable when the dehydrator is a centrifugal dehydrator. Further, in the granulation concentration step, there is a drawback that the concentration concentration in the granulation concentration step is limited in order to keep a good recovery rate of the solid matter in the raw sludge. That is, the higher the solids concentration of the centrifugal dehydrator, the larger the amount of solids treated, but the operation in the granulation and concentration step .
The concentration of Itewa granulated sludge inevitable to lower the order of about 2%, as a result, there is a failure, such as not sufficiently exhibit the capability of the centrifugal dehydrator. In this case, in order to further stably perform the concentration and dehydration of the raw sludge in which the property and the solid content concentration are greatly varied, the raw sludge supply amount (primary coagulated sludge) is substantially reduced in the granulation concentration step. Keep it constant at
It is customary to keep the solids concentration in the granulated sludge discharged from the granulation concentration step substantially constant, or to operate with the concentration ratio substantially constant, in which case Also cannot make the amount of sludge and / or solids concentration fed to the centrifugal dehydrator substantially constant, ie,
Centrifugal dewatering machine whose volume or concentration fluctuates according to the fluctuation of solids concentration makes stable operation of the centrifugal dehydrator practically impossible, and the centrifugal capacity is too high to meet the maximum fluctuation of sludge volume. A dehydrator must be selected and used, which has the disadvantage of wasting power. As described above, when the granulation thickener and the centrifugal dehydrator are combined, even though the sewage sludge is concentrated and granulated in the granulating thickener to improve the dehydration property, its excellent It has been said that centrifugal dehydration of granulated sludge is not actually feasible because it is not possible to make full use of the performance and stable operation control is difficult.

【0005】本発明者らは、所謂、造粒濃縮法と遠心脱
水機とを組合わせて下水汚泥の濃縮脱水処理をするに際
して、造粒濃縮法と遠心脱水機とを組合わせることによ
る前記のような欠点を克服し、造粒濃縮法と遠心脱水機
との長所を十分に発揮せしめ、以て、下水汚泥を効率よ
く、しかも安い費用で、安定して濃縮脱水し、含水率の
低い脱水ケーキを得ることを目的として、鋭意、研鑚を
重ねた結果、遠心脱水機としてデカンター型遠心分離機
を選択し、かつ、造粒濃縮槽とデカンター型遠心分離
の間に、フィルター式濃縮機を介在せしめることによ
り、かつ、下水汚泥を連続して処理することにより、前
記の目的を達成し得ることを発見し、この発見に基づい
て、本発明の汚泥濃縮脱水装置および汚泥濃縮脱水方法
に到達した。
The inventors of the present invention, when performing the concentration and dewatering treatment of sewage sludge by combining the so-called granulation concentrating method and the centrifugal dehydrator, use the above-mentioned method by combining the granulation concentrating method and the centrifugal dehydrator. By overcoming such disadvantages and fully utilizing the advantages of the granulation concentrating method and the centrifugal dehydrator, the sewage sludge can be concentrated and dehydrated efficiently at a low cost and with a low water content. Decanter centrifuge as a centrifuge dehydrator as a result of diligent and repeated grinding in order to obtain a cake
Select and granulating concentration tank and a decanter type centrifugal separator
Between, by allowed to interpose a filter expression concentrator, and by treating the sewage sludge in succession, discovered that it is possible to achieve the object, on the basis of this finding, the sludge of the present invention A concentration dewatering device and a sludge concentration dewatering method have been reached.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の1つ
は、下水処理施設からの原汚泥と無機凝集剤とを混合し
て原汚泥中のイオン成分および固形物を1次的に凝集さ
せた1次凝集物を含有する1次凝集汚泥とする調質槽、
該調質槽から導かれた1次凝集汚泥と両性高分子凝集剤
とを攪拌しつつ混合して前記1次凝集汚泥中の1次凝集
物および未凝集の固形物を凝集、造粒せしめて造粒汚泥
にするとともに、該造粒汚泥と遊離水とに分離して濃縮
する造粒濃縮槽、該造粒汚泥を濃縮するフィルター式濃
縮機および該フィルター式濃縮機で濃縮された造粒汚泥
をさらに脱水するデカンター型遠心分離機を順次連設さ
せて成ることを特徴とする汚泥濃縮脱水装置である。
[Means for Solving the Problems] That is, one of the present invention is to mix raw sludge from a sewage treatment facility with an inorganic coagulant to primarily aggregate ionic components and solids in the raw sludge. A primary coagulation sludge containing a primary coagulation product,
The primary agglomerated sludge introduced from the conditioning tank and the amphoteric polymer aggregating agent are mixed with stirring to agglomerate and granulate the primary agglomerates and unaggregated solids in the primary agglomerated sludge. Granulating sludge, which is made into granulated sludge and is separated into the granulated sludge and free water and concentrated, a filter type concentrator for concentrating the granulated sludge, and a granulated sludge concentrated by the filter type concentrator it is made by further sequentially continuously provided a decanter type centrifugal separator of dewatering a sludge concentrating dewatering apparatus according to claim.

【0007】また、もう1つの発明は、下水処理施設か
ら発生した原汚泥と無機凝集剤とを混合して原汚泥中の
イオン成分および固形物を1次的に凝縮させて1次凝集
物を含有する1次凝集汚泥を得る調質工程、該1次凝集
汚泥と両性高分子凝集剤とを攪拌しつつ混合して前記1
次凝集汚泥中の1次凝集物および未凝集の固形物を凝
集、造粒させて造粒汚泥とし、該造粒汚泥と遊離水とに
分離せしめる造粒濃縮工程、該造粒濃縮工程で得られた
造粒汚泥をフィルター式濃縮機で濃縮して濃縮汚泥とす
る濃縮工程および該濃縮汚泥をデカンター型遠心分離
で脱水して脱水ケーキとする脱水工程を順次経由させ
て、該造粒汚泥の破壊を極力抑制して濃縮脱水すること
を特徴とする汚泥濃縮脱水方法である。
Another aspect of the present invention is to mix primary sludge generated from a sewage treatment facility with an inorganic flocculant to primarily condense ionic components and solids in the raw sludge to form primary flocculates. The refining step for obtaining the contained primary coagulation sludge, the primary coagulation sludge and the amphoteric polymer coagulant are mixed with stirring to obtain the above-mentioned 1
Granulation concentration step of aggregating and aggregating the primary agglomerates and unaggregated solids in the secondary agglomeration sludge into granulation sludge, and separating into the agglomeration sludge and free water, obtained in the agglomeration concentration step was in granulated sludge was through the dehydration step of the concentration process and the concentrated sludge is concentrated in a filter-type concentrator to concentrate sludge is dehydrated with decanter type centrifugal separator and dehydrated cake sequentially granulated sludge It is a method for concentrating and dewatering sludge, which is characterized by concentrating and dewatering while suppressing the destruction of sewage.

【0008】本発明における造粒濃縮槽は、槽本体、攪
拌機およびスクリーンを有し、該槽本体の底部には汚泥
供給孔および両性高分子凝集剤供給孔が設けられてお
り、該スクリーンは該槽本体の上部に設けられ、該攪拌
機は水平方向の旋回流を発生させる上部攪拌翼および鉛
直方向の循環流を発生させる下部攪拌翼とを少なくとも
有し、槽本体の内周面で汚泥を造粒させるものである。
この造粒濃縮槽の代表例として、前記の「第1次報告
書」に記載されており、図2に示されたような造粒濃縮
槽を挙げることができる。
The granulating and concentrating tank in the present invention has a tank main body, an agitator and a screen, and a sludge supply hole and an amphoteric polymer coagulant supply hole are provided at the bottom of the tank main body, and the screen is The stirrer provided at the top of the tank main body has at least an upper stirring blade for generating a horizontal swirling flow and a lower stirring blade for generating a vertical circulating flow, and sludge is produced on the inner peripheral surface of the tank main body. It's a grain.
As a typical example of this granulation concentrating tank, the granulation concentrating tank described in the above-mentioned “First Report” and shown in FIG. 2 can be mentioned.

【0009】本発明でのフィルター式濃縮機は、通常の
汚泥の濃縮に使用されているものを使用することができ
るが、フィルターとしてワイヤスクリーン、スリットが
穿設された濾材または粗目の濾布を有し、かつ、濾布は
その目の大きさが通常の汚泥の濃縮に使用されているも
のよりも粗目であるものが好ましい。また、フィルター
が造粒濃縮工程で分離、排出された遊離水、もしくは、
フィルター式濃縮機およびデカンター型遠心分離機のそ
れぞれから排出された分離水で、または、スクレーパー
で洗浄できる構造とされているものが好ましい。また、
フィルター式濃縮機は造粒汚泥の造粒状態を破壊しない
ように、連続供給、連続排出型として、排出にポンプを
使用しない形式のもが好ましい。最も単純なフィルタ
ー式濃縮機として、たとえば、ワイヤスクリーンを内蔵
せしめた濾過筒を挙げることができ、しかも好ましい。
また、フィルター式濃縮機は、排出される濃縮汚泥の固
形物濃度を調節する機構を有していることが好ましい。
The filter-type concentrator used in the present invention may be any of those commonly used for concentrating sludge, and a wire screen, a filter material having slits or a coarse filter cloth may be used as a filter. It is preferable that the filter cloth has a mesh size larger than that used in the ordinary concentration of sludge. In addition, the filter separates and discharges free water in the granulation concentration step, or
In separated water is discharged from each of the filter type concentrator and a decanter type centrifugal separator, or, what is preferred is a structure that can be cleaned with a scraper. Also,
Filter concentrator machine so as not to destroy the granulation state of the granulated sludge, continuous supply, as a continuous discharge type, also it is preferable to form that does not use the pump to discharge. As the simplest filter type concentrator, for example, a filter cylinder having a built-in wire screen can be mentioned, and it is preferable.
Further, it is preferable that the filter type concentrator has a mechanism for adjusting the solid matter concentration of the discharged concentrated sludge.

【0010】本発明においては、遠心脱水機としてデカ
ンター型遠心分離機が使用される。本発明においてデカ
ンター型遠心分離機とは、円錐部を有する横型回転筒の
中心に、スクリューが配設された遠心脱水機である。な
お、回転筒内の液面の深さは通常の汚泥の濃縮に使用さ
れているものよりも深くされる。遠心脱水機としてデカ
ンター型遠心分離機を使用することにより、造粒汚泥の
破壊は防止される
[0010] In the present invention, as a centrifugal dehydrator Deca
Centers type centrifuge Ru is used. Deca in the present invention
The centers centrifuge, the center of the horizontal rotating cylinder having a circular cone section, a centrifugal dehydrator which screw is disposed. Na
The depth of the liquid level in the rotating cylinder is used for normal sludge concentration.
Be deeper than what is being done. Deca as a centrifugal dehydrator
The use of a centrifugal centrifuge
Destruction is prevented .

【0011】また、デカンター型遠心分離機の代表例と
して、図3で示されるようなデカンター型遠心分離機が
あり、本発明に使用するに好適である。このデカンター
遠心分離機は、ケーシング中に、円筒部とその一端に
連設された円錐状の筒部から成るボウルが設けられ、該
ボウルの内側に円筒部とその一端に連設されたインナー
コーンとから成る内筒が収納され、該円筒部および該イ
ンナーコーンの外周面にそれぞれスクリューが設けら
れ、該円筒部の外周面のスクリューは該インナーコーン
に向ってそのピッチが漸減せしめられており、該ボウル
および該スクリューは互いに同心的に独立して回転せし
められる。また、このデカンター型遠心分離機は、ボウ
ル内面からの液面半径が小さい−すなわち、濃縮汚泥供
給直後のボウル内周速が小さくなるようなボウル回転時
において、深い液深を有する−ものが好ましい。これ
は、造粒濃縮された汚泥がデカンター型遠心分離機に供
給された直後、この造粒汚泥の造粒状態の破壊を抑制す
るために有効である。さらにボウルおよびスクリューの
それぞれの回転数を、供給される濃縮汚泥中の固形物濃
度に対応して異ならせることができるものが好ましい
(以下でこれらの回転数の差を 差速 と記すこともあ
る)。さらにまた、この差速およびこれらの回転時のト
ルクがそれぞれ検出可能とされていることが好ましい。
[0011] As a typical example of a decanter centrifuge, there is a decanter-type centrifugal separator as shown in Figure 3, it is suitable for use in the present invention. This decanter
Type centrifugal separator is in the casing, the cylindrical portion with its one end provided continuously been conical bowl made of tubular portion is provided, an inner cone which is provided continuously to the cylindrical portion and one end on the inside of the bowl An inner cylinder consisting of is housed, and a screw is provided on each of the outer peripheral surface of the cylindrical portion and the inner cone, and the pitch of the screw on the outer peripheral surface of the cylindrical portion is gradually reduced toward the inner cone. The bowl and the screw are rotated concentrically and independently of each other. Further, this decanter type centrifuge preferably has a small liquid surface radius from the inner surface of the bowl-that is, it has a deep liquid depth when the bowl is rotated so that the inner peripheral speed of the bowl becomes small immediately after the supply of the concentrated sludge. . This is immediately after the sludge is granulated concentrate is supplied to the decanter centrifuge machine, which is effective for suppressing the breakage of the granulated state of the granulated sludge. Further, it is preferable that the number of rotations of each of the bowl and the screw can be made different depending on the solid concentration in the concentrated sludge to be supplied (hereinafter, the difference between these numbers of rotations may be referred to as differential speed). ). Furthermore, it is preferable that the differential speed and the torque during rotation thereof can be detected.

【0012】これらの調質槽、造粒濃縮槽、フィルター
式濃縮機およびデカンター型遠心分離機は、直接に、ま
たは、所望によりポンプを介して互いに順次、連設され
る。また、調質槽はその上流の下水処理施設と直接に、
または、所望により、原汚泥貯槽を介して、接続され
る。また、この接続に際して、接続経路に、所望により
ポンプを介在させることもできる。造粒濃縮槽とフィル
ター式濃縮機との間に介在せしめられるポンプは、造粒
濃縮槽から排出された造粒汚泥の造粒状態を極力破壊し
ないような形式、機種が選択されなければならないが、
通常は、たとえば、一軸ネジ式ポンプが好適に使用され
る。また、このポンプに代えて、または、このポンプと
ともに、たとえば、ダイヤフラム式流量調整バルブのよ
うな流量調整バルブを使用することもできる。その他の
箇所に使用されるポンプは、汚泥の輸送に通常使用され
るポンプを使用することができる。
[0012] These refining vessel, granulation concentration tank, a filter-type concentrator and a decanter type centrifugal separator is directly or, optionally sequentially to one another via a pump, is continuously provided. In addition, the tempering tank is directly connected to the upstream sewage treatment facility,
Alternatively, if desired, it is connected via a raw sludge storage tank. Further, at the time of this connection, a pump may be interposed in the connection path if desired. For the pump that is interposed between the granulation thickener and the filter-type thickener, a type and model must be selected that does not destroy the granulated sludge discharged from the granulation thickener as much as possible. ,
Usually, for example, a single screw pump is preferably used. Also, instead of this pump or together with this pump, a flow rate adjusting valve such as a diaphragm type flow rate adjusting valve can be used. As the pump used in other places, a pump normally used for transporting sludge can be used.

【0013】本発明が適用される原汚泥は、たとえば、
一般の公共下水道施設などの下水処理施設から発生した
汚泥であって、たとえば、標準活性汚泥法の生汚泥、余
剰汚泥、前記の生汚泥と余剰汚泥との混合汚泥、嫌気好
気活性汚泥法およびオキシデーションディッチ法の余剰
汚泥であり、少なくとも固形物およびイオンが含有され
ておればよい。その固形物濃度およびイオン当量には、
特に制限はないが、本発明において効率よく濃縮脱水を
行うためには、実用上、それぞれ、通常は、約0.4〜
2重量%および全固形物1g当り約0.2〜0.5mg当量
であり、好ましくは、0.5〜1.5重量%および全固形
物1g当り約0.3〜0.4mg当量とされる。通常、下水
処理施設からの汚泥はその固形物濃度およびイオン当量
が前記の範囲内であるのでそのまま処理することができ
る。
The raw sludge to which the present invention is applied is, for example,
Sludge generated from sewage treatment facilities such as general public sewer facilities, for example, raw sludge of standard activated sludge method, excess sludge, mixed sludge of the above-mentioned raw sludge and excess sludge, anaerobic aerobic activated sludge method and It is an excess sludge of the oxidation ditch method, and may contain at least solid matter and ions. Its solids concentration and ion equivalent are:
There is no particular limitation, but in order to efficiently perform the concentration and dehydration in the present invention, in practice, each is usually about 0.4 to
2% by weight and about 0.2 to 0.5 mg equivalents per gram of total solids, preferably 0.5 to 1.5% by weight and about 0.3 to 0.4 mg equivalents per gram of total solids. It Usually, the sludge from the sewage treatment facility can be treated as it is because its solid content concentration and ion equivalent are within the above ranges.

【0014】調質工程では、供給された原汚泥と無機凝
集剤とを混合して、原汚泥中のイオン成分の電荷を中和
して凝結させ、このときに固形物をも捲き込ませて1次
的に凝集させて、次の造粒濃縮工程での凝集、造粒が好
適に行われるように調質された1次凝集汚泥を得る。こ
こで使用される無機凝集剤の代表例としては、硫酸第2
鉄および塩化第2鉄などの鉄塩、ならびに硫酸アルミニ
ウムおよびポリ塩化アルミニウム(PAC)などであ
り、実用上、就中、ポリ塩化アルミニウムおよび/また
は塩化第2鉄が好ましい。無機凝集剤の使用量は、実用
上、原汚泥中の固形物の重量に対して、実用上、通常
は、約3〜15%、好ましくは、約5〜10%とされ
る。また、無機凝集剤が添加される汚泥のpHは、無機凝
集剤を効率よく作用させるために微酸性とされるが、無
機凝集剤が鉄塩の場合には4〜5程度、アルミニウム塩
の場合には4.5〜5.5程度とすることが実用上、好ま
しい。
In the refining step, the supplied raw sludge and the inorganic coagulant are mixed to neutralize the electric charge of the ionic components in the raw sludge to cause condensation, and at this time, the solid matter is also involved. Primary coagulation is performed to obtain a primary coagulated sludge that has been conditioned so that coagulation and granulation in the subsequent granulation and concentration step are suitably performed. A typical example of the inorganic coagulant used here is sulfuric acid second
Iron salts such as iron and ferric chloride, and aluminum sulfate and polyaluminum chloride (PAC), etc., among which polyaluminum chloride and / or ferric chloride are preferable in practical use. Practically, the amount of the inorganic flocculant used is usually about 3 to 15%, preferably about 5 to 10%, based on the weight of the solid matter in the raw sludge. The pH of the sludge to which the inorganic coagulant is added is slightly acidic in order to make the inorganic coagulant act efficiently, but when the inorganic coagulant is an iron salt, it is about 4 to 5, and when it is an aluminum salt. In practice, it is preferable to set it to about 4.5 to 5.5.

【0015】造粒濃縮工程では、前段の調質槽から送ら
れた1次凝集汚泥と両性高分子凝集剤とを混合して1次
凝集汚泥中の1次凝集物および未凝集の固形物をさらに
凝集、造粒させ濃縮して、造粒汚泥を得る。本発明にお
いて、両性高分子凝集剤とは、カチオン基の量に対する
アニオン基の量(電気当量として)の比が1以上である
高分子を含有する凝集剤として定義される。具体的に
は、カチオン樹脂、アニオン樹脂およびノニオン樹脂の
混合物ならびにカチオン成分、アニオン成分およびノニ
オン成分の共重合体などがある。このような共重合体の
代表例として、カチオン成分をジメチルアミノメタクリ
レートおよびジメチルアミノアクリレートとし、アニオ
ン成分をアクリル酸とし、ノニオン成分をアクリルアミ
ドとし、常法によって共重合させた4元共重合ポリマー
を挙げることができる。
In the granulating and concentrating step, the primary coagulation sludge sent from the pre-conditioning tank and the amphoteric polymer coagulant are mixed to remove the primary coagulation and unaggregated solid matter in the primary coagulation sludge. Further, it is aggregated, granulated and concentrated to obtain granulated sludge. In the present invention, an amphoteric polymer flocculant is defined as a flocculant containing a polymer in which the ratio of the amount of anionic groups (as electric equivalent) to the amount of cationic groups is 1 or more. Specific examples include a mixture of a cation resin, an anion resin and a nonion resin, and a copolymer of a cation component, an anion component and a nonion component. As a typical example of such a copolymer, a quaternary copolymer obtained by copolymerizing a cation component with dimethylaminomethacrylate and dimethylaminoacrylate, an anion component with acrylic acid, a nonion component with acrylamide, and a conventional method is given. be able to.

【0016】両性高分子凝集剤の使用量は、実用上、通
常は、原汚泥中の固形物の重量に対して0.5〜1%程
度とされる。また、高分子凝集剤を溶液にして使用する
場合には、アニオン基の解離を抑制するために溶液は酸
性でなければならない。さらにまた、高分子凝集剤が添
加されるときの1次凝集汚泥のpHは、通常は、たとえ
ば、4〜5程度の微酸性であるが、この高分子凝集剤を
効率よく作用させるために、1次凝集汚泥のpHに対応し
て高分子凝集剤が適宜、選択される。このようにして形
成せしめられた造粒汚泥は、造粒濃縮槽の上部のスクリ
ーンによって遊離水と分離されて次の濃縮工程へ送られ
る。遊離水が分離された造粒汚泥は、造粒濃縮工程に供
給された1次凝集汚泥に対して、2〜4倍に濃縮されて
おり、その固形物濃度は、通常は、約2%程度とされて
いる。
In practice, the amount of the amphoteric polymer flocculant used is usually about 0.5 to 1% with respect to the weight of the solid matter in the raw sludge. When the polymer flocculant is used as a solution, the solution must be acidic in order to suppress the dissociation of anionic groups. Furthermore, the pH of the primary flocculating sludge when the polymer flocculant is added is usually slightly acidic, for example, about 4 to 5, but in order to make this polymer flocculant act efficiently, A polymer flocculant is appropriately selected according to the pH of the primary flocculation sludge. The granulated sludge thus formed is separated from the free water by the screen above the granulation thickening tank and sent to the next concentration step. The granulated sludge from which the free water has been separated is concentrated 2 to 4 times as much as the primary coagulated sludge supplied to the granulation concentration step, and the solid matter concentration is usually about 2%. It is said that.

【0017】濃縮工程では、フィルター式濃縮機を使用
して、造粒汚泥を、その造粒状態が極力破壊されないよ
うに十分に注意して、濃縮して、濃縮汚泥が得られる。
この濃縮汚泥はその固形物濃度が約3〜5%程度に向上
せしめられている。
In the concentration step, the filter sludge is used to concentrate the granulated sludge with great care so that the granulated state is not destroyed as much as possible to obtain a concentrated sludge.
The concentration of solids in this concentrated sludge is improved to about 3 to 5%.

【0018】このようにして得られた濃縮汚泥を、デ
ンタ型遠心分離機に送って、ここで、濃縮汚泥の造粒
状態が極力破壊されないように十分に注意しつつ脱水し
て、最終的に脱水ケーキが得られる。この脱水ケーキ
は、所望により、たとえば、焼却などの後処理に付され
る。また、造粒濃縮工程からの遊離水は、所望により、
濃縮工程で使用されるフィルター式濃縮機のフィルター
の洗浄に使用され、および/または、下水処理施設に送
られて処理される。同様に濃縮工程および脱水工程のそ
れぞれからの分離水も、所望により、フィルター式濃縮
機のフィルターの洗浄に使用され、および/または、下
水処理施設に送られて処理される。
[0018] The concentrated sludge obtained in this manner, is sent to de Ca <br/> printer type centrifugal separator, wherein, with caution while as granulation state of the concentrated sludge is not as much as possible destruction After dehydration, a dehydrated cake is finally obtained. The dehydrated cake is subjected to post-treatment such as incineration, if desired. Also, the free water from the granulation concentration step, if desired,
It is used to wash the filter of the filter type concentrator used in the concentration step and / or is sent to a sewage treatment facility for treatment. Similarly, the separated water from each of the concentration step and the dehydration step is optionally used for cleaning the filter of the filter type concentrator and / or sent to a sewage treatment facility for treatment.

【0019】本発明の汚泥濃縮脱水方法において、次の
ような操作法があり得る。すなわち、 (a)1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が実質的に一定に制御された1次凝集汚泥を造粒
濃縮工程へ供給し、かつ、固形物濃度が実質的に一定に
保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給す
る方法。 (b)1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が所定範囲内に制御された1次凝集汚泥を造粒濃
縮工程へ供給し、固形物濃度が実質的に一定に保たれた
造粒汚泥を造粒濃縮工程から濃縮工程へ供給し、該濃縮
工程において前記の造粒汚泥を濃縮してその固形物濃度
または濃縮流量が実質的に一定とされた濃縮汚泥を、脱
水工程へ供給する方法。 (c) 1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が所定範囲内に制御された1次凝集汚泥を造粒濃
縮工程へ供給し、固形物濃度が実質的に一定に保たれた
造粒汚泥を造粒濃縮工程から濃縮工程へ供給し、該濃縮
工程において前記の造粒汚泥を濃縮してその固形物濃度
または、濃縮流量が実質的に一定とされた濃縮汚泥を脱
水工程へ供給し、該脱水工程で該濃縮汚泥を濃縮脱水し
てケーキ含水率が実質的に一定な脱水ケーキとする方法
および (d) 1次凝集汚泥中の1次凝集物と未凝集の固形物との
合計量が所定範囲内に制御された1次凝集汚泥を造粒濃
縮工程へ供給し、固形物濃度が実質的に一定に保たれた
造粒汚泥を造粒濃縮工程から濃縮工程へ供給し、該濃縮
工程において前記の造粒汚泥を濃縮してその固形物濃度
または濃縮流量が実質的に一定とされた濃縮汚泥を脱水
工程へ供給し、該脱水工程で該濃縮汚泥を脱水してケー
キ含水率が実質的に一定な脱水ケーキとし、該脱水工程
におけるデカンター型遠心分離機の差速またはトルクの
変動に対応して前記の造粒濃縮工程における両性高分子
凝集剤の使用量を調節する方法 などがある。
In the sludge concentrating and dewatering method of the present invention, the following operating methods can be used. That is, (a) the primary agglomerated sludge in which the total amount of the primary agglomerates and unaggregated solids in the primary agglomerated sludge is controlled to be substantially constant is supplied to the granulation concentration step, and A method of supplying granulated sludge having a substantially constant substance concentration from the granulating and concentrating step to the concentrating step. (b) The primary agglomerated sludge in which the total amount of the primary agglomerates in the primary agglomerated sludge and the unaggregated solids is controlled within a predetermined range is supplied to the granulation concentration step, and the solids concentration is substantially reduced. The granulation sludge, which was kept constant at 1, was supplied from the granulation concentration step to the concentration step, and in the concentration step, the above-mentioned granulation sludge was concentrated to a concentration in which the solids concentration or concentration flow rate was substantially constant. A method of supplying sludge to the dehydration process. (c) The primary agglomerated sludge in which the total amount of the primary agglomerates in the primary agglomerated sludge and the non-agglomerated solids is controlled within a predetermined range is supplied to the granulation concentration step, and the solids concentration is substantially The granulated sludge, which was kept constant at 1, was supplied from the granulating and concentrating step to the concentrating step, and in the concentrating step, the granulated sludge was concentrated so that the solids concentration or the concentrating flow rate was substantially constant. A method of supplying concentrated sludge to a dehydration step, concentrating and dehydrating the concentrated sludge in the dehydration step to form a dehydrated cake having a substantially constant cake water content, and (d) primary aggregate in the primary aggregate sludge The primary flocculation sludge whose total amount with unaggregated solid matter is controlled within a predetermined range is supplied to the granulation concentration step, and the granulation sludge whose solids concentration is kept substantially constant is granulated concentration step To the concentration step, and in the concentration step, the granulated sludge is concentrated to obtain a solid content or a concentrated stream. There supplying the concentrated sludge which is substantially constant to the dehydration step, the cake moisture content is substantially constant dehydration cake to dehydrate the concentrated sludge dehydration step, a decanter type centrifugal separator in said dehydration step There is a method of adjusting the amount of the amphoteric polymer flocculant used in the above-mentioned granulating and concentrating step in accordance with the change in the differential speed or torque.

【0020】[0020]

【実施例】本発明の汚泥濃縮脱水装置を、図面によって
さらに具体的に説明し、また、本発明の汚泥濃縮脱水方
法を実施例によってさらに具体的に説明するが、本発明
は、これらの図面で示された装置およびこれらの実施例
に記載された方法に限定されるものではない。本発明の
汚泥濃縮脱水装置の原理を示すためのフローシートを図
1に示す。本発明で使用される代表的な造粒濃縮槽の一
部切欠斜視図を図2に示す。本発明で使用される代表的
デカンター型遠心分離機の縦断面を図3に示す。す
なわち、本発明の汚泥濃縮脱水装置は、無機凝集剤とを
混合して原汚泥中のイオン成分および固形物を1次的に
凝集させた1次凝集物を含有する1次凝集汚泥とする調
質槽 1、該調質槽 1から導かれた1次凝集汚泥と両性高
分子凝集剤とを攪拌しつつ混合して前記1次凝集汚泥中
の1次凝集物および未凝集の固形物を凝集、造粒せしめ
て造粒汚泥にするとともに、該造粒汚泥と遊離水とに分
離して濃縮する造粒濃縮槽 2、該造粒汚泥を濃縮するフ
ィルター式濃縮機 3および該フィルター式濃縮機 3で濃
縮された濃縮汚泥をさらに脱水するデカンター型遠心
機 4を順次連設させて成っている。また、調質槽 1は
その上流側の下水処理施設(図示されていない)と原汚
泥貯槽 5を介して接続されており、その一方で、原汚泥
貯槽 5を介することなく、下水処理施設と直接、接続さ
れてもいる。原汚泥貯槽 5と調質槽 1との間、調質槽 1
と造粒濃縮槽 2との間、および、造粒濃縮槽 2とフィル
ター式濃縮機 3との間には、それぞれ、ポンプが介在せ
しめられている。なお、造粒濃縮槽 2とフィルター式濃
縮機 3との間に介在せしめられているポンプは1軸ネジ
式ポンプである。
EXAMPLES The sludge concentrating and dewatering apparatus of the present invention will be described more specifically with reference to the drawings, and the sludge concentrating and dewatering method of the present invention will be described more specifically with reference to Examples. It is not limited to the apparatus shown in and the methods described in these examples. FIG. 1 shows a flow sheet for showing the principle of the sludge concentrating and dewatering device of the present invention. A partially cutaway perspective view of a typical granulation thickener used in the present invention is shown in FIG. A longitudinal section of a typical decanter type centrifugal separator to be used in the present invention is shown in FIG. That is, the sludge concentrating and dewatering device of the present invention prepares a primary coagulation sludge containing a primary agglomerate obtained by mixing an inorganic coagulant to primaryly agglomerate the ionic components and solids in the raw sludge. Pour tank 1, primary agglomerated sludge introduced from the conditioning tank 1 and an amphoteric polymer flocculant are mixed with stirring to agglomerate primary agglomerates and unaggregated solids in the primary agglomerated sludge. A granulating thickener tank 2 which separates and concentrates the granulated sludge into free granulated water, and a filter type concentrator 3 for concentrating the granulated sludge and the filter type concentrator decanter for further dewatering the concentrated concentrated sludge in 3 centrifugal
Is made with a release device 4 is sequentially continuously provided. Further, the tempering tank 1 is connected to the upstream sewage treatment facility (not shown) through the raw sludge storage tank 5, while it is connected to the sewage treatment facility without passing through the raw sludge storage tank 5. It is also directly connected. Between the raw sludge storage tank 5 and the conditioning tank 1, the conditioning tank 1
Pumps are interposed between the granulation concentrating tank 2 and the granulation concentrating tank 2, and between the granulation concentrating tank 2 and the filter concentrator 3. The pump interposed between the granulation concentrating tank 2 and the filter concentrator 3 is a single screw type pump.

【0021】調質槽 1は、円筒状の槽11内に攪拌機12が
内蔵せしめられている。また、底部には原汚泥供給孔13
および無機凝集剤供給孔14がそれぞれ開口せしめられて
おり、上部には1次凝集汚泥排出孔15が開口せしめられ
ている。
In the tempering tank 1, a stirrer 12 is incorporated in a cylindrical tank 11. In addition, the raw sludge supply hole 13
Further, the inorganic coagulant supply hole 14 is opened, and the primary coagulated sludge discharge hole 15 is opened in the upper part.

【0022】造粒濃縮槽 2は、1次凝集汚泥と高分子凝
集剤とを攪拌しつつ混合して、槽本体の内周面で1次凝
集汚泥中の1次凝集物および未凝集の固形物をさらに凝
集、造粒させ濃縮するものであり、少なくとも、槽本体
21、攪拌機22およびスクリーン25を有している。該スク
リーン25は該槽本体内の上部に設けられている。該攪拌
機22は水平方向の旋回流を発生させる上部攪拌翼23およ
び鉛直方向の循環流を発生させる下部攪拌翼24とを有し
ている。該スクリーン25によって、造粒汚泥と遊離水と
に分離される。該槽本体21の底部には汚泥供給孔26およ
び両性高分子凝集剤供給孔27がそれぞれ穿設されてお
り、また、槽本体21の上部およびスクリーン25の下方に
は、それぞれ、遊離水排出孔28および造粒汚泥排出孔29
が穿設されている。
In the granulation thickening tank 2, the primary coagulation sludge and the polymer coagulant are mixed with stirring, and the primary agglomerates and unaggregated solids in the primary coagulation sludge are mixed on the inner peripheral surface of the tank main body. further agglomeration things state, and are not concentrated is granulated, at least, the tank body
It has 21, a stirrer 22 and a screen 25. The screen 25 is provided in the upper part inside the tank body. The stirrer 22 has an upper stirring blade 23 for generating a horizontal swirling flow and a lower stirring blade 24 for generating a vertical circulating flow. The screen 25 separates the granulated sludge into free water. A sludge supply hole 26 and an amphoteric polymer coagulant supply hole 27 are provided at the bottom of the tank body 21, and free water discharge holes are provided at the top of the tank body 21 and below the screen 25, respectively. 28 and granulation sludge discharge hole 29
Has been drilled.

【0023】フィルター式濃縮機 3は、槽体31の内部に
ワイヤスクリーン32が内蔵せしめられており、また、こ
の槽体31に濃縮汚泥排出孔33および分離水排出孔34がそ
れぞれ設置されている。この、槽体31には、その濾過面
を、前記の造粒濃縮槽 2からの遊離水で連続的にまたは
間欠的に洗浄するための洗浄ノズルが配設されている
(図面には示されていない)。
The filter-type concentrator 3 has a wire screen 32 built in a tank body 31, and a concentrated sludge discharge hole 33 and a separated water discharge hole 34 are installed in the tank body 31, respectively. . The tank body 31 is provided with a cleaning nozzle for cleaning the filtration surface thereof continuously or intermittently with the free water from the granulation concentration tank 2 (shown in the drawing. Not).

【0024】デカンター型遠心分離機 4は、円筒状のケ
ーシング41中に、円筒部とその一端に連設された円錐状
の筒部から成るボウル42が設けられ、該ボウル42の内側
に、円筒部431とその一端に連設されたインナーコーン4
32とから成る内筒43が収納されており、該内筒43の周壁
には孔433が穿設されている。該円筒部431および該イン
ナーコーン432の外周面にそれぞれスクリュー44が設け
られ、該円筒部431の外周面のスクリュー44は該インナ
ーコーン432に向って(図面の向って右方に行くに従っ
て)そのピッチが漸減せしめられており、該ボウル42お
よび該スクリュー44は互いに同心的に独立して回転せし
められる。ボウル42およびスクリュー44はここに供給さ
れる濃縮汚泥の性状などに対応して差速が生ぜしめられ
る。この差速およびこれらのトルクを検出するための検
出器が設けられている(この検出器は図示されていな
い)。濃縮汚泥は、該内筒43の内部に供給され、次いで
孔433からボウル42の内周面と内筒43の外周面との間の
間隙へ送られて、濃縮汚泥はここでさらにスクリュー44
によって脱水されて、分離水は分離水排出孔45から排出
せしめられ、他方、脱水ケーキは脱水ケーキ排出孔46か
ら排出せしめられる。造粒濃縮槽 2からの遊離水の一部
ならびにフィルター式濃縮機 3およびデカンター型遠心
分離機 4のそれぞれからの分離水は、下水処理施設へ送
られて処理される。
The decanter type centrifugal separator 4, in a cylindrical casing 41, a bowl 42 of the cylindrical portion and provided continuously been conical tubular portion at one end is provided on the inside of the bowl 42, a cylindrical Inner cone 4 connected to part 431 and its end
An inner cylinder 43 composed of 32 is housed, and a hole 433 is formed in the peripheral wall of the inner cylinder 43. Screws 44 are provided on the outer peripheral surfaces of the cylindrical portion 431 and the inner cone 432, respectively. The screw 44 on the outer peripheral surface of the cylindrical portion 431 faces the inner cone 432 (as it goes to the right in the drawing). The pitch is tapered and the bowl 42 and the screw 44 are rotated concentrically and independently of each other. The bowl 42 and the screw 44 generate a differential speed according to the properties of the concentrated sludge supplied here. A detector is provided for detecting this differential speed and these torques (this detector is not shown). The concentrated sludge is supplied to the inside of the inner cylinder 43, and then is sent from the hole 433 to the gap between the inner peripheral surface of the bowl 42 and the outer peripheral surface of the inner cylinder 43.
After being dehydrated by, the separated water is discharged from the separated water discharge hole 45, while the dehydrated cake is discharged from the dehydrated cake discharge hole 46. Part of free water from granulation concentrator 2 and filter concentrator 3 and decanter centrifuge
Separating water from each of the separator 4 is processed and sent to wastewater treatment facilities.

【0025】比較例 従来は造粒濃縮槽への汚泥供給は固形物濃度の変動に関
係なく、供給量を一定にして行われ、供給汚泥の固形物
濃度の変動があった場合に、造粒汚泥の固形物濃度を一
定にすると、造粒汚泥生成量の変動が大きく、しかもフ
ィルター式濃縮機が使用されていないために、この変動
に伴ってデカンター型遠心分離機への造粒汚泥の供給量
も大きく変動し、デカンター型遠心分離機での運転が不
安定となり、安定した運転管理が実質的に不可能であっ
た。すなわち、固形物濃度が0.6〜1.5重量%の範囲に変
動する原汚泥を100m3/hrで一定に供給すると、前記の従
来の操作では造粒汚泥量は30〜75m3/hrの範囲で大きく
変動し、デカンター型遠心分離機の安定した運転ができ
なかった。
Comparative Example Conventionally, sludge was supplied to a granulation thickening tank with a constant supply amount irrespective of fluctuations in the solid concentration, and when the solid concentration of the supplied sludge fluctuated, granulation was performed. If the solids concentration of sludge constant, a large variation of the granulated sludge generation amount, moreover in order to filter expression concentrator is not used, the supply of granulation sludge to decanter type centrifugal separator in accordance with this variation the amount also varies greatly, driving in a decanter type centrifugal separator becomes unstable, stable operation management was substantially impossible. That is, when the original sludge whose solid content concentration fluctuates in the range of 0.6 to 1.5% by weight is supplied at a constant rate of 100 m 3 / hr, the amount of granulated sludge in the above conventional operation is large in the range of 30 to 75 m 3 / hr. vary and could not stable operation of the decanter type centrifugal separator.

【0026】実施例1 1次凝集汚泥を、その固形物量が一定となるように造粒
濃縮槽へ供給し、造粒濃縮槽からの造粒汚泥の固形物濃
度を、供給される1次凝集汚泥の固形物濃度に追随して
一定範囲内に納るように制御した。すなわち、比較例と
同様にして、100m3/hrの原汚泥を供給した。ただし、こ
の原汚泥の固形物濃度は 1重量%であり、従って、供給
された固形物量は、1000kg/hrとなる。造粒濃縮槽に供
給される1次凝集汚泥の固形物濃度が0.6〜1.5重量%
(原汚泥供給量は67〜167m3/hrに相当する)の範囲に変
動した場合に、排出される造粒汚泥の固形物濃度を 2〜
3重量%に制御した。排出された造粒汚泥の量は33〜50
m3/hrであり、固形物量は1000kg/hrとほぼ一定であっ
た。フィルター式濃縮機でさらに濃縮制御することによ
り、濃縮汚泥の固形物濃度を 3重量%に制御して、固形
物濃度 3重量%の濃縮汚泥が33m3/hrでほぼ一定に得ら
れた。このようにして、固形物濃度が一定にされた濃縮
汚泥がほぼ一定の速度でデカンター型遠心分離機に供給
されるので、デカンター型遠心分離機の制御は、既存
の、トルク一定制御および分離水SS(汚泥固形物)監視
によるデカンター型遠心分離機の差速制御のような水分
一定制御によって、デカンター型遠心分離機の安定な運
転が可能となる。また、これらの一連の制御により本発
明の汚泥濃縮脱水装置は、常に最適な運転状態が常に安
定して維持される。
Example 1 Primary coagulation sludge was fed to a granulation thickener so that the amount of solids was constant, and the solids concentration of the granulated sludge from the granulation thickener was supplied to the primary flocculation sludge. It was controlled so that it falls within a certain range following the solid concentration of sludge. That is, 100 m 3 / hr of raw sludge was supplied in the same manner as in Comparative Example. However, the solid concentration of this raw sludge is 1% by weight, so the supplied solid amount is 1000 kg / hr. The solids concentration of primary coagulation sludge supplied to the granulation thickener is 0.6 to 1.5% by weight.
When the raw sludge supply amount fluctuates in the range of 67 to 167 m 3 / hr, the solid concentration of the discharged sludge is 2 to
It was controlled to 3% by weight. The amount of granulated sludge discharged is 33 to 50
It was m 3 / hr, and the solid content was almost constant at 1000 kg / hr. By further controlling the concentration with a filter-type concentrator, the solid concentration of the concentrated sludge was controlled to 3% by weight, and the concentrated sludge with a solid concentration of 3% by weight was obtained at a constant rate of 33 m 3 / hr. In this way, since the concentrated sludge solids concentration is constant is supplied to the decanter centrifuge machine at a substantially constant speed, the control of the decanter type centrifugal separator is existing, the torque constant control and separated water the water level control, such as SS (sludge solids) differential rate control decanter type centrifugal separator by the monitoring, it is possible to stable operation of the decanter type centrifugal separator. Moreover, the sludge condensing / dehydrating apparatus of the present invention is always stably maintained in the optimum operating state by the series of these controls.

【0027】実施例2 実施例1において、1次凝集汚泥の供給量などが過大に
変動して造粒濃縮槽の制御が困難となった場合に、1次
凝集汚泥の供給量などの変動幅を縮小させる必要が生ず
る。このような場合には、1次凝集汚泥の固形物の一定
制御範囲を800〜1000kg/hrに設定して、供給される1次
凝集汚泥の固形物濃度が低くなったときに固形物量を少
なくするように制御することにより、1次凝集汚泥の供
給量の範囲は67〜133m3/hr、造粒汚泥の生成量は33〜40
m3/hrとなり、また、フィルター式濃縮機で濃縮汚泥の
生成量を30m3/hrに制御するとその固形物濃度は2.7〜3.
3重量%の範囲となって、デカンター型遠心分離機の安
定した運転制御に支障を与えない程度の小さい変動幅に
抑えることができ、これにより実施例1と同様に、デカ
ンター型遠心分離機の安定した良好な運転制御が可能と
なった。実施例1および実施例2のそれぞれにおいて、
原汚泥の供給量および/または固形物濃度に変動が大き
くても、このような汚泥を安定して濃縮脱水を可能なら
しめたのは、造粒濃縮槽とデカンター型遠心分離機との
間にフィルター式濃縮機を設けたことによるものである
Example 2 In Example 1, when the primary flocculation sludge supply amount fluctuates excessively and it becomes difficult to control the granulation thickener, the fluctuation range of the primary flocculation sludge supply amount, etc. Will need to be reduced. In such a case, set the constant control range of the solids of the primary coagulation sludge to 800 to 1000kg / hr, and reduce the amount of solids when the solids concentration of the supplied primary coagulation sludge becomes low. By controlling so that the supply amount of primary coagulation sludge is 67 to 133 m 3 / hr and the amount of granulated sludge produced is 33 to 40
m 3 / hr, and when the amount of concentrated sludge produced is controlled to 30 m 3 / hr with a filter type concentrator, the solid concentration is 2.7 to 3.
3 is the weight percent range, it can be suppressed to a small variation range of level that does not cause a trouble in stable operation control of the decanter type centrifugal separator, thereby the same manner as in Example 1, deca
Stable and satisfactory operation control centers type centrifugal separator has become possible. In each of Example 1 and Example 2,
Even large variations in the concentration feed rate and / or solids raw sludge, the such sludge accounted if stable allows concentrated dehydration is between the granulation concentration tank and a decanter type centrifugal separator This is due to the provision of a filter type concentrator

【0028】実施例3 実施例1および実施例2のそれぞれにおける操作方法を
さらに発展させた操作方法がある。すなわち、実施例1
および実施例2のそれぞれにおいて、デカンター型遠心
分離機へ供給される濃縮汚泥の供給量およびその固形物
量をほぼ一定とすることができるので、デカンター型
分離機の処理能力の変化は、原汚泥の性状からだけ影
響を受けることになる。原汚泥の固形物濃度だけが変動
してその質的変化が実質的にない場合には、デカンター
遠心分離機の差速およびスクリューやボウルのトルク
などの運転条件は実質的に同一となる。従って、制御運
転においてこの差速および/またはトルクの大きな変動
は、原汚泥に質的な変化があることの兆候となる。すな
わち、この差速が異常に大きい値で安定する場合や、ト
ルクが異常に小さい値で安定する場合には、原汚泥が質
的に変化し凝集不良となったことの兆候であるので、造
粒濃縮槽での両性高分子凝集剤の使用量を増加する必要
が有る。また前記の運転条件が逆になった場合には両性
高分子凝集剤の使用量を減らしても、デカンター型遠心
分離機の運転は依然として順調であるので、両性高分子
凝集剤の使用量を節減することが可能となる。ただし、
この場合には、造粒濃縮槽の安定運転に必要な最低限の
両性高分子凝集剤の使用量を予め定めておく必要があ
る。
Example 3 There is an operating method which is a further development of the operating method in each of Example 1 and Example 2. That is, Example 1
And in each of Example 2 a decanter centrifuge
Since the amount of concentrated sludge supplied to the separator and the amount of its solids can be made almost constant, changes in the processing capacity of the decanter type centrifugal separator are affected only by the properties of the original sludge. Will receive. If only the solid concentration of the raw sludge fluctuates and there is substantially no qualitative change, the decanter
Operating conditions such as speed difference and the screw and the bowl of the torque type centrifugal separator is substantially the same. Therefore, in the control operation, the large fluctuation of the differential speed and / or the torque is a sign that the raw sludge has a qualitative change. That is, when the differential speed stabilizes at an abnormally large value or when the torque stabilizes at an abnormally small value, it is a sign that the raw sludge qualitatively changed and became defective in coagulation. It is necessary to increase the amount of amphoteric polymer flocculant used in the grain concentrator. If the above operating conditions are reversed, the decanter-type centrifuge can
Since the separator is still operating smoothly, it is possible to reduce the amount of the amphoteric polymer flocculant used. However,
In this case, it is necessary to determine in advance the minimum amount of the amphoteric polymer flocculant used for stable operation of the granulation concentrating tank.

【0029】前記の各実施例によって、いずれの操作方
法も、造粒濃縮槽とデカンター型遠心分離機との間にフ
ィルター式濃縮機を配設して、これらを順次、連設した
との特徴を生かした操作方法で汚泥の処理時間が短く、
制御応答も良好であり、装置の機能は向上せしめられ、
かつ、最適運転を安定して維持することが可能であるこ
とが示されている。
The features of the respective examples described above, any method of operation, by disposing the filter expression concentrator between the granulation concentration tank and a decanter type centrifugal separator, it was sequentially continuously provided The sludge treatment time is short due to the operating method
The control response is also good, the function of the device is improved,
Moreover, it is shown that it is possible to stably maintain the optimum operation.

【0030】[0030]

【発明の効果】本発明によって、各機器を、ポンプを使
用し、もしくは、ポンプを使用しないで直列に互いに接
続し、この装置に下水汚泥を連続して供給してこの装置
を連続的に運転することにより、殊更、他の機器を使用
しないでも、下水汚泥を効率よく、しかも、安い費用で
安定して濃縮脱水し、含水率の低い脱水ケーキを得るこ
とが可能となり、産業上および、環境保全上の価値は極
めて高い。
According to the present invention, each device is connected to each other in series with or without a pump, and the sewage sludge is continuously supplied to the device to continuously operate the device. By doing so, it is possible to efficiently concentrate sewage sludge at a low cost and obtain a dehydrated cake with a low water content even if no other equipment is used. The conservation value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の汚泥濃縮脱水装置の原理を示すための
フローシートである。
FIG. 1 is a flow sheet showing the principle of the sludge concentrating and dehydrating apparatus of the present invention.

【図2】本発明で使用される代表的な造粒濃縮槽の一部
切欠斜視図である。
FIG. 2 is a partially cutaway perspective view of a typical granulation concentration tank used in the present invention.

【図3】本発明で使用される代表的なデカンター型遠心
分離機の縦断面である。
FIG. 3 is a typical decanter type centrifuge used in the present invention.
It is a longitudinal cross-sectional view of a separator .

【符号の説明】[Explanation of symbols]

1 調質槽 11 槽本体 12 攪拌機 13 原汚泥供給孔 14 無機凝集剤供給孔 2 造粒濃縮槽 21 槽本体 22 攪拌機 23 上部攪拌翼 24 下部攪拌翼 25 スクリーン 26 汚泥供給孔 27 高分子凝集剤供給孔 28 遊離水排出孔 29 造粒汚泥排出孔 3 フィルター式濃縮機 31 槽体 32 ワイヤスクリーン 33 濃縮汚泥排出孔 34 分離水排出孔 4 デカンター型遠心分離機 41 ケーシング 42 ボウル 43 内筒 431 円筒部 432 インナーコーン 433 孔 44 スクリュー 45 分離水排出孔 46 脱水ケーキ排出孔 5 原汚泥貯槽1 Conditioning tank 11 Tank main body 12 Stirrer 13 Raw sludge supply hole 14 Inorganic coagulant supply hole 2 Granulation concentration tank 21 Tank main body 22 Stirrer 23 Upper stirring blade 24 Lower stirring blade 25 Screen 26 Sludge supply hole 27 Polymer flocculant supply holes 28 free water discharge hole 29 granulated sludge discharge hole 3 filter type concentrator 31 tank body 32 wire screen 33 concentrated sludge discharge holes 34 separated water discharge hole 4 decanter type centrifugal separator 41 casing 42 bowl 43 inner cylinder 431 cylindrical portion 432 Inner cone 433 Hole 44 Screw 45 Separation water discharge hole 46 Dewatered cake discharge hole 5 Raw sludge storage tank

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000001063 栗田工業株式会社 東京都新宿区西新宿3丁目4番7号 (73)特許権者 591162022 巴工業株式会社 東京都中央区日本橋3丁目9番2号 (72)発明者 安田 勉 茨城県北相馬郡守谷町みずき野6−29− 7 (72)発明者 赤松 幸三郎 東京都千代田区大手町2丁目6番2号 東京都下水道サービス株式会社内 (72)発明者 西田 克範 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (72)発明者 渡辺 康彦 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (72)発明者 矢野 宰平 東京都中央区日本橋3丁目9番2号(第 二丸善ビルヂング) 巴工業株式会社内 (56)参考文献 特開 平4−59100(JP,A) 特開 昭57−78996(JP,A) 特開 平4−371300(JP,A) 特開 昭62−171799(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 11/00 - 11/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (73) Patent holder 000001063 Kurita Water Industries Co., Ltd. 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo (73) Patent holder 591162022 Tomoe Kogyo Co., Ltd. 3-9 Nihonbashi, Chuo-ku, Tokyo No. 2 (72) Inventor Tsutomu Yasuda 6-29-7 Mizukino, Moriya-cho, Kitasoma-gun, Ibaraki Prefecture (72) Inventor Kozaburo Akamatsu 2-6-2 Otemachi, Chiyoda-ku, Tokyo Tokyo Sewer Service Co., Ltd. (72 ) Inventor Katsunori Nishida 2-17-15 Tsukushima, Chuo-ku, Tokyo Tsukishima Kikai Co., Ltd. (72) Inventor Yasuhiko Watanabe 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Inventor Saihei Yano 3-9-2 Nihonbashi, Chuo-ku, Tokyo (No. 2 Maruzen Building), Tomoe Kogyo Co., Ltd. (56) Reference JP-A-4-59100 (JP, A) JP 57-78996 (JP, A) JP flat 4-371300 (JP, A) JP Akira 62-171799 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) C02F 11/00 -11/20

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下水処理施設からの原汚泥と無機凝集剤
とを混合して原汚泥中のイオン成分および固形物を1次
的に凝集させた1次凝集物を含有する1次凝集汚泥とす
る調質槽、該調質槽から導かれた1次凝集汚泥と両性高
分子凝集剤とを攪拌しつつ混合して前記1次凝集汚泥中
の1次凝集物および未凝集の固形物を凝集、造粒せしめ
て造粒汚泥にするとともに、該造粒汚泥と遊離水とに分
離して濃縮する造粒濃縮槽、該造粒汚泥を濃縮するフィ
ルター式濃縮機および該フィルター式濃縮機で濃縮され
た濃縮汚泥をさらに脱水するデカンター型遠心分離機を
順次連設させて成ることを特徴とする汚泥濃縮脱水装
置。
1. A primary flocculation sludge containing primary flocculates obtained by mixing raw sludge from a sewage treatment facility with an inorganic flocculant to primarily flocculate ionic components and solids in the raw sludge. A mixing tank, the primary coagulation sludge introduced from the conditioning tank, and the amphoteric polymer coagulant are mixed with stirring to coagulate the primary coagulation and uncoagulated solid matter in the primary coagulation sludge. , A granulation thickening tank for granulating sludge into granulated sludge, and separating and concentrating the granulated sludge into free water, a filter type concentrator for concentrating the granulated sludge, and concentration with the filter type concentrator sludge concentrating dewatering device, characterized in that the decanter type centrifugal separator to further dehydrate the concentrated sludge is sequentially continuously provided comprising.
【請求項2】 下水処理施設から発生した原汚泥と無機
凝集剤とを混合して原汚泥中のイオン成分および固形物
を1次的に凝させて1次凝集物を含有する1次凝集汚
泥を得る調質工程、該1次凝集汚泥と両性高分子凝集剤
とを攪拌しつつ混合して前記1次凝集汚泥中の1次凝集
物および未凝集の固形物を凝集、造粒させて造粒汚泥と
し、該造粒汚泥と遊離水とに分離せしめる造粒濃縮工
程、該造粒濃縮工程で得られた造粒汚泥をフィルター式
濃縮機で濃縮して濃縮汚泥とする濃縮工程および該濃縮
汚泥をデカンター型遠心分離機で脱水して脱水ケーキと
する脱水工程を順次経由させて、該造粒汚泥の破壊を極
力抑制して濃縮脱水することを特徴とする汚泥濃縮脱水
方法。
2. A primary containing a mixture of the raw sludge generated from wastewater treatment facilities and an inorganic flocculant ion components and solids in the raw sludge is primary to agglutination primary aggregates agglomerate A tempering step for obtaining sludge, mixing the primary coagulated sludge and the amphoteric polymer coagulant with stirring to coagulate and granulate the primary coagulated material and unaggregated solid matter in the primary coagulated sludge. A granulation sludge, a granulation concentration step of separating the granulation sludge into free water, a concentration step of concentrating the granulation sludge obtained in the granulation concentration step with a filter type concentrator to obtain a concentrated sludge, and the concentrated sludge is dehydrated in a decanter type centrifugal separator is via a dehydration step to dehydrated cake sequentially, sludge concentration dewatering wherein the concentrated dehydration by minimizing the destruction of the granulated sludge.
【請求項3】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が実質的に一定に制御された1次凝集
汚泥を造粒濃縮工程へ供給し、かつ、固形物濃度が実質
的に一定に保たれた造粒汚泥を造粒濃縮工程から濃縮工
程へ供給する請求項2記載の汚泥濃縮脱水方法。
3. A primary flocculation sludge in which the total amount of primary flocculates and non-flocculated solids in the primary flocculation sludge is controlled to be substantially constant is supplied to a granulation concentration step, and The sludge concentration / dehydration method according to claim 2, wherein the granulated sludge having a substantially constant substance concentration is supplied from the granulation concentration step to the concentration step.
【請求項4】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が所定範囲内に制御された1次凝集汚
泥を造粒濃縮工程へ供給し、固形物濃度が実質的に一定
に保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給
し、該濃縮工程において前記の造粒汚泥を濃縮してその
固形物濃度または濃縮流量が実質的に一定とされた濃縮
汚泥を、脱水工程へ供給する請求項2記載の汚泥濃縮脱
水方法。
4. The primary agglomerated sludge in which the total amount of the primary agglomerates and the non-agglomerated solids in the primary agglomerated sludge is controlled within a predetermined range is supplied to the granulation concentration step, and the solid concentration is increased. The granulated sludge kept substantially constant is supplied from the granulation concentrating step to the concentrating step, and in the concentrating step, the granulated sludge is concentrated so that the solids concentration or the concentrating flow rate is substantially constant. The concentrated sludge dewatering method according to claim 2, wherein the concentrated sludge is supplied to the dehydration step.
【請求項5】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が所定範囲内に制御された1次凝集汚
泥を造粒濃縮工程へ供給し、固形物濃度が実質的に一定
に保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給
し、該濃縮工程において前記の造粒汚泥を濃縮してその
固形物濃度または濃縮流量が実質的に一定とされた濃縮
汚泥を脱水工程へ供給し、該脱水工程で該濃縮汚泥を脱
水してケーキ含水率が実質的に一定な脱水ケーキとする
請求項2記載の汚泥濃縮脱水方法。
5. The primary agglomerated sludge in which the total amount of the primary agglomerates in the primary agglomerated sludge and the unaggregated solids is controlled within a predetermined range is supplied to the granulation concentration step, and the solids concentration is increased. The granulated sludge kept substantially constant is supplied from the granulation concentrating step to the concentrating step, and in the concentrating step, the granulated sludge is concentrated so that the solids concentration or the concentrating flow rate is substantially constant. The sludge concentration / dehydration method according to claim 2, wherein the concentrated sludge is supplied to the dehydration step, and the concentrated sludge is dehydrated in the dehydration step to obtain a dehydrated cake having a substantially constant cake water content.
【請求項6】 1次凝集汚泥中の1次凝集物と未凝集の
固形物との合計量が所定範囲内に制御された1次凝集汚
泥を造粒濃縮工程へ供給し、固形物濃度が実質的に一定
に保たれた造粒汚泥を造粒濃縮工程から濃縮工程へ供給
し、該濃縮工程において前記の造粒汚泥を濃縮してその
固形物濃度または濃縮流量が実質的に一定とされた濃縮
汚泥を脱水工程へ供給し、該脱水工程で該濃縮汚泥を脱
水してケーキ含水率が実質的に一定な脱水ケーキとし、
該脱水工程におけるデカンター型遠心分離機の差速また
はトルクの変動に対応して前記の造粒濃縮工程における
両性高分子凝集剤の使用量を調節する請求項2記載の汚
泥濃縮脱水方法。
6. The primary agglomerated sludge in which the total amount of the primary agglomerates and the unaggregated solids in the primary agglomerated sludge is controlled within a predetermined range is supplied to the granulation concentration step, and the solid concentration is increased. The granulated sludge kept substantially constant is supplied from the granulation concentrating step to the concentrating step, and in the concentrating step, the granulated sludge is concentrated so that the solids concentration or the concentrating flow rate is substantially constant. The concentrated sludge is supplied to the dehydration step, and the concentrated sludge is dehydrated in the dehydration step to form a dehydrated cake having a substantially constant cake water content,
Sludge concentration dehydration process according to claim 2, wherein in response to variations in the differential speed or torque of the decanter type centrifugal separator to adjust the amount of the amphoteric polymer flocculant in the granulation concentration step in dehydration step.
JP13516693A 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method Expired - Lifetime JP3405762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13516693A JP3405762B2 (en) 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13516693A JP3405762B2 (en) 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method

Publications (2)

Publication Number Publication Date
JPH06320200A JPH06320200A (en) 1994-11-22
JP3405762B2 true JP3405762B2 (en) 2003-05-12

Family

ID=15145377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13516693A Expired - Lifetime JP3405762B2 (en) 1993-05-14 1993-05-14 Sludge thickening and dewatering apparatus and sludge thickening and dewatering method

Country Status (1)

Country Link
JP (1) JP3405762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583943A (en) * 2012-03-06 2012-07-18 光大环保科技发展(北京)有限公司 Sewage plant sludge modifying and drying method and sludge processing system
CN103708698A (en) * 2013-12-24 2014-04-09 中国矿业大学 Method for preprocessing sludge dewatering by utilizing explosive shock waves

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828378B2 (en) * 2005-11-08 2011-11-30 株式会社錢高組 Powdered muddy water treatment agent, muddy water dewatering method, and muddy water volume reducing treatment device
JP5220949B1 (en) * 2012-10-24 2013-06-26 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
JP5192609B1 (en) * 2012-12-21 2013-05-08 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
JP5118262B1 (en) * 2012-07-03 2013-01-16 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
CA2818506A1 (en) 2012-07-03 2014-01-03 Tomoe Engineering Co., Ltd. Sludge processing system and storage medium storing a program for controlling an operation of a sludge processing system thereon
CN108455749B (en) * 2017-02-22 2024-04-26 郑百祥 Sewage treatment equipment for containing solids
CN108658429A (en) * 2017-03-31 2018-10-16 广州新致晟环保科技有限公司 Sludge condensation and modifying device and the method that sludge is handled using it
CN112062330A (en) * 2020-08-30 2020-12-11 南京中电环保水务有限公司 High-load crystal nucleus solid-liquid separation device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583943A (en) * 2012-03-06 2012-07-18 光大环保科技发展(北京)有限公司 Sewage plant sludge modifying and drying method and sludge processing system
CN103708698A (en) * 2013-12-24 2014-04-09 中国矿业大学 Method for preprocessing sludge dewatering by utilizing explosive shock waves
CN103708698B (en) * 2013-12-24 2016-05-18 中国矿业大学 A kind of method of utilizing the dehydration of explosive charge shock wave pretreating sludge

Also Published As

Publication number Publication date
JPH06320200A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
EP1330414B1 (en) Method for treatment of water and wastewater
RU2523480C2 (en) Method of water treatment
AU733771B2 (en) Dewatering of sewage sludge
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
JP3405762B2 (en) Sludge thickening and dewatering apparatus and sludge thickening and dewatering method
US4792406A (en) Method for dewatering a slurry using a twin belt press with cationic amine salts
JP2010058039A (en) Sludge dewatering apparatus and sludge dewatering method
US5480559A (en) Liquid treatment
JP2010057997A (en) Sludge dewatering apparatus and method
JPS6333435B2 (en)
JP5041299B2 (en) Operation control method of screw press connected to rotary concentrator
JP5041298B2 (en) Operation control method of screw press connected to rotary concentrator
JPH06134213A (en) Flocculating method for organic drain
JP2010247044A5 (en)
JP2010247043A5 (en)
JPH0731999A (en) Dehydrating method of sludge
JP2018099658A (en) Sludge dehydration system and method
JP2011230019A (en) Control system, control device and control method
JPH04371300A (en) Sludge treating device
JPH11254000A (en) Method and apparatus for concentrating dehydration
CN217127133U (en) Calcium fluoride effluent disposal system
JPH0751240B2 (en) Sludge dewatering method
US20150360989A1 (en) Dispersant Enhanced Ballast Recovery
JPH07108278A (en) Method for flocculating waste water of low turbidity of power plant
JPH0716563B2 (en) Aggregating device and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term