JP3402309B2 - High frequency heating equipment - Google Patents

High frequency heating equipment

Info

Publication number
JP3402309B2
JP3402309B2 JP2000114784A JP2000114784A JP3402309B2 JP 3402309 B2 JP3402309 B2 JP 3402309B2 JP 2000114784 A JP2000114784 A JP 2000114784A JP 2000114784 A JP2000114784 A JP 2000114784A JP 3402309 B2 JP3402309 B2 JP 3402309B2
Authority
JP
Japan
Prior art keywords
heated
temperature
heating
power supply
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000114784A
Other languages
Japanese (ja)
Other versions
JP2001304566A (en
Inventor
等隆 信江
賢治 渡辺
明美 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000114784A priority Critical patent/JP3402309B2/en
Publication of JP2001304566A publication Critical patent/JP2001304566A/en
Application granted granted Critical
Publication of JP3402309B2 publication Critical patent/JP3402309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、高周波エネルギを
用いて被加熱物を誘電加熱する高周波加熱装置に関する
もので、特に赤外線センサで被加熱物の温度を検知しな
がら被加熱物を誘電加熱する装置に関する。 【0002】 【従来の技術】従来のこの種の装置において、赤外線セ
ンサを搭載したものはある。また、複数の食品を同時に
誘電加熱するために二段の載置皿を備えるものがある。
また、従来の高周波加熱装置は加熱室内に収納された被
加熱物の加熱の均一化を図ることに主眼がおかれこの加
熱の均一化の手段として、電波攪拌方式、被加熱物回転
方式、複数給電方式などが実用化されている。 【0003】 【発明が解決しようとする課題】従来の各種加熱方式
は、被加熱物の加熱の均一化が主眼であるため加熱室内
の特定領域に高周波が集中することを解消させるもので
あった。このために種類の異なる複数の被加熱物を同時
加熱する場合、一つの被加熱物が適温に加熱された時に
他の被加熱物は加熱不足であったり加熱されすぎてしま
い、種類の異なる複数の被加熱物を同時に適温に加熱す
ることが困難であった。 【0004】本発明は、種類の異なる被加熱物でも同時
に適温に加熱できる高周波加熱装置を提供するものであ
る。 【0005】 【課題を解決するための手段】本発明の高周波加熱装置
は上記課題を解決するために、被加熱物を収納する加熱
室と、前記加熱室に供給する高周波を発生する高周波発
生手段と、前記被加熱物を載置する載置皿と、前記載置
皿を載置する回転台と、前記回転台の周縁部に対面して
設けた給電口と、前記給電口に前記高周波発生手段が発
生した高周波を伝送する導波管と、前記回転台を回転す
る回転駆動手段と、前記給電口の前方の前記載置皿の半
径相当の視野角を有する赤外線センサと、前記赤外線セ
ンサの検出信号に基づいて前記高周波発生手段と前記回
転駆動手段をそれぞれ制御する制御手段とを備え、前記
制御手段は被加熱物の温度の低い部位または複数の被加
熱物の同時加熱にあっては最低温度の被加熱物を前記給
電口の前方に移動停止させ、給電口の前方に被加熱物を
回転移動させた後、前記回転駆動手段を双方向回転制御
して前記被加熱物を前記給電口の前方で往復移動させ
ものである。 【0006】上記発明によれば、回転台上の載置皿の周
縁部は給電口の前方に位置するので載置皿上に載置した
被加熱物は載置皿の回転に伴って給電口に近づくと強く
加熱することができる。赤外線センサは載置皿の一回転
により載置皿のほぼ全域を検知視野にするので載置皿上
全域の温度分布を検出するとともに被加熱物の存在領域
を識別する。そして被加熱物の存在領域に対応する赤外
線センサの検知信号群の中で温度が低い信号に相当する
載置皿上の領域を給電口の前方に移動停止することで温
度の低い領域を強く加熱し他の領域との温度差を軽減さ
せる。この加熱方法を用いることで、種類や温度の異な
る被加熱物を同時に所望の適温に加熱することができ
る。 【0007】 【発明の実施の形態】本発明の請求項1の高周波加熱装
置は、被加熱物を収納する加熱室と、前記加熱室に供給
する高周波を発生する高周波発生手段と、前記被加熱物
を載置する載置皿と、前記載置皿を載置する回転台と、
前記回転台の周縁部に対面して設けた給電口と、前記給
電口に前記高周波発生手段が発生した高周波を伝送する
導波管と、前記回転台を回転する回転駆動手段と、前記
給電口の前方の前記載置皿の半径相当の視野角を有する
赤外線センサと、前記赤外線センサの検出信号に基づい
て前記高周波発生手段と前記回転駆動手段をそれぞれ制
御する制御手段とを備え、前記制御手段は被加熱物の温
度の低い部位または複数の被加熱物の同時加熱にあって
は最低温度の被加熱物を前記給電口の前方に移動停止さ
、給電口の前方に被加熱物を回転移動させた後、前記
回転駆動手段を双方向回転制御して前記被加熱物を前記
給電口の前方で往復移動させるものである。そして、給
電口と回転台と相対位置関係により載置皿上での高周波
分布は給電口に近い側の高周波電界強度が強い分布を形
成する。この不均一な高周波分布により載置皿上に載置
した被加熱物は載置皿の回転に伴って給電口に近づくと
強く加熱することができる。赤外線センサは載置皿の一
回転により載置皿のほぼ全域を検知視野にするので載置
皿上全域の温度分布を検出するとともに被加熱物の存在
領域を識別する。そして被加熱物の存在領域に対応する
赤外線センサの検知信号群の中で温度が低い信号に相当
する載置皿上の領域を給電口の前方に移動停止すること
で温度の低い領域を強く加熱し他の領域との温度差を軽
減させる。この加熱方法を用いることで、種類や温度の
異なる被加熱物を同時に所望の適温に加熱することがで
きる。 【0008】して、温度の低い被加熱物を給電口の前
方で往復移動させることでその被加熱物の特定部位の過
加熱を抑制することができる。 【0009】 【実施例】以下、本発明の実施例について図面を用いて
説明する。 【0010】(参考例1) 図1は本発明の参考例1を示す高周波加熱装置の外観構
成図、図2は図1の断面構成図である。 【0011】図1および図2において、加熱室10は金
属材料から構成された金属境界部である右側壁面11、
左側壁面12、奥壁面13、上壁面14、底壁面15及
び被加熱物を加熱室10内に出し入れする開閉壁面であ
る開閉扉16により略直方体形状に構成され、給電され
た高周波をその内部に実質的に閉じ込めるように形成し
ている。17は加熱室10に給電する高周波を発生する
高周波発生手段であるマグネトロン、18はマグネトロ
ン17が発生した高周波を加熱室10に導く導波管、1
9は加熱室10と導波管18とを高周波的に結合すると
ともにマグネトロン17が発生した高周波を加熱室10
内に放射する給電口であり開閉扉16からみて右側壁面
11の前後方向の略中央に設けている。20は被加熱物
を載置する載置皿であり、回転台21に載置する。給電
口19は回転台21の周縁部と対面する位置に設けてい
る。22は回転台21とともに載置皿20を回転させる
回転駆動手段である駆動モータであり、一方向にのみ回
転する。この駆動モータ22を動作させることで回転台
21および載置皿20が回転する。 【0012】23はマグネトロン17を駆動するインバ
ータ駆動電源部、24は装置全体の動作を制御する制御
手段である。25は赤外線センサであり4個の検出素子
を有している。各検出素子は右側壁面11の給電口19
の上方に設けた二つの孔26、27を介して載置皿20
の表面の赤外線量あるいは被加熱物が載置された状態で
は被加熱物の表面の赤外線量を検出し検出した信号は制
御手段24に入力させている。赤外線センサ25の4個
の検出素子の検出領域は図2において一点破線の丸印2
8a〜28dで示す領域に設定している。検出領域28
aは載置皿20の略中央領域、検出領域28dは載置皿
20の周縁領域、検出領域28b、28cはその間の領
域に設定している。これにより赤外線センサ25は載置
皿20の半径分を検出領域とし載置皿20を回転させる
ことで載置皿20のほぼ全域の温度を検出することがで
きる。制御手段24は、操作部から入力された加熱情
報、赤外線センサ25および駆動モータ22の回転軸を
介して被加熱物の重量を検出する重量センサ(図示して
いない)からの信号に基いて、インバータ駆動電源部2
3の動作および駆動モータ22の動作を制御して加熱室
10内に収納された被加熱物を誘電加熱する。 【0013】また載置皿20はセラミック材料からなる
丸皿構成とし、回転台21は金属材料にて構成してい
る。また底壁面15および上壁面14の加熱室10の外
側には輻射加熱用のヒータ(図示していない)を設けて
いる。 【0014】また、操作部には、自動加熱制御をする
「解凍」キーや「あたため」キー、使用者の意図に基い
て加熱を実行する「加熱時間入力部」や「加熱温度入力
部」、加熱中の被加熱物温度を表示する表示部、加熱開
始を入力する「スタート」キー、および入力条件をクリ
アしたり加熱を中断する場合に使用する「取消」キーな
どを備えている。 【0015】次に本発明が主眼とする種類の異なる被加
熱物でも同時に適温に加熱させるため手段とその作用に
ついて図3および図4を用いて説明する。 【0016】図3は加熱室内に形成させる不均一な高周
波分布による加熱特性を示す。被加熱物はそれぞれに水
200ccを入れた2つのマグカップとし、給電口19
と回転台21の回転の中心軸とを結ぶ線上において載置
皿20の中心位置に対して対称に給電口側とその反対側
の2個所にマグカップを載置した条件の下での特性であ
る。横軸は被加熱物の載置位置、縦軸は給電口側マグカ
ップの温度上昇値と給電口の反対側に置いたマグカップ
の温度上昇値との比である。図3中でAはそれぞれのマ
グカップを載置皿20の中央にくっつけて置いた場合、
Cは載置皿20の周縁側にそれぞれ離して置いた場合、
Bはその中間の位置にそれぞれ置いた場合を示す。 【0017】また、実線29と破線30は回転台の直径
寸法がそれぞれ245mmと200mmの場合の特性を
示す。これらの直径寸法は回転台21の周縁部と給電口
19との隙間寸法(図2中でLで示す)を導波管18内
を伝搬する高周波の伝搬波長を基準に選択した。すなわ
ち、導波管18は幅寸法を90mmとし、その伝搬波長
は約166mmであり、この伝搬波長の略1/4と略3
/8の寸法の隙間寸法を形成する回転台21の直径寸法
としている。回転台21の直径が200mmでは、給電
口側および反対側の水負荷の昇温比率はほぼ同等である
が、直径245mmの回転台では給電側においた水負荷
を強く加熱できた。回転台21の直径寸法が245mm
の場合は、給電口19から放射された高周波を回転台2
1に沿って伝搬させるように作用させることができ、載
置皿の中央にくっつけてマグカップを置いた場合でも給
電口近傍に存在する被加熱物を強く加熱できる。図4に
は実施例1の回転台21の外観図を示す。 【0018】次に上記構成からなる高周波加熱装置の操
作手順と制御内容について図5を用いて説明する。なお
下記の説明内容は本発明の特徴をより明確にするために
複数の被加熱物を自動加熱調理する制御内容について説
明する。複数の被加熱物を加熱室内に収納載置した後、
使用者は操作部上の「あたため」キーを選択をする(S
101)。 【0019】次に「スタート」キーを押す(S102)
ことで被加熱物の誘電加熱が開始される。なお、S10
3は「スタート」キーが押されたことを確認するもので
あり、「スタート」キーに先立って「取消」キーが押さ
れるとS101に戻る。S104でインバータ駆動電源
部23を動作させてマグネトロン17を動作させ給電口
19を介して加熱室10内に高周波を供給する。またS
105で回転台21の駆動モータ22を動作させて載置
皿20を回転させる。駆動モータ22は同期モータで構
成しており、商用電源周波数が60Hzの場合、載置皿
20を一回転させるのに要する時間は10秒である。 【0020】S106では、制御手段24は駆動モータ
22に駆動電力を供給した時刻からの経過時間を計数す
るとともに0.5秒間隔で赤外線センサ25の検出信号
を取り込む。この検出信号は現在温度を示す4行1列の
レジスタ1に格納し、次の信号(すなわち0.5秒後)
が入力されるまでその信号値を保持する。 【0021】一方制御手段24は4行40列のマトリッ
クスからなるレジスタ2を備えている。このマトリック
スレジスタ2は載置皿20上のいわゆる温度分布データ
を格納するものである。駆動モータ22に電力が供給さ
れると直ちにその時刻における赤外線センサ25の検出
信号を取り込みレジスタ1に格納する。そして0.5秒
経過後にはレジスタ1のデータをレジスタ2の第1列の
4行1列のレジスタに格納した後、赤外線センサ25の
現時点での検出信号をレジスタ1に格納する。駆動モー
タ22の動作経過時間に伴い、随時検出信号がレジスタ
2に格納され10秒経過すると載置皿20上の全域の温
度分布がレジスタ2の1列から20列に格納されること
になる。制御手段24は次の10秒間に取り込んだ検出
データをレジスタ2の21列から40列に格納する。そ
して20.5秒以降の検出データはレジスタ2の1列か
ら順次上書き格納する。 【0022】制御手段24は、レジスタ2の1列から2
0列のデータと21列から40列のデータをそれぞれ比
較し、既定した温度上昇、たとえば2℃、を超過する列
には被加熱物が存在すると判別する。この結果に基づい
て載置皿20上の複数の被加熱物の存在位置を判定しS
107に進む。なお、この判定処理中においても載置皿
20は連続的に回転を継続させているので制御手段24
は赤外線センサ25から新たな信号を随時取り込んでい
る。 【0023】つぎにS107ではレジスタ2の被加熱物
が存在すると判定した列群(各列の平均温度で代表させ
る)の最高温度と最低温度との温度差を既定した温度
差、たとえば10℃と比較する。温度差が10℃未満の
時はS111に進み、各列群の最高温度と終了加熱温度
とを比較する。終了加熱温度に達していない時はS10
5に戻り、終了加熱温度に達するとS112に進む。S
107で温度差が10℃以上になるとS108に進む。 【0024】S108ではレジスタ2の被加熱物が存在
すると判定した列群の中の最低温度に対応する列が給電
口19に対面する位置に来た時点で駆動モータ22への
供給電力を遮断する。そして駆動モータ22の動作経過
時間の計数を停止する。この状態において、給電口19
に対面する位置に存在する被加熱物は他方の被加熱物よ
りも強く誘電加熱される。また赤外線センサ25は強く
加熱されている被加熱物の表面温度のみを随時監視して
いる。この時に赤外線センサ25から取り込むデータは
レジスタ1のみである。 【0025】次にS109ではレジスタ1の温度と終了
加熱温度との比較を行う。終了加熱温度に達していたら
S112に進む。終了加熱温度に達していない時はS1
10に進む。 【0026】S110では、強く加熱している被加熱物
から得られる現在の温度データが先の最低温度から既定
値以上の温度値に上昇したかどうかを判定する。この時
の既定値は、たとえば先の温度差の1.5倍の15℃と
する。 【0027】所定温度に達していない場合はS108に
戻りS108の内容を実行する。そしてレジスタ1の温
度が所定の温度に達したとS110で判断するとS11
1に進む。S111はレジスタ2の各列の平均温度の最
高温度が既定した終了加熱温度に達したかどうかを判定
する。終了加熱温度に達していない場合は、S105に
戻る。 【0028】S105では再び駆動モータ22に駆動電
力を供給する。これにより載置皿20が再び回転を始め
るとともに駆動モータ22の動作経過時間の計数を再び
開始する。また、赤外線センサ25の検出信号データも
順次レジスタ1に取り込むとともにレジスタ2のデータ
を更新する。この時レジスタ2の更新開始列はS108
実行時において最低温度データを有した列である。従っ
て、今の時点では載置皿20上の被加熱物の存在位置は
既知の状態である。なお、駆動モータ22が20秒以上
連続して動作した場合はレジスタ2のデータはすべて更
新されるので被加熱物の存在位置を再度判定しても構わ
ない。 【0029】S109でレジスタ1の最高温度が終了加
熱温度に達したと判断した時あるいはS111でレジス
タ2の被加熱物の存在位置に対応する各列毎の平均温度
が終了加熱温度に達したと判断した時にはS112に進
む。 【0030】S112ではインバータ駆動電源23の動
作を停止しS113に進む。S113では駆動モータ2
2の電力供給を停止して被加熱物の誘電加熱を完了す
る。 【0031】次に被加熱物を載置した載置皿の具体的な
動きを図6および図7を用いて説明する。 【0032】図6は、冷凍ごはん31(−18℃)と冷
蔵ハンバーグ32(7℃)とを別々に入れて加熱する時
の様子を示す。加熱を開始すると載置皿20が矢印33
で示す方向に回転する。すなわち図6(a)の状態に載
置した場合、載置皿20の回転により図6(b)のよう
に被加熱物は加熱室10内を移動していく。この間に制
御手段は0.5秒間隔で赤外線センサ25の検出領域2
8a〜28dからの検出信号を取り込む。図6(a)の
状態では赤外線センサ25は冷凍ごはん31とその器お
よび冷蔵ハンバーグ32の皿の温度をそれぞれ検出す
る。一方図6(b)の状態では赤外線センサ25は検出
領域28aの検出素子が冷蔵ハンバーグ32の皿と載置
皿20の温度を検出し、検出領域28bの検出素子が冷
凍ごはん31の器と載置皿20の温度を検出し、検出領
域28c、28dは載置皿20のみの温度を検出する。 【0033】そして載置皿20が1回転した時点から制
御手段が載置皿上の被加熱物の存在位置の判定を開始す
る。載置皿20がさらに1回転すると制御手段は複数の
被加熱物の存在を確認するとともにそれぞれの被加熱物
の温度情報を知る。そして被加熱物が存在すると判定し
たレジスタ2の各列毎の平均温度の最高温度と最低温度
との温度差が10℃を超えると最低温度であるレジスタ
2の列が給電口に対面する位置に来ると駆動モータの電
力を遮断する。これにより、低い温度の食品、たとえば
冷凍ごはん31が給電口19に対面する位置に存在する
状態で載置皿20が停止し冷凍ごはん31を冷蔵ハンバ
ーグ32に対して強く加熱して二つの食品の温度差を縮
小させる。 【0034】またこの状態で冷凍ごはん31が所望の温
度以上に加熱されると載置皿20が再び回転する。そし
てそこそこに加熱されたごはんとそこそこに加熱された
ハンバーグがほぼ均等に誘電加熱されていく。ごはんと
ハンバーグとのどちらかの温度が終了加熱温度75℃に
達すると誘電加熱を完了する。これによりごはんとハン
バーグはそれぞれ適温に同時加熱できる。 【0035】また図7は冷凍ハンバーグ34(−18
℃)と冷凍ポテト35(−18℃)とを混載した皿を加
熱する時の様子を示す。この場合、載置皿20の矢印3
6方向の回転に伴って赤外線センサ25の検出領域28
a、28b、28cがそれぞれの被加熱物の上を通過す
るが、上記例と同様に被加熱物の存在位置判定が行われ
た後、冷凍ハンバーグ34の存在位置に対応するレジス
タ2の列が既定した温度差以上の下で最低温度となった
場合には図7(b)で示すように冷凍ハンバーグ34が
給電口に対面する位置で、かつ赤外線センサ25の検出
領域28a〜28bに該当する位置で載置皿20の回転
が停止し、冷凍ハンバーグ34を冷凍ポテト35に対し
て強く誘電加熱する。以降の動作は上述した通りであ
り、ハンバーグとポテトとのどちらかの温度が終了加熱
温度に達することで誘電加熱を完了しいずれも適温に加
熱された状態となる。 【0036】(実施例) 次に本発明の実施例について説明する。実施例
例1と相違する点は回転台の駆動モータ(図1の22
相当)を双方向に回転制御したことである。この双方向
回転制御を用いた載置皿の具体的な動きを図8を用いて
図6と対比しながら説明する。 【0037】図8は、図6と同様に冷凍ごはん31(−
18℃)と冷蔵ハンバーグ32(7℃)とを別々に入れ
て加熱する時の様子を示す。駆動モータは加熱初期には
一方向に回転制御する。加熱を開始すると載置皿20が
矢印37で示す方向に回転する。すなわち図8(a)の
状態に載置した場合、載置皿20の回転により図8
(b)のように被加熱物は加熱室10内を移動してい
く。この間に制御手段は0.5秒間隔で赤外線センサ2
5の検出領域28a〜28dからの検出信号を取り込
む。図8(a)の状態では赤外線センサ25は冷蔵ハン
バーグ32とその皿の温度をそれぞれ検出する。一方図
8(b)の状態では赤外線センサ25は冷凍ごはん31
と載置皿20の温度を検出する。 【0038】そして載置皿20が1回転した時点から制
御手段が載置皿上の被加熱物の存在位置の判定を開始す
る。載置皿20がさらに1回転すると制御手段は複数の
被加熱物の存在を確認するとともにそれぞれの被加熱物
の温度情報を知る。そして被加熱物が存在すると判定し
たレジスタ2の各列毎の平均温度の最高温度と最低温度
との温度差が10℃を超えると最低温度であるレジスタ
2の列が給電口に対面する位置に来ると駆動モータの電
力を遮断する。これにより、低い温度の食品、たとえば
冷凍ごはん31が給電口19に対面する位置に存在する
状態で載置皿20が停止する。この後駆動モータを双方
向(矢印38)回転制御し載置皿20を往復回転させ
る。この往復回転範囲は給電口前方の停止位置を中心と
して略±45度の回転角度(図中39)としている。こ
れにより、冷凍ごはん31の局部の過加熱を回避しなが
ら冷蔵ハンバーグ32に対して冷凍ごはん31全体を強
く加熱して二つの食品の温度差を縮小させている。この
往復回転の場合にも赤外線センサ25は往復回転の周期
に連動した時間周期にて温度を取り込む。この場合、レ
ジスタ1に取り込んだ温度データは次のデータを取込む
タイミングにてレジスタ2の指定した列に転送しその列
のデータを更新する。 【0039】またこの往復回転状態での加熱期間におい
て冷凍ごはん31が所望の温度以上に加熱されると駆動
モータを再び一方向回転制御して載置皿20を一方向に
回転させる。そしてそこそこに加熱されたごはんとそこ
そこに加熱されたハンバーグがほぼ均等に誘電加熱され
ていく。ごはんとハンバーグとのどちらかの温度が終了
加熱温度75℃に達すると誘電加熱を完了する。これに
よりごはんとハンバーグは局部過加熱なくそれぞれ適温
に同時加熱できる。 【0040】以上、本実施例では種類の異なる2つの被
加熱物を同時に加熱した場合について述べたが、種類の
異なる3つの被加熱物を同時に加熱する場合も、2つの
被加熱物を同時に加熱する場合に準じて行えばよい。す
なわち、3つの被加熱物を同時に加熱する場合、最初は
載置皿を回転させながら加熱し、ある時点での被加熱物
のそれぞれの温度のうち最も温度の低い被加熱物を選出
し、この被加熱物が電波の強い部分にきたときに載置皿
の回転を停止し、電波の強い状態の中で加熱する。そし
て、また載置皿を回転させ前記過程を繰り返すことによ
りすべての被加熱物を適温に加熱することができる。 【0041】また、一つの被加熱物で大きさが大きく、
被加熱物内で温度差が生じる場合は、一つの被加熱物が
温度の高い被加熱物と温度の低い被加熱物との二つの被
加熱物からなっていると仮定すれば、本実施例と同様の
手法により一つの被加熱物全体を適温にすることができ
る。 【0042】以上述べたように、本実施例では給電口と
回転台とで高周波電波の強弱のかたよりをつくり、電波
の強弱の差を利用し、温度の低い被加熱物は強い電波で
強く加熱し、温度の高い被加熱物は弱い電波で弱く加熱
することにより、被加熱物全体を適温に加熱することが
できる。 【0043】なお、本実施例では赤外線センサに4個の
検出素子を用いた場合につき述べたが、通常素子の温度
測定範囲は直径約3cmの円の範囲であり、これより大
きくなると温度の識別精度が低下し誤差が大きくなる。
また、範囲を狭くすれば精度は向上するが高コストとな
る。通常高周波加熱装置の食品の載置皿の半径は15c
m位であり、この場合半径全体の温度を測定するには5
個の検出素子が必要であるが、載置皿の中央または端あ
るいは素子の検出範囲間を除き本実施例では4個とし
た。前記のように検出素子数は本実施例の数に限定され
るものではなく、載置皿の大きさ、要求精度により決め
たらよい。 【0044】 【発明の効果】以上のように本発明によれば以下の効果
を有する。 【0045】(1)給電口と回転台と相対位置関係によ
り載置皿上での高周波分布は給電口に近い側の高周波電
界強度が強い分布を形成する。この不均一な高周波分布
により載置皿上に載置した被加熱物は載置皿の回転に伴
って給電口に近づくと強く加熱することができる。赤外
線センサは載置皿の一回転により載置皿のほぼ全域を検
知視野にするので載置皿上全域の温度分布を検出すると
ともに被加熱物の存在領域を識別する。そして被加熱物
の存在領域に対応する赤外線センサの検知信号群の中で
温度が低い信号に相当する載置皿上の領域を給電口の前
方に移動停止することで温度の低い領域を強く加熱し他
の領域との温度差を軽減させる。この加熱方法を用いる
ことで、種類や温度の異なる被加熱物を同時に所望の適
温に加熱することができる。 【0046】()給電口の前方に被加熱物を回転移動
させた後、被加熱物を給電口の前方で往復移動させるこ
とでその被加熱物の特定部位の過加熱を抑制することが
できる。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention
High-frequency heating device for dielectric heating of an object to be heated
In particular, do not use an infrared sensor to detect the temperature of the object to be heated.
The present invention relates to an apparatus for dielectrically heating an object to be heated. [0002] 2. Description of the Related Art In a conventional device of this type, an infrared ray sensor is used.
Some are equipped with sensors. Also, multiple foods can be
Some include a two-stage mounting plate for dielectric heating.
In addition, the conventional high-frequency heating device has an object housed in a heating chamber.
The main focus is on making the heating of the heating material uniform,
As a means of heat uniformity, radio wave stirring, rotation of the heated object
System, multiple power supply system, etc. have been put to practical use. [0003] Various conventional heating methods
In the heating room, the main objective is to make the heating of the object to be heated uniform.
To prevent high frequency from being concentrated in a specific area
there were. For this purpose, multiple objects to be heated
When heating, when one object to be heated is heated to an appropriate temperature
Other objects may be underheated or overheated.
Simultaneously heat multiple objects of different types to an appropriate temperature.
Was difficult. [0004] The present invention is applicable to different types of objects to be heated simultaneously.
To provide a high-frequency heating device capable of heating to a suitable temperature.
You. [0005] SUMMARY OF THE INVENTION A high-frequency heating apparatus according to the present invention.
In order to solve the above-mentioned problem,
Chamber and a high frequency generator for generating a high frequency to be supplied to the heating chamber.
Raw means, a placing plate for placing the object to be heated,
A turntable on which a dish is placed, and facing the periphery of the turntable
The power supply port provided, and the high-frequency generating means
A waveguide for transmitting generated high-frequency waves and rotating the turntable.
Rotating driving means, and a half of the placing plate in front of the power supply port.
An infrared sensor having a viewing angle equivalent to a diameter,
The high-frequency generating means and the circuit based on the detection signal of the sensor.
Control means for controlling each of the rolling drive means,
The control means may be a part of the object to be heated where the temperature is low or a plurality of objects to be heated.
In the case of simultaneous heating of hot objects, supply the
Stop moving ahead of the gate, Place the object to be heated in front of the
After the rotation, the rotation driving means is controlled in both directions.
The object to be heated is reciprocated in front of the power supply port.To
Things. According to the above invention, the periphery of the mounting plate on the turntable is
Since the edge is located in front of the power supply port, it was placed on the placing plate
The object to be heated becomes strong when approaching the power supply port with the rotation of the mounting plate.
Can be heated. Infrared sensor makes one rotation of the mounting plate
The detection area covers almost the entire area of the mounting plate.
Detects the temperature distribution of the entire area and the area where the object to be heated exists
Identify. And infrared corresponding to the area where the object to be heated exists
Corresponds to the signal with low temperature in the detection signal group of the line sensor
Stop moving the area on the mounting plate in front of the
Strongly heat low temperature areas to reduce temperature difference with other areas
Let By using this heating method, different types and temperatures
To be heated to the desired temperature at the same time.
You. [0007] DESCRIPTION OF THE PREFERRED EMBODIMENTS The high-frequency heating device according to claim 1 of the present invention.
The heating chamber accommodates the object to be heated and the heating chamber is supplied to the heating chamber.
High-frequency generating means for generating high-frequency waves, and the object to be heated
And a turntable on which the mounting plate is mounted,
A power supply port provided to face a periphery of the turntable;
The high frequency generated by the high frequency generating means is transmitted to the outlet.
A waveguide, rotation driving means for rotating the turntable,
It has a viewing angle equivalent to the radius of the tray in front of the power supply port.
An infrared sensor, based on a detection signal of the infrared sensor;
To control the high frequency generating means and the rotation driving means, respectively.
Control means for controlling the temperature of the object to be heated.
For simultaneous heating of low temperature parts or multiple heated objects
Stops moving the object to be heated at the lowest temperature in front of the power supply port.
LetAfter rotating the object to be heated in front of the power supply port,
The object to be heated is controlled by bidirectional rotation control of the rotation driving means.
Reciprocate in front of the power inletThings. And pay
High frequency on the mounting plate due to the relative positional relationship between the port and the turntable
The distribution has a strong distribution of high-frequency electric field strength near the power supply port.
To achieve. Placed on the plate due to this uneven high frequency distribution
The heated object approaches the power supply port with the rotation of the mounting plate.
Can be heated strongly. The infrared sensor is located on the
Placed because the whole area of the mounting plate is set as the detection field of view by rotation
Detects temperature distribution over the entire area of the dish and the presence of objects to be heated
Identify the region. And corresponds to the area where the object to be heated
Corresponds to a signal with a low temperature in the detection signal group of the infrared sensor
To stop moving the area on the mounting plate in front of the power supply port.
Strongly heat the low temperature area to reduce the temperature difference with other areas
Reduce. By using this heating method, the type and temperature
Different objects to be heated can be heated simultaneously to the desired appropriate temperature.
Wear. [0008]SoAnd place a low-temperature heated object in front of the power supply port.
Reciprocating movement of the object to be heated
Heating can be suppressed. [0009] BRIEF DESCRIPTION OF THE DRAWINGS FIG.
explain. [0010]referenceExample 1) FIG.referenceAppearance structure of high-frequency heating device showing Example 1
FIG. 2 is a sectional configuration diagram of FIG. 1 and 2, the heating chamber 10 is made of gold.
Right wall surface 11, which is a metal boundary portion composed of a metal material,
Left wall 12, back wall 13, top wall 14, bottom wall 15
And an opening / closing wall through which an object to be heated is taken in and out of the heating chamber 10.
The opening / closing door 16 has a substantially rectangular parallelepiped shape, and is supplied with power.
Formed to substantially confine the high frequency
ing. 17 generates a high frequency power supply to the heating chamber 10
Magnetron which is a high-frequency generating means, 18 is a magnetron
A waveguide for guiding the high frequency generated by the
9 indicates that the heating chamber 10 and the waveguide 18 are coupled at a high frequency.
In both cases, the high frequency generated by the magnetron 17 is applied to the heating chamber 10.
A power supply port that radiates into the inside and is the right wall surface when viewed from the door
11 is provided substantially at the center in the front-rear direction. 20 is the object to be heated
Is placed on the turntable 21. Feeding
The mouth 19 is provided at a position facing the periphery of the turntable 21.
You. Reference numeral 22 rotates the mounting plate 20 together with the turntable 21.
A drive motor that is a rotary drive means that rotates only in one direction.
Turn over. By operating the drive motor 22, the turntable
21 and the mounting plate 20 rotate. Reference numeral 23 denotes an inverter for driving the magnetron 17.
Data drive power supply unit 24 controls the operation of the entire device
Means. 25 is an infrared sensor and four detecting elements
have. Each detection element is provided with a power supply port 19 on the right side wall 11.
Plate 20 through two holes 26 and 27 provided above
The amount of infrared light on the surface of the
Detects the amount of infrared radiation on the surface of the object to be heated and
Control means 24. Four infrared sensors 25
The detection area of the detection element of FIG.
It is set in the areas indicated by 8a to 28d. Detection area 28
a is a substantially central region of the placing plate 20, and the detection region 28d is a placing plate.
The peripheral region 20 and the detection regions 28b and 28c
It is set to the area. Thereby, the infrared sensor 25 is placed.
The mounting plate 20 is rotated with the radius of the plate 20 as a detection area.
As a result, it is possible to detect the temperature of almost the entire area of the mounting plate 20.
Wear. The control unit 24 controls the heating information input from the operation unit.
Information, the rotation axis of the infrared sensor 25 and the drive motor 22
Weight sensor that detects the weight of the object to be heated via
), The inverter driving power supply unit 2
3 and the operation of the drive motor 22 to control the heating chamber.
The object to be heated housed in 10 is subjected to dielectric heating. The mounting plate 20 is made of a ceramic material.
The rotating plate 21 is made of a metal material.
You. Outside the heating chamber 10 on the bottom wall surface 15 and the upper wall surface 14
A heater (not shown) for radiation heating is provided on the side
I have. [0014] The operation unit is also provided with automatic heating control.
"Decompression" key or "warm" key, based on the user's intention
"Heating time input section" or "heating temperature input"
Section '', a display section that displays the temperature of the object being heated,
Click the `` Start '' key to input the start
Key for canceling heating or interrupting heating.
It has a throat. Next, the different types of addenda to which the present invention is focused.
Means and action for heating hot materials at the same time
This will be described with reference to FIGS. FIG. 3 shows an uneven high circumference formed in the heating chamber.
Fig. 4 shows a heating characteristic based on a wave distribution. The objects to be heated are each water
Two mugs containing 200 cc, power supply port 19
On the line connecting the rotation axis of the turntable 21 and
The power supply port side and the opposite side symmetrically with respect to the center position of the plate 20
The characteristics under the conditions where a mug is placed in two places
You. The horizontal axis is the placement position of the object to be heated, and the vertical axis is the mag
Mug placed on the opposite side of the power supply from the temperature rise
Is the ratio to the temperature rise value. A in FIG.
When the cup is placed in the center of the placing plate 20,
C is placed on the peripheral side of the placing plate 20 separately,
B shows the case where they are respectively placed at the intermediate positions. The solid line 29 and the broken line 30 represent the diameter of the turntable.
The characteristics when the dimensions are 245mm and 200mm respectively
Show. These diameters are determined by the circumference of the turntable 21 and the power supply port.
The gap size (indicated by L in FIG. 2) with respect to
Was selected based on the wavelength of the high-frequency wave propagating through. Sand
That is, the waveguide 18 has a width dimension of 90 mm and its propagation wavelength.
Is about 166 mm, which is about 1 / of this propagation wavelength and about 3
Diameter of turntable 21 forming gap size of / 8
And When the diameter of the turntable 21 is 200 mm, power is supplied.
Temperature rise rate of water load on mouth and opposite side is almost equal
However, the water load on the power supply side for a 245 mm diameter turntable
Could be heated strongly. The diameter of the turntable 21 is 245 mm
In the case of, the high frequency radiated from the power supply port 19 is
1 can be caused to propagate along
Even if a mug is placed in the center of the
The object to be heated existing in the vicinity of the electrical outlet can be heated strongly. In FIG.
2 shows an external view of the turntable 21 of the first embodiment. Next, the operation of the high-frequency heating apparatus having the above-described configuration is operated.
The operation procedure and control contents will be described with reference to FIG. Note that
The following description is used to clarify the features of the present invention.
Explanation of control contents for automatic heating cooking of multiple objects to be heated
I will tell. After storing and placing multiple objects to be heated in the heating chamber,
The user selects the “warm” key on the operation unit (S
101). Next, a "start" key is pressed (S102).
Thus, dielectric heating of the object to be heated is started. Note that S10
3 is to confirm that the "Start" key has been pressed
Yes, the “Cancel” key was pressed prior to the “Start” key.
Then, the process returns to S101. Inverter drive power supply in S104
Activating the section 23 to activate the magnetron 17 and the power supply port
A high frequency is supplied into the heating chamber 10 via 19. Also S
At 105, the drive motor 22 of the turntable 21 is operated and placed.
The plate 20 is rotated. The drive motor 22 is a synchronous motor.
When the commercial power frequency is 60 Hz,
The time required to make one rotation of 20 is 10 seconds. In S106, the control means 24 controls the driving motor
22 is counted from the time when the driving power is supplied to the motor 22.
And the detection signal of the infrared sensor 25 every 0.5 seconds.
Take in. This detection signal is a 4-row, 1-column signal indicating the current temperature.
Stored in register 1 and the next signal (ie after 0.5 seconds)
Hold the signal value until is input. On the other hand, the control means 24 has a matrix of 4 rows and 40 columns.
The register 2 is composed of a matrix. This matrix
The resister 2 is a so-called temperature distribution data on the mounting plate 20.
Is stored. Power is supplied to the drive motor 22.
As soon as it is detected by the infrared sensor 25 at that time
The signal is fetched and stored in the register 1. And 0.5 seconds
After the lapse, the data in the register 1 is stored in the first column of the register 2.
After storing in the register of 4 rows and 1 column, the infrared sensor 25
The current detection signal is stored in the register 1. Drive mode
The detection signal is output to the register
After 10 seconds have passed, the temperature of the entire area on the
The degree distribution is stored in 1 to 20 columns of register 2.
become. The control means 24 detects in the next 10 seconds
The data is stored in the 21st to 40th columns of the register 2. So
The detected data after 20.5 seconds is one row of register 2
And overwrite and store them sequentially. The control means 24 operates from the first row of the register 2 to the second row.
Compare data in column 0 with data in columns 21 to 40
Rows that exceed a predetermined temperature rise, eg, 2 ° C.
Is determined to have an object to be heated. Based on this result
To determine the locations of the plurality of objects to be heated on the
Proceed to 107. Note that even during this determination process,
20 means that the control means 24 continuously rotates.
Is taking in new signals from the infrared sensor 25 at any time
You. Next, in S107, the object to be heated of the register 2 is
Column group determined to be present (represented by the average temperature of each column
The temperature difference between the highest temperature and the lowest temperature
Compare with the difference, for example 10 ° C. Temperature difference is less than 10 ℃
In step S111, the maximum temperature of each row group and the end heating temperature
Compare with If the end heating temperature has not been reached, S10
Returning to 5, when the end heating temperature is reached, the process proceeds to S112. S
If the temperature difference becomes equal to or more than 10 ° C. in S 107, the process proceeds to S 108. In step S108, there is an object to be heated in the register 2.
Then, the row corresponding to the lowest temperature in the determined row group is supplied with power.
When it comes to a position facing the mouth 19, the drive motor 22
Cut off the power supply. And the operation progress of the drive motor 22
Stop counting time. In this state, the power supply port 19
The object to be heated at the position facing the
Induced dielectric heating. Also, the infrared sensor 25 is strong
Monitor only the surface temperature of the heated object as needed
I have. At this time, the data taken from the infrared sensor 25 is
Register 1 only. Next, at S109, the temperature of the register 1 and the end
The comparison with the heating temperature is performed. If the end heating temperature has been reached
Proceed to S112. If the end heating temperature has not been reached, S1
Go to 10. In step S110, the object to be heated is
The current temperature data obtained from
It is determined whether the temperature has risen to a value equal to or higher than the value. At this time
The default value is, for example, 15 ° C., which is 1.5 times the above temperature difference.
I do. If the temperature has not reached the predetermined temperature, the process proceeds to S108.
Return The contents of S108 are executed. And the temperature of register 1
If it is determined in S110 that the temperature has reached the predetermined temperature, S11
Proceed to 1. S111 is the maximum of the average temperature of each row of the register 2.
Determines if high temperature has reached a predetermined end heating temperature
I do. If the end heating temperature has not been reached, go to S105.
Return. In step S105, the drive power is again supplied to the drive motor 22.
Supply power. As a result, the placing plate 20 starts rotating again.
And the counting of the operation elapsed time of the drive motor 22 is restarted.
Start. The detection signal data of the infrared sensor 25 is also
Data is sequentially loaded into register 1 and data in register 2
To update. At this time, the update start column of the register 2 is S108
This is a column having the lowest temperature data at the time of execution. Follow
At this time, the position of the object to be heated on the mounting plate 20 is
It is in a known state. In addition, the drive motor 22 is longer than 20 seconds.
If it operates continuously, all data in register 2 will be updated.
Since it is new, the position of the object to be heated can be determined again.
Absent. In step S109, the maximum temperature of the register 1 ends.
When it is judged that the heat temperature has been reached, or at S111
Average temperature of each row corresponding to the position of the object to be heated
Proceeds to S112 when it is determined that has reached the end heating temperature.
No. In S112, the operation of the inverter driving power supply 23 is performed.
Stop the operation and proceed to S113. In S113, the driving motor 2
2 Power supply is stopped to complete dielectric heating of the object to be heated
You. Next, a concrete example of the placing plate on which the object to be heated is placed
The movement will be described with reference to FIGS. FIG. 6 shows frozen rice 31 (-18 ° C.)
When putting Kura hamburger 32 (7 ° C) separately and heating
The state of is shown. When the heating is started, the placing plate 20 is turned to an arrow 33.
Rotate in the direction indicated by. That is, it is placed in the state of FIG.
When the tray 20 is placed, the plate 20 is rotated as shown in FIG.
The object to be heated moves inside the heating chamber 10. During this time
The control means is the detection area 2 of the infrared sensor 25 at 0.5 second intervals.
The detection signals from 8a to 28d are taken in. 6 (a)
In this state, the infrared sensor 25 is connected to the frozen rice 31 and its container.
And the temperature of the dishes of the refrigerated hamburger 32, respectively.
You. On the other hand, in the state of FIG.
The detecting element in the area 28a is placed on the plate of the refrigerated hamburger 32.
The temperature of the plate 20 is detected, and the detection element in the detection area 28b is cooled.
The temperature of the container 31 and the plate 20 is detected
The areas 28c and 28d detect the temperature of only the placing plate 20. Then, the control is started from the time when the placing plate 20 makes one rotation.
The control means starts to determine the position of the object to be heated on the placing plate.
You. When the placing plate 20 makes one more rotation, the control means
Check for the presence of objects to be heated and
Know the temperature information of And it is determined that there is an object to be heated
And minimum temperature of the average temperature for each row of register 2
The register that is the lowest temperature when the temperature difference with the temperature exceeds 10 ℃
When the second row comes to the position facing the power supply port, the drive motor
Cut off power. This allows for food at lower temperatures, for example,
The frozen rice 31 exists at a position facing the power supply port 19.
In this state, the plate 20 stops and the frozen rice 31 is refrigerated
To the temperature difference between the two foods
Let it be small. In this state, the frozen rice 31 is heated to a desired temperature.
When heated to a degree or more, the mounting plate 20 rotates again. Soshi
The rice was heated all over the place
The hamburger is almost uniformly dielectrically heated. Rice
Either temperature with hamburger finishes heating temperature to 75 ° C
When reached, the dielectric heating is completed. This makes rice and han
Each burger can be heated simultaneously to the appropriate temperature. FIG. 7 shows a frozen hamburger 34 (−18).
℃) and frozen potato 35 (-18 ℃).
This shows the state when heating. In this case, the arrow 3 of the placing plate 20
The detection area 28 of the infrared sensor 25 with the rotation in six directions
a, 28b, 28c pass over each object to be heated
However, the position of the object to be heated is determined in the same manner as in the above example.
After that, the registry corresponding to the location of the frozen hamburger 34
Column 2 has reached the lowest temperature below the specified temperature difference
In this case, as shown in FIG.
At the position facing the power supply port and detected by the infrared sensor 25
Rotation of the placing plate 20 at a position corresponding to the regions 28a to 28b
Stops and freezes hamburger 34 against frozen potato 35
Strongly heat the dielectric. Subsequent operations are as described above.
Heating, either hamburger or potato temperature ends
When the temperature is reached, dielectric heating is completed and all are heated to the appropriate temperature.
It will be in a heated state. (Examples)1) Next, an embodiment of the present invention1Will be described. Example1Butthree
ConsiderationThe difference from Example 1 is that the drive motor of the turntable (22 in FIG. 1)
(Equivalent) was controlled in both directions. This two-way
The specific movement of the placing plate using the rotation control will be described with reference to FIG.
This will be described in comparison with FIG. FIG. 8 shows a frozen rice 31 (−) as in FIG.
18 ° C) and refrigerated hamburger 32 (7 ° C) separately
The state when heating by heating is shown. The drive motor is in the early stage of heating
Control rotation in one direction. When heating starts, the plate 20
It rotates in the direction indicated by arrow 37. That is, in FIG.
When the table 20 is placed in the state shown in FIG.
The object to be heated moves in the heating chamber 10 as shown in FIG.
Good. During this time, the control means operates the infrared sensor 2 at 0.5 second intervals.
5 captures detection signals from the detection areas 28a to 28d
No. In the state shown in FIG. 8A, the infrared sensor 25
The temperature of the berg 32 and the temperature of the dish are detected. On the other hand
In the state of FIG. 8B, the infrared sensor 25 is the frozen rice 31.
And the temperature of the placing plate 20 are detected. Then, the control is started from the time when the placing plate 20 makes one rotation.
The control means starts to determine the position of the object to be heated on the placing plate.
You. When the placing plate 20 makes one more rotation, the control means
Check for the presence of objects to be heated and
Know the temperature information of And it is determined that there is an object to be heated
And minimum temperature of the average temperature for each row of register 2
The register that is the lowest temperature when the temperature difference with the temperature exceeds 10 ℃
When the second row comes to the position facing the power supply port, the drive motor
Cut off power. This allows for food at lower temperatures, for example,
The frozen rice 31 exists at a position facing the power supply port 19.
The placing plate 20 stops in this state. After this, both drive motors
Direction (arrow 38) to rotate the platen 20
You. This reciprocating rotation range is centered on the stop position in front of the power supply port.
And a rotation angle of approximately ± 45 degrees (39 in the figure). This
This avoids overheating of the frozen rice 31 locally.
Refrigerated hamburger 32 for whole frozen rice 31
It heats to reduce the temperature difference between the two foods. this
In the case of reciprocating rotation, the infrared sensor 25 also detects the cycle of reciprocating rotation.
The temperature is taken in the time cycle linked to. In this case,
The following data is taken in the temperature data taken into the register 1.
Transfer to the specified column of register 2 at the timing
Update the data of. During the heating period in the reciprocating rotation state,
Driven when the frozen rice 31 is heated above the desired temperature
The motor is controlled to rotate in one direction again, and the plate 20 is moved in one direction.
Rotate. And there and the heated rice
The heated hamburger is heated almost uniformly by dielectric heating.
To go. Either the temperature of rice or hamburger ends
When the heating temperature reaches 75 ° C., the dielectric heating is completed. to this
More suitable for rice and hamburger without local overheating
Can be heated simultaneously. As described above, in this embodiment, two different types of
Although the case where the heating object is heated at the same time was described,
When heating three different objects to be heated at the same time,
What is necessary is just to carry out according to the case where a to-be-heated object is heated simultaneously. You
In other words, when heating three objects to be heated at the same time,
Rotate the mounting plate and heat it.
Selects the lowest temperature object to be heated
When the object to be heated comes to a part with strong radio waves,
Stop rotation and heat in a strong radio wave condition. Soshi
Again, by rotating the mounting plate and repeating the above process.
Thus, all the objects to be heated can be heated to an appropriate temperature. Further, the size of one heated object is large,
If there is a temperature difference inside the object,
Two objects, a high temperature object and a low temperature object
Assuming that it is made of a heated material,
Method to keep the entire heated object at an appropriate temperature.
You. As described above, in this embodiment, the power supply port
A high-frequency radio wave is created with the turntable,
The object to be heated with a low temperature is
Heats strongly and heats the heated object weakly with weak radio waves
By doing so, it is possible to heat the entire heated
it can. In this embodiment, four infrared sensors are used.
The case of using a detection element has been described.
The measurement range is a circle with a diameter of about 3 cm,
If it becomes too small, the accuracy of discriminating the temperature decreases and the error increases.
Also, narrowing the range improves accuracy but increases cost.
You. Normally the radius of the food tray of the high frequency heating device is 15c
m, in this case 5 to measure the temperature of the entire radius.
Are required, but the center or edge of the
Or four in this embodiment except between the detection ranges of the elements.
Was. As described above, the number of detection elements is limited to the number of the present embodiment.
Not determined by the size of the mounting plate and required accuracy
Good. [0044] As described above, according to the present invention, the following effects can be obtained.
Having. (1) According to the relative positional relationship between the power supply port and the turntable
The high-frequency distribution on the
The field strength forms a strong distribution. This non-uniform high frequency distribution
The object to be heated placed on the plate by the
As a result, heating can be strongly performed when approaching the power supply port. infrared
The line sensor detects almost the entire area of the platen with one rotation of the platen.
When the temperature distribution of the whole area on the mounting plate is detected
In both cases, the region where the object to be heated is present is identified. And the object to be heated
In the detection signal group of the infrared sensor corresponding to the existence area of
Place the area on the mounting plate corresponding to the low temperature signal in front of the power supply port.
Stop moving in the direction to strongly heat the low temperature area
Temperature difference with the region of the above. Use this heating method
This allows objects to be heated of different types and temperatures
Can be heated to warm. (2) Rotate the heated object in front of the power supply port
After that, move the heated object back and forth in front of the power supply port.
With this, it is possible to suppress overheating of a specific portion of the object to be heated.
it can.

【図面の簡単な説明】 【図1】本発明の参考例1の高周波加熱装置の外観構成
図 【図2】同高周波加熱装置の要部断面図 【図3】同高周波加熱装置の回転台を用いた加熱特性図 【図4】同高周波加熱装置の回転台の外観構成図 【図5】同高周波加熱装置の制御内容を示すフローチャ
ート 【図6】(a)同高周波加熱装置の具体例1の加熱制御
の様子を示す図 (b)同高周波加熱装置の具体例1の加熱制御の様子を
示す図 【図7】(a)同高周波加熱装置の具体例2の加熱制御
の様子を示す図 (b)同高周波加熱装置の具体例2の加熱制御の様子を
示す図 【図8】(a)本発明の実施例の高周波加熱装置の具
体例の加熱制御の様子を示す図 (b)同高周波加熱装置の具体例の加熱制御の様子を示
す図 【符号の説明】 10 加熱室 17 マグネトロン(高周波発生手段) 18 導波管 19 給電口 20 載置皿 21 回転台 22 駆動モータ(回転駆動手段) 24 制御手段 25 赤外線センサ
The turntable BRIEF DESCRIPTION OF THE DRAWINGS fragmentary cross-sectional view of the external configuration diagram [2] the high frequency heating apparatus of high-frequency heating apparatus of Example 1 of the present invention [3] the high-frequency heating apparatus FIG. 4 is a view showing an external configuration of a turntable of the high-frequency heating device. FIG. 5 is a flowchart showing control contents of the high-frequency heating device. FIG. 6A is a diagram showing a specific example 1 of the high-frequency heating device. FIG. 7B is a diagram showing a state of heating control. FIG. 7B is a diagram showing a state of heating control of a specific example 1 of the high-frequency heating device. FIG. 7A is a diagram showing a state of heating control of a specific example 2 of the high-frequency heating device. b) A diagram showing a state of heating control of a specific example 2 of the high-frequency heating device. FIG. 8A is a diagram showing a state of heating control of a specific example of the high-frequency heating device of Example 1 of the present invention. Diagram showing the state of heating control in a specific example of a high-frequency heating device [Description of References] 10 Heating Room 17 Magneto Ron (high frequency generation means) 18 Waveguide 19 Power supply port 20 Placement tray 21 Rotary table 22 Drive motor (rotation drive means) 24 Control means 25 Infrared sensor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−173559(JP,A) 特開 平6−193888(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24C 7/02 551 F24C 7/02 330 H05B 6/68 310 H05B 6/68 320 H05B 6/72 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-11-173559 (JP, A) JP-A-6-193888 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24C 7/02 551 F24C 7/02 330 H05B 6/68 310 H05B 6/68 320 H05B 6/72

Claims (1)

(57)【特許請求の範囲】 【請求項1】 被加熱物を収納する加熱室と、前記加熱
室に供給する高周波を発生する高周波発生手段と、前記
被加熱物を載置する載置皿と、前記載置皿を載置する回
転台と、前記回転台の周縁部に対面して設けた給電口
と、前記給電口に前記高周波発生手段が発生した高周波
を伝送する導波管と、前記回転台を回転する回転駆動手
段と、前記給電口の前方の前記載置皿の半径相当の視野
角を有する赤外線センサと、前記赤外線センサの検出信
号に基づいて前記高周波発生手段と前記回転駆動手段を
それぞれ制御する制御手段とを備え、前記制御手段は被
加熱物の温度の低い部位または複数の被加熱物の同時加
熱にあっては最低温度の被加熱物を前記給電口の前方に
移動停止させ、給電口の前方に被加熱物を回転移動させ
た後、前記回転駆動手段を双方向回転制御して前記被加
熱物を前記給電口の前方で往復移動させる高周波加熱装
置。
(57) [Claim 1] A heating chamber for storing an object to be heated and the heating chamber
High frequency generating means for generating a high frequency to be supplied to the chamber,
A plate for placing the object to be heated and a holder for placing the plate
Turntable, and power supply port provided facing the peripheral edge of the turntable
And a high frequency generated by the high frequency generating means at the power supply port.
And a rotary drive for rotating the turntable.
A step and a field of view corresponding to the radius of the tray in front of the feed port
An infrared sensor having an angle, and a detection signal of the infrared sensor.
The high frequency generating means and the rotation driving means based on
Control means for controlling each of the control means.
Simultaneous heating of parts with low temperature or multiple objects to be heated
In the case of heat, place the object to be heated at the lowest temperature in front of the power supply port.
Movement is stopped, after rotating moving the object to be heated in front of the feed opening, the rotation driving means high-frequency heating apparatus bidirectional rotation control to the object to be heated that is reciprocated in front of the feed opening a.
JP2000114784A 2000-04-17 2000-04-17 High frequency heating equipment Expired - Fee Related JP3402309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114784A JP3402309B2 (en) 2000-04-17 2000-04-17 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000114784A JP3402309B2 (en) 2000-04-17 2000-04-17 High frequency heating equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001075805A Division JP2001304581A (en) 2001-03-16 2001-03-16 High frequency heating device
JP2001075806A Division JP2001304582A (en) 2001-03-16 2001-03-16 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2001304566A JP2001304566A (en) 2001-10-31
JP3402309B2 true JP3402309B2 (en) 2003-05-06

Family

ID=18626531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114784A Expired - Fee Related JP3402309B2 (en) 2000-04-17 2000-04-17 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP3402309B2 (en)

Also Published As

Publication number Publication date
JP2001304566A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
WO1996013140A1 (en) High-frequency heating device
US6590192B2 (en) Microwave oven with temperature-dependent automatic stop
US20020162836A1 (en) Microwave oven with food search and localized heating
JP3669030B2 (en) High frequency heating device
CN101897234B (en) Cooking device
JP2894250B2 (en) Induction heating cooker
JP2003294241A (en) Heating cooker
JP4024163B2 (en) Induction heating cooker
JP3402309B2 (en) High frequency heating equipment
JP5076625B2 (en) Microwave heating device
JP2004327260A (en) Heating cooker
JP3617181B2 (en) High frequency heating device
JP3407729B2 (en) High frequency heating equipment
JPH08321378A (en) High-frequency heating device
JP2001304582A (en) High frequency heating device
JP2001304581A (en) High frequency heating device
JP5003273B2 (en) Microwave heating device
JP2001297870A (en) High frequency heating device
JP4306005B2 (en) High frequency heating device
TWI701411B (en) Heating conditioner
JPH06163155A (en) High frequency heating device
JP5593710B2 (en) Microwave heating cooker
JPH0719486A (en) Microwave oven
JP3558041B2 (en) High frequency heating equipment
JP2002151247A (en) High frequency heating device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees