JP3401865B2 - Carbon fiber lump and method for producing the same - Google Patents

Carbon fiber lump and method for producing the same

Info

Publication number
JP3401865B2
JP3401865B2 JP26643793A JP26643793A JP3401865B2 JP 3401865 B2 JP3401865 B2 JP 3401865B2 JP 26643793 A JP26643793 A JP 26643793A JP 26643793 A JP26643793 A JP 26643793A JP 3401865 B2 JP3401865 B2 JP 3401865B2
Authority
JP
Japan
Prior art keywords
carbon fiber
thermosetting resin
carbon
weight
lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26643793A
Other languages
Japanese (ja)
Other versions
JPH07118440A (en
Inventor
征四郎 市川
明 西村
實 北中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP26643793A priority Critical patent/JP3401865B2/en
Publication of JPH07118440A publication Critical patent/JPH07118440A/en
Application granted granted Critical
Publication of JP3401865B2 publication Critical patent/JP3401865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、炭素繊維強化プラス
チック(CFRP)から得られる炭素繊維塊およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber mass obtained from carbon fiber reinforced plastic (CFRP) and a method for producing the same.

【従来の技術】CFRPは、比強度や比弾性率といった
力学的特性に優れていることから、航空・宇宙用途や、
釣竿、ゴルフシャフト、テニスラケット等のスポーツ・
レジャー用途、その他の用途において広く用いられてい
るが、多用されるようになって約20年を経過し、その
廃棄処理が大きな社会問題として取り上げられるように
なってきた。炭素繊維は不燃性であり、しかも、決して
腐らないから、現状では埋立処理によるほかはないが、
埋立処理による地下汚染は大きな社会問題である。ま
た、炭素繊維は、よく知られているように、ポリアクリ
ロニトリル繊維等のプリカーサー繊維を1,000〜
3,000℃もの高温で焼成して得られるものであり、
その製造に費消されるエネルギーは相当なものであるか
ら、そのまま埋め立てて廃棄するのではなく、有効に再
利用することが社会的使命でもある。ところで、炭素繊
維は不燃性であるが、マトリクスを形成している熱硬化
性樹脂は燃えるので、CFRP製品を加熱炉に入れ、熱
硬化性樹脂を燃やせば、炭素繊維を回収することはでき
る。しかしながら、そのようにして回収された炭素繊維
は綿状で、再利用しようとしても扱いにくい。また、熱
硬化性樹脂を燃やすためには木炭やコークス等の助燃剤
が必要で、回収コストが高くなるばかりか、燃焼に伴っ
て炭素繊維が酸化、減量するので回収量が減るし、酸化
による炭素繊維の特性の劣化もあるので、再利用はなか
なか容易なことではない。
2. Description of the Related Art CFRP has excellent mechanical properties such as specific strength and specific elastic modulus, so
Sports such as fishing rods, golf shafts, and tennis rackets
It is widely used for leisure purposes and other purposes, but it has been widely used for about 20 years, and its disposal has become a major social issue. Carbon fiber is non-combustible and never decays, so at present it is nothing but landfill treatment.
Underground pollution due to landfill is a major social problem. As well known, the carbon fiber may be a precursor fiber such as polyacrylonitrile fiber of 1,000 to
It is obtained by firing at a high temperature of 3,000 ° C.,
Since the energy consumed for its production is considerable, it is also a social mission to effectively reuse it instead of landfilling it as it is. By the way, although the carbon fibers are non-flammable, the thermosetting resin forming the matrix burns, so the carbon fibers can be recovered by putting the CFRP product in a heating furnace and burning the thermosetting resin. However, the carbon fibers thus recovered are cotton-like and difficult to handle even if they are to be reused. Moreover, in order to burn the thermosetting resin, an auxiliary agent such as charcoal and coke is required, which not only increases the recovery cost, but also reduces the recovery amount because the carbon fiber is oxidized and reduced due to combustion, which results from oxidation. Recycling is not easy because there is also deterioration in the properties of carbon fiber.

【発明が解決しようとする課題】この発明は、かかる問
題点に鑑みてなされたもので、いわゆる廃CFRP製品
や、CFRP製品の製造時に発生する切屑等の再利用を
可能とする、取り扱いが容易で、しかも、炭素繊維強化
熱可塑性プラスチック(CFRTP)製品や炭素繊維強
化セメント(CFRC)成形体等を製造するときに補強
材として利用することができる炭素繊維塊およびその製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is possible to reuse so-called waste CFRP products and chips generated during the production of CFRP products, which are easy to handle. Moreover, a carbon fiber lump that can be used as a reinforcing material when manufacturing a carbon fiber reinforced thermoplastic (CFRTP) product, a carbon fiber reinforced cement (CFRC) molded body, and the like, and a method for manufacturing the same. To aim.

【課題を解決するための手段】上記目的を達成するため
に、この発明は、多数本の炭素短繊維が熱硬化性樹脂の
熱分解物によって一体に結着され、全体として鱗片状を
している炭素繊維塊であって、該炭素繊維塊は、母集団
における最大寸法が30mm以下のものが90重量%以
上を占め、かつ、その最大寸法の炭素繊維塊の厚みに対
する比が3以上のものが60重量%以上を占めているこ
とを特徴とするものを提供する。炭素繊維塊は、多数本
の炭素短繊維が熱硬化性樹脂の熱分物によって一体に
結着されている薄片が層状をなしており、かつ、
片相互が熱硬化性樹脂の熱分解物によって一体に結着さ
て全体として鱗片状をしていることもあり、この炭素
繊維塊も母集団における最大寸法が30mm以下のもの
が90重量%以上を占め、かつ、その最大寸法の炭素繊
維塊の厚みに対する比が3以上のものが60重量%以上
を占めている。熱硬化性樹脂の熱分解物の炭素短繊維に
対する量は、好ましくは1〜20重量%の範囲にある。
また、この発明は、そのような炭素繊維塊を製造する方
法として、多数本の炭素短繊維が熱硬化性樹脂の熱分解
物によって一体に結着されている薄片が、層状をなして
おり、かつ、該薄片相互が熱硬化性樹脂の熱分解物によ
って一体に結着されて全体として鱗片状をしている炭素
繊維塊であって、該炭素繊維塊は、母集団における最大
寸法が30mm以下のものが90重量%以上を占め、か
つ、その 最大寸法の炭素繊維塊の厚みに対する比が3以
上のものが60重量%以上を占めるようにする製造方法
を提供する。さらに、この発明は、上述した炭素繊維塊
の具体的な利用策をもあわせて提供する。すなわち、上
記炭素繊維塊と熱可塑性樹脂チップとを含む混合物を溶
融、混練しながら線状に押出成形した後、所望の長さに
切断する。すると、炭素繊維塊が混練時の剪断力によっ
て炭素短繊維と熱硬化性樹脂の熱分解物とに物理的に分
解され、その分解による炭素短繊維と熱硬化性樹脂の熱
分解物とを含む熱可塑性樹脂ペレットが得られる。混練
の程度によっては、小さくなってはいるが炭素繊維塊が
そのままの形態で残っている場合もある。そのようなペ
レットは、CFRTP製品の製造に有効である。また、
上記炭素繊維塊と少なくとも骨材、セメントおよび水と
を混練し、所望の形状に成形する。すると、炭素繊維塊
は、一部はやはり混練時の剪断力によって炭素短繊維と
熱硬化性樹脂の熱分解物とに物理的に分解されるが、大
部分の炭素繊維塊は、そのまま、あるいは多少小さくな
って残り、それら物理的に分解された炭素繊維塊および
/または物理的分解による炭素短繊維と熱硬化性樹脂の
熱分解物とを含むCFRCが得られる の発明をさら
に詳細に説明するに、この発明の炭素繊維塊は、廃CF
RP製品や、CFRP製品の製造時に発生する切屑等
質的に非酸化性雰囲気下にて300〜1,000℃の
温度範囲で乾留した後、鱗片状に破砕することによって
得られ、全体として鱗片状をしていて、炭素短繊維とC
FRPを構成していた熱硬化性樹脂の熱分解物とを含
み、かつ、炭素短繊維が熱硬化性樹脂の熱分解物によっ
て一体に結着された構成をしている。炭素繊維塊は、全
体として鱗片状をしているが、炭素短繊維は、一方向に
向いていることもあり、いろいろな方向に無作為に向い
ていることもある。また、炭素繊維塊は、たとえば、一
方向に向いた多数本の炭素短繊維が熱硬化性樹脂の熱分
解物によって一体に結着されている薄片が、複数枚、炭
素短繊維が任意の角度で交差するように重なり合って層
状をなし、しかも、それら薄片相互が同様に熱硬化性樹
脂の熱分解物によって一体に結着されているといった、
いわゆる多層構造をとることもある。CFRP中におけ
る炭素繊維の配列や、乾留時における破砕片相互の位置
関係等、いろいろな要因によって異なる構成をとる。し
かしながら、全体として鱗片状であることには変わりが
ない。熱硬化性樹脂の熱分解物は、乾留による残渣であ
るが、炭素短繊維同士を互いに結着する、いわゆる接着
剤の役目をしている。この熱硬化性樹脂の熱分解物の炭
素短繊維に対する量は、1〜20重量%の範囲であるの
が好ましい。すなわち、熱硬化性樹脂の熱分解物による
炭素短繊維同士の結着の強さは、乾留前のCFRPにお
ける炭素繊維と熱硬化性樹脂とのそれよりも弱くなって
おり、1重量%未満では炭素繊維塊の形態保持力が低
く、輸送中に綿状になったりする。一方、20重量%を
超えると、結着力が低下しているとはいっても利用時に
おける炭素短繊維の分離が難しくなり、炭素短繊維の他
材料中における分散性が低下するようになる。なお、炭
素繊維塊中における熱分解物は、硝酸や硫酸等で処理し
て除去できるので、その除去による減量分を熱分解物の
量として定量することができる。この発明の炭素繊維塊
は、鱗片状をしているために他材料との混合が容易であ
り、また、炭素短繊維はその結着を熱硬化性樹脂の熱分
解物によっていて剪断力を受けると比較的容易に単繊維
に分離するから、他材料中への分散性に優れるが、母集
団において、最大寸法30mm以下のものが90重量%以
上を占め、かつ、その最大寸法の炭素繊維塊の厚みに対
する比が3以上のものが60重量%以上を占めている
要がある。このようにすると、混合性や、押出機におけ
る通過性等が向上する。すなわち、最大寸法30mmを超
えるものが10重量%よりも多くなってくると、他材
料、たとえば粒状材料との混合が難しくなる。また、た
とえば熱可塑性樹脂ペレットの製造時においては、炭素
繊維塊が架橋してホッパーへの定量供給が難しくなった
り、押出機のスクリューの溝に噛み込みにくくなったり
するようになる。また、上記比が3よりも小さいものが
40重量%を超えるようになると、さいころのような炭
素繊維塊が多くなってやはり他材料との混合性が低下し
てくるばかりか、炭素短繊維が単繊維に分離しにくくな
る。さて、そのような炭素繊維塊は、上述したように、
CFRPを乾留後に鱗片状に破砕することによって製造
する。ここで、CFRPは、エポキシ樹脂や不飽和ポリ
エステル樹脂、フェノール樹脂等の熱硬化性樹脂をマト
リクスとするものであり、強化繊維としては炭素繊維の
みが使われていたり、炭素繊維が主として使われている
ようなものである。炭素繊維は、フィラメントの形態で
あってもよく、織物のようなシートの形態であってもよ
い。また、CFRPの構成は、積層構成やフィラメント
ワインディングによるヘリカル巻構成等、いずれであっ
てもよく、また、形状も、板状や管状等、いずれであっ
てもよい。CFRPは、鱗片状に破砕する場合は、たと
えば、CFRPを固定刃と回転刃とを有する破砕機で破
砕した後、スクリーンにかけて所望の大きさのもののみ
を選別する。スクリーン上に残った大きな破砕片は再び
破砕機に投入する。また、実質的に非酸化性雰囲気下に
て300〜1,000℃の温度範囲で乾留する場合は、
少なくとも釜等に対する新たな酸素の供給を絶った状態
で加熱する。実質的に非酸化性雰囲気下とは、そのよう
な意味である。乾留中、必要に応じて釜等に窒素等の不
活性ガスを供給してもよい。このように実質的に非酸化
性雰囲気の下で破砕片を加熱するので、300〜1,0
00℃の温度範囲では炭素繊維はほとんど酸化分解せ
ず、特性の劣化や減量は最小限に抑えられる。一方、加
熱によって熱硬化性樹脂は大半が熱分解し、発生した一
酸化炭素、メタン、ベンゼン、トルエン等が系外に排出
されるとともに、炭素分の多い低分子の熱分解物が残渣
として残り、これが炭素短繊維同士を結着する。乾留温
度が300℃未満では、熱硬化性樹脂の分解に長時間を
要するようになり、コストが上昇するので実用的でな
い。また、1,000℃を超えるようになると、昇温や
降温に時間がかかり、また、断熱材等の寿命も短くなっ
てやはりコストが上昇するようになる。なお、残渣の量
は、乾留の温度や時間、CFRPを構成している熱硬化
性樹脂の種類やその量等によって決まる。かくして炭素
繊維塊が得られるが、CFRPはマトリクス樹脂が熱硬
化性樹脂であるから乾留しても溶融することはなく、ほ
ぼ破砕片の形状と同じ形状の炭素繊維塊が得られる
て、この発明の炭素繊維塊は、CFRTP製品の成形に
供するための、炭素繊維入り熱可塑性樹脂ペレットの製
造に使用することができる。すなわち、少なくとも上述
した炭素繊維塊と熱可塑性樹脂チップとを炭素短繊維の
含有率が所望の値になるように押出機に供給し、チップ
を溶融させるとともにスクリューで混練しながら線状に
押出成形し、固化した後に、所望の長さ、たとえば2〜
5mmに切断する。このとき、炭素繊維塊は、混練による
剪断力を受けて炭素短繊維と熱硬化性樹脂の熱分解物と
に分離する。小さくなってはいるが、炭素繊維塊の形の
ままのものが残ることもある。そして、それらが分散し
た熱可塑性樹脂ペレットを得ることができる。なお、押
出機には、スクリューを1本装備した1軸方式のもの
と、2本装備した2軸方式のものとがあるが、2軸方式
のもののほうが大きな剪断力が得られ、炭素短繊維と熱
硬化性樹脂の熱分解物との分離がより完全に行われるよ
うになる。かくして、熱可塑性樹脂ペレットが得られる
が、ペレット中における炭素短繊維の量は、1〜40重
量%の範囲にするのが好ましい。1重量%未満では、C
FRTP製品における力学的特性の向上効果が小さい。
また、ペレットを使用するCFRTP成形品の製造に
は、一般に射出成形法が用いられるが、炭素短繊維の量
が40重量%を超えてくると、射出成形時における混練
物の流動性が悪くなって得られるCFRTP製品の力学
的特性が低下したり、外観不良を生ずるようになる。な
お、熱可塑性樹脂チップは、ナイロン樹脂、ポリエステ
ル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ
ウレタン樹脂、ポリフニレンサルファイド樹脂、ポリイ
ミド樹脂、ポリブチレンテレフタレート樹脂、ポリカー
ボネイト樹脂、ABS樹脂、アセタール樹脂、ポリエー
テルエーテルケトン樹脂、酢酸ビニル共重合体、熱可塑
性ゴム等からなる。ところで、この種のペレットの製造
においては、従来は、エポキシ系等のサイジング剤が1
重量%程度付着した炭素繊維ストランドに、熱可塑性樹
脂チップとの混合をよくするための、そのチップを構成
する熱可塑性樹脂よりもさらに分子量の高い熱可塑性樹
脂コーティング剤、たとえば水溶性ナイロン、ポリウレ
タン、ポリビニルアルコールを3〜7重量%付着させた
ものを素材として用い、製造過程でチップとともにコー
テング剤を溶融させ、ベースとなる熱可塑性樹脂、いわ
ゆるベースポリマー中にコーテング剤を分散させてい
る。しかしながら、このコーテング剤はベースポリマー
とは本質的に異質のものであり、ベースポリマーの特
性、特に耐薬品性や耐熱性を低下させてしまう。また、
ベースポリマーの溶融温度が高い場合には、サイジング
剤やコーテング剤が発煙し、得られるCFRP製品にボ
イドを発生させるようになる。この点、この発明の炭素
繊維塊を使用すれば、乾留によって、サイジング剤は除
去されており、また、熱硬化性樹脂の熱分解物は炭素分
の多い低分子物質となっているので、かかる不都合の発
生を防止することができるようになる。また、CFRT
P製品の耐摩耗性等を向上させたり、成形品を黒く着色
したりする目的でペレット中に炭素粉末を混入すること
がよくあるが、この発明の炭素繊維塊を使用すれば、熱
硬化性樹脂の熱分解物がかかる作用をもつことになるの
で、別途炭素粉末を入れる必要はなくなる。この発明の
炭素繊維塊は、CFRTP製品の製造のみならず、CF
RC成形体の製造にも使用することができる。すなわ
ち、炭素繊維塊と、少なくとも砂や砕石等の骨材、セメ
ント、水とを混練し、たとえば型枠内に充填して成形す
れば、CFRC成形体が得られる。混合割合は、重量
で、セメント1に対して、骨材0.2〜1.0、水0.
4〜1.0、炭素繊維塊0.02〜0.4の範囲がよ
い。炭素繊維塊は、混練されてもほとんどがその形を保
ち、一部が炭素短繊維と熱硬化性樹脂の樹脂の熱分解物
とに分離されるが、炭素繊維塊の上記範囲は、炭素短繊
維がCFRC成形体中に1〜10重量%ほど含有される
ようになる割合である。1重量%未満では、補強効果が
小さい。また、10重量%を超えると混練物の流動性が
低下し、CFRC成形体の均質性が損われたり、表面平
滑性が損われて商品価値が低下するといった不都合がで
てくる。ところで、最近、カーテンウォール工法等にお
いて用いるセメント成形体の曲げ強度等の機械的特性を
向上させる目的で、セメントに炭素短繊維を複合するこ
とが行われているが、炭素繊維は比重が1.7〜1.9
と低いため、骨材やセメント、水等との均一な混合はな
かなか難しく、ポリビニルアルコール等のコーティング
が必要になる。しかしながら、この発明の炭素繊維塊を
使用すれば、炭素短繊維同士が熱硬化性樹脂の熱分解物
で結着されているからコーテングの必要はなく、単に炭
素繊維塊と、骨材、セメント、水とをミキサーに入れ、
混合するだけでよくなる。また、上述したCFRC成形
体は、炭素短繊維に、先に述べたように、可燃性である
サイジング剤やコーテング剤が付着しておらず、炭素短
繊維同士の結着が炭素分の多い低分子の熱硬化性樹脂の
熱分解物によって行われているから、火災等に際して発
煙したり爆裂したりしにくく、耐火性に優れている。
In order to achieve the above-mentioned object, the present invention has a large number of carbon short fibers integrally bound by a pyrolyzate of a thermosetting resin to form a scaly form as a whole. A lump of carbon fibers which is a population of
90% by weight or less with a maximum dimension of 30 mm or less
It occupies the upper part and the thickness of the carbon fiber mass of the maximum size
Those with a ratio of 3 or more account for 60% by weight or more.
And those characterized by. Carbon fiber mass, the flakes are large number of short carbon fibers are bound together by thermal decomposition product of the thermosetting resin, and a layered, and the thin <br/> piece mutual thermal sometimes it has scaly as a whole is bound together by thermal decomposition product of the curable resin, the carbon
Fiber lumps whose maximum size in the population is 30 mm or less
Is 90% by weight or more, and its maximum size is carbon fiber
60% by weight or more if the ratio to the thickness of woven mass is 3 or more
Occupy The amount of the thermal decomposition product of the thermosetting resin with respect to the carbon short fibers is preferably in the range of 1 to 20% by weight.
The present invention also provides a method for producing such a mass of carbon fibers, in which a large number of short carbon fibers are thermally decomposed from a thermosetting resin.
Thin pieces that are bound together by objects form layers
And the flakes are separated from each other by the thermal decomposition product of the thermosetting resin.
The carbon that is bound together and has a scaly shape as a whole
A fiber mass, the carbon fiber mass being the largest in the population
90% by weight or less occupies 30 mm or less,
The ratio of the maximum dimension to the thickness of the carbon fiber mass is 3 or less.
Provided is a manufacturing method in which the above content accounts for 60% by weight or more . Further, the present invention also provides a concrete utilization measure of the above-mentioned carbon fiber mass. That is, a mixture containing the lump of carbon fibers and the thermoplastic resin chip is extruded into a linear shape while melting and kneading, and then cut into a desired length. Then, the carbon fiber mass is physically decomposed into a carbon short fiber and a thermal decomposition product of the thermosetting resin by the shearing force at the time of kneading, and contains the carbon short fiber and the thermal decomposition product of the thermosetting resin due to the decomposition. A thermoplastic resin pellet is obtained. Depending on the degree of kneading, the carbon fiber lumps may remain in their original form although they have become smaller. Such pellets are useful in the manufacture of CFRTP products. Also,
The above-mentioned carbon fiber mass is kneaded with at least aggregate, cement and water to form a desired shape. Then, a part of the carbon fiber mass is physically decomposed into a short carbon fiber and a thermal decomposition product of the thermosetting resin by the shearing force at the time of kneading, but most of the carbon fiber mass remains as it is, or CFRC containing a small amount of physically decomposed carbon fiber lumps and / or short carbon fibers physically decomposed and a thermally decomposed product of a thermosetting resin is obtained . To further illustrate the invention this carbon fiber mass of this invention, the waste CF
RP products and, the chips or the like generated during the production of CFRP products
After carbonization at a temperature range of real qualitatively 300 to 1,000 ° C. under a non-oxidizing atmosphere, obtained by crushing the flakes, though the overall scale-like, short carbon fibers and C
The thermal decomposition product of the thermosetting resin that constitutes the FRP is included, and the short carbon fibers are integrally bonded by the thermal decomposition product of the thermosetting resin. The carbon fiber mass has a scale-like shape as a whole, but the short carbon fibers may be oriented in one direction or may be oriented randomly in various directions. Further, the carbon fiber lump includes, for example, a plurality of thin pieces in which a large number of carbon short fibers oriented in one direction are integrally bound by a thermal decomposition product of a thermosetting resin, and the carbon short fibers have an arbitrary angle. It forms a layer by overlapping so as to intersect with each other, and furthermore, these thin pieces are similarly bound together by a thermal decomposition product of a thermosetting resin.
It may have a so-called multi-layer structure. The configuration varies depending on various factors such as the arrangement of carbon fibers in CFRP and the positional relationship between crushed pieces during carbonization. However, it is still scale-like as a whole. The thermal decomposition product of the thermosetting resin, which is a residue obtained by dry distillation, serves as a so-called adhesive agent for binding the short carbon fibers to each other. The amount of the thermal decomposition product of the thermosetting resin with respect to the carbon short fibers is preferably in the range of 1 to 20% by weight. That is, the strength of binding of the carbon short fibers to each other by the thermal decomposition product of the thermosetting resin is weaker than that between the carbon fibers and the thermosetting resin in CFRP before carbonization. The shape retention of carbon fiber lumps is low, and it may become cotton-like during transportation. On the other hand, when it exceeds 20% by weight, although the binding force is lowered, it becomes difficult to separate the short carbon fibers during use, and the dispersibility of the short carbon fibers in other materials is lowered. Since the thermal decomposition product in the carbon fiber mass can be removed by treatment with nitric acid, sulfuric acid or the like, the amount reduced by the removal can be quantified as the amount of the thermal decomposition product. Since the carbon fiber lump of the present invention has a scale-like shape, it can be easily mixed with other materials, and the short carbon fiber is subjected to shearing force by its thermal decomposition product of thermosetting resin. Since it is relatively easily separated into single fibers, it has excellent dispersibility in other materials, but in the population, 90% by weight or more of the maximum size is 30 mm or less, and the carbon fiber mass of the maximum size. the ratio of thickness of 3 or more account for more than 60 wt%
There is a point. In this way, mixed and, you better passability or the like in an extruder. That is, if the maximum size exceeds 30 mm and the content exceeds 10% by weight, it becomes difficult to mix with other materials, for example, granular materials. In addition, for example, during the production of thermoplastic resin pellets, the lumps of carbon fiber are cross-linked to make it difficult to supply a fixed amount to the hopper, or become difficult to be caught in the groove of the screw of the extruder. Further, if the above ratio is less than 3 and exceeds 40% by weight, not only the amount of carbon fiber lumps such as dice increases but also the miscibility with other materials deteriorates, and the short carbon fibers become It becomes difficult to separate into single fibers. Now, such a carbon fiber mass, as described above,
CFRP and prepared by crushing the flakes after dry distillation. Here, CFRP has a matrix of a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a phenol resin, and only carbon fibers are used as the reinforcing fibers, or carbon fibers are mainly used. It is like being. The carbon fibers may be in the form of filaments or in the form of sheets such as fabric. The CFRP may have any structure such as a laminated structure or a helical winding structure by filament winding, and may have any shape such as a plate shape or a tubular shape. When the CFRP is crushed into scales, for example, the CFRP is crushed by a crusher having a fixed blade and a rotary blade and then screened to select only those having a desired size. The large crushed pieces remaining on the screen are put into the crusher again. Also, in a substantially non-oxidizing atmosphere
When dry-distilling in the temperature range of 300 to 1,000 ° C,
At least heating is performed with the supply of new oxygen to the kettle etc. cut off. A substantially non-oxidizing atmosphere has such a meaning. During dry distillation, an inert gas such as nitrogen may be supplied to a kettle or the like, if necessary. Since the crushed pieces are heated under a substantially non-oxidizing atmosphere in this manner, 300 to 1.0
In the temperature range of 00 ° C., carbon fibers are hardly oxidized and decomposed, and the deterioration of the characteristics and the weight loss can be minimized. On the other hand, most of the thermosetting resin is thermally decomposed by heating, and the generated carbon monoxide, methane, benzene, toluene, etc. are discharged to the outside of the system, and low-molecular thermally decomposed products containing a large amount of carbon remain as a residue. , Which binds the short carbon fibers together. If the dry distillation temperature is lower than 300 ° C., it takes a long time to decompose the thermosetting resin and the cost increases, which is not practical. Further, when the temperature exceeds 1,000 ° C., it takes time to raise or lower the temperature, and the life of the heat insulating material or the like is shortened, so that the cost also rises. The amount of the residue depends on the temperature and time of dry distillation, the type and amount of the thermosetting resin constituting CFRP, and the like. Thus, a carbon fiber lump is obtained, but since the matrix resin of CFRP is a thermosetting resin, CFRP does not melt even if carbonized, and a carbon fiber lump having substantially the same shape as the crushed pieces is obtained . It is <br/> Te, carbon fiber mass of this invention, for providing a molding of CFRTP products, can be used for the production of carbon fiber-containing thermoplastic resin pellets. That is, at least the above-mentioned carbon fiber lumps and thermoplastic resin chips are supplied to an extruder so that the content of short carbon fibers becomes a desired value, and the chips are melted and extruded linearly while kneading with a screw. And, after solidification, a desired length, for example 2 to
Cut to 5 mm. At this time, the lump of carbon fibers is subjected to a shearing force due to the kneading and separated into short carbon fibers and a thermal decomposition product of the thermosetting resin. Although it is getting smaller, it sometimes remains in the form of carbon fiber lumps. Then, the thermoplastic resin pellets in which they are dispersed can be obtained. There are two types of extruders, one with a single screw and one with a twin screw. The twin screw type has a larger shearing force, and the short carbon fiber And the thermal decomposition product of the thermosetting resin can be more completely separated. Thus, a thermoplastic resin pellet is obtained, and the amount of short carbon fibers in the pellet is preferably in the range of 1 to 40% by weight. If less than 1% by weight, C
The effect of improving mechanical properties in FRTP products is small.
Further, an injection molding method is generally used for producing a CFRTP molded product using pellets, but if the amount of short carbon fibers exceeds 40% by weight, the fluidity of the kneaded product during injection molding becomes poor. The mechanical properties of the CFRTP product obtained as a result deteriorate, and the appearance becomes poor. The thermoplastic resin chips are nylon resin, polyester resin, polyethylene resin, polypropylene resin, polyurethane resin, polyphenylene sulfide resin, polyimide resin, polybutylene terephthalate resin, polycarbonate resin, ABS resin, acetal resin, polyether ether ketone resin. , Vinyl acetate copolymer, thermoplastic rubber and the like. By the way, in the production of pellets of this kind, conventionally, an epoxy-based sizing agent is used.
To improve the mixing with the thermoplastic resin chips, the carbon fiber strands adhering to the weight% of the thermoplastic resin chips have a higher molecular weight than the thermoplastic resin forming the chips, such as a thermoplastic resin coating agent, for example, water-soluble nylon, polyurethane, Polyvinyl alcohol with 3 to 7% by weight attached is used as a raw material, and the coating agent is melted together with the chips in the manufacturing process to disperse the coating agent in a thermoplastic resin as a base, a so-called base polymer. However, this coating agent is essentially different from the base polymer, and deteriorates the properties of the base polymer, particularly the chemical resistance and heat resistance. Also,
When the melting temperature of the base polymer is high, the sizing agent and the coating agent emit smoke, and voids are generated in the obtained CFRP product. In this respect, when the lump of carbon fiber of the present invention is used, the sizing agent is removed by dry distillation, and the thermal decomposition product of the thermosetting resin is a low molecular substance having a large carbon content. It becomes possible to prevent the occurrence of inconvenience. Also, CFRT
Carbon powder is often mixed in the pellets for the purpose of improving the wear resistance of the P product or coloring the molded product black. However, when the carbon fiber mass of the present invention is used, the thermosetting property is improved. Since the thermal decomposition product of the resin has such an action, it is not necessary to add carbon powder separately. The carbon fiber lump of the present invention is used not only for the production of CFRTP products but also for CF
It can also be used for the production of RC compacts. That is, a CFRC compact can be obtained by kneading a lump of carbon fiber and at least an aggregate such as sand and crushed stone, cement, and water, and filling the mixture in a mold and molding. The mixing ratio is, by weight, 0.2 to 1.0 of the aggregate and 0.
The range of 4 to 1.0 and the mass of carbon fiber 0.02 to 0.4 are preferable. Most of the carbon fiber mass retains its shape even when kneaded, and a part thereof is separated into carbon short fiber and thermal decomposition product of thermosetting resin. It is a ratio in which the fibers are contained in the CFRC molded body in an amount of about 1 to 10% by weight. If it is less than 1% by weight, the reinforcing effect is small. On the other hand, if it exceeds 10% by weight, the fluidity of the kneaded product decreases, the homogeneity of the CFRC molded product is impaired, and the surface smoothness is impaired, resulting in a decrease in commercial value. By the way, recently, for the purpose of improving mechanical properties such as bending strength of a cement molded product used in a curtain wall construction method or the like, a short carbon fiber is compounded with cement, but the carbon fiber has a specific gravity of 1. 7-1.9
Since it is low, uniform mixing with aggregate, cement, water, etc. is difficult, and coating with polyvinyl alcohol or the like is required. However, if the carbon fiber mass of the present invention is used, there is no need for coating because short carbon fibers are bound to each other by a thermal decomposition product of a thermosetting resin, and simply a carbon fiber mass and aggregate, cement, Put water and into the mixer,
It only needs to be mixed. Further, in the CFRC molded product described above, the flammable sizing agent and the coating agent are not attached to the short carbon fibers as described above, and the short carbon fibers are bound to each other with a low carbon content. since being made by the thermal decomposition product of the thermosetting resin of the molecule, or hardly or explosion smoke during a fire or the like, that has excellent fire resistance.

【実施例】実施例1 東レ株式会社製炭素繊維“トレカ”T300−12K
(目付:0.800g/m、引張強度:360kgf /mm
2 、平均単繊維径:7.0μm、単繊維数:12,00
0本)に硬化剤を含むエポキシ樹脂を含浸し、フィラメ
ントワインディング法によって、外径8mm、肉厚3mm、
長さ400mm、エポキシ樹脂の含有率が35重量%のC
FRPパイプを得た。なお、成形条件は180℃、2時
間とした。次に、上記パイプを回転刃(回転数:700
rpm )と固定刃とを有し、下方に網目の大きさが10mm
のスクリーンを取り付けてなる破砕機で破砕した。次
に、破砕片880g(炭素繊維量:572g)を、分解
ガスの流出口と窒素ガスの流入口とを除いて密閉したス
テンレス製の釜に入れ、釜内に窒素ガスを20ml/分の
速度で流入させながら加熱し、乾留した。流出口から流
出する分解ガスは水冷管に導き、液化して捕集した。釜
内の温度が500℃になり、2時間経過したところで、
窒素ガスの流入を続けながら常温まで降温し、鱗片状の
炭素繊維塊を得た。この炭素繊維塊は、エポキシ樹脂が
熱分解して黒色となっており、重量は655gであっ
た。炭素繊維塊におけるエポキシ樹脂の熱分解物の割合
は、12.7重量%であった。また、炭素繊維塊の形状
は破砕片のそれとほぼ同じで、最大寸法が30mm以下の
ものが約93重量%を占め、最大寸法の厚みに対する比
が3以上のものが約70重量%を占めていた。 実施例2 実施例1で得た炭素繊維塊を、その炭素短繊維が15重
量%を占めるようにナイロン66チップ(太さ:3mm、
長さ:4mm)と混合して押出機に入れ、ナイロン66チ
ップを溶融、混練しながら太さ2mmの線状に押出成形し
た後、長さ4mmに切断してペレットを得た。押出機に
は、スクリューの直径が30mm、長さが75mmの同方向
回転噛み合い型の2軸式を用い、スクリュー回転数20
0rpm 、シリンダー温度285℃、吐出量100g/分
の条件で連続的に押し出し、水槽内に通して冷却した
後、切断した。得られたペレットを110℃で熱風乾燥
し、さらに80℃で24時間真空乾燥した後、射出成形
機を用いて厚みが3mmの平板に成形した。成形の条件
は、シリンダー温度290℃、射出圧力50kgf /mm2
とした。この平板の表面を#1500のサンドペーパー
で研磨した後、バフ仕上げして顕微鏡で観察したとこ
ろ、ナイロン66中の炭素短繊維は単繊維によく分散し
ており、エポキシ樹脂の熱分解物は10μm以下で、炭
素短繊維から離れて分散していた。また、炭素短繊維の
平均繊維長を測定したところ、175μmであった。な
お、平均繊維長は、平板から切り出した試料を蟻酸に溶
解して炭素短繊維を分離し、顕微鏡で100倍に拡大し
て1本ずつ100本の長さを計り、測定値を50μmご
とに区分して算出した重量平均値として求めた。次に、
上記平板について、引張強度と、曲げ強度と、曲げ弾性
率とを測定したところ、次のとおりであった。なお、N
数は5とした。 引張強度 :1,450kgf /cm2 曲げ強度 :1,950kgf /cm2 曲げ弾性率:930×102 kgf /cm2 実施例3 実施例1で得た炭素繊維塊を、その炭素短繊維が4重量
%を占めるように、1,360gの骨材(5号硅砂)
と、5,410gのセメントと、2,560gの水とオ
ムニミキサーを用いて混練し、混練物を型枠に流し込
み、翌日型枠をはずし、180℃、10気圧のオートク
レーブで5時間養生した後、20℃、65%RHの室内
に7日間放置して、厚みが10mmのCFRC成形板を得
た。このCFRC成形板について、曲げ強度を測定した
ところ、460kgf /cm2であった。
[Example] Example 1 Carbon fiber "Torayca" T300-12K manufactured by Toray Industries, Inc.
(Basis weight: 0.800 g / m, tensile strength: 360 kgf / mm
2, average single fiber diameter: 7.0 μm, number of single fibers: 12,000
0) is impregnated with an epoxy resin containing a curing agent, and the filament winding method is used to obtain an outer diameter of 8 mm, a wall thickness of 3 mm,
C with a length of 400 mm and an epoxy resin content of 35% by weight
I got an FRP pipe. The molding conditions were 180 ° C. and 2 hours. Next, the pipe is rotated by a rotary blade (rotation speed: 700
rpm) and a fixed blade, and the mesh size is 10 mm below
It was crushed with a crusher equipped with a screen. Next, crushed pieces of 880 g (carbon fiber amount: 572 g) were placed in a stainless steel kettle which was closed except for the decomposition gas outflow port and the nitrogen gas inflow port, and nitrogen gas was fed into the kettle at a rate of 20 ml / min. The mixture was heated while flowing in, and dried and distilled. The decomposed gas flowing out from the outlet was guided to a water cooling tube, liquefied and collected. When the temperature in the pot reaches 500 ° C and 2 hours have passed,
While continuing the inflow of nitrogen gas, the temperature was lowered to room temperature to obtain a scaly carbon fiber mass. This carbon fiber lump had a black color due to thermal decomposition of the epoxy resin and weighed 655 g. The ratio of the thermal decomposition product of the epoxy resin in the carbon fiber mass was 12.7% by weight. The shape of the lumps of carbon fiber is almost the same as that of the crushed pieces, and those having a maximum dimension of 30 mm or less account for about 93% by weight, and those having a ratio of the maximum dimension to the thickness of 3 or more account for about 70% by weight. It was Example 2 Nylon 66 chips (thickness: 3 mm, the carbon fiber mass obtained in Example 1 was used so that the short carbon fibers accounted for 15% by weight.
(Length: 4 mm), the mixture was put into an extruder, and nylon 66 chips were melted and kneaded to be extruded into a linear shape having a thickness of 2 mm, and then cut into a length of 4 mm to obtain pellets. For the extruder, a twin-screw type screw with a screw diameter of 30 mm and a length of 75 mm that rotates in the same direction is used.
It was continuously extruded under the conditions of 0 rpm, a cylinder temperature of 285 ° C., and a discharge rate of 100 g / min, passed through a water tank for cooling, and then cut. The obtained pellets were dried with hot air at 110 ° C. and further vacuum dried at 80 ° C. for 24 hours, and then molded into a flat plate having a thickness of 3 mm using an injection molding machine. Molding conditions are cylinder temperature 290 ℃, injection pressure 50kgf / mm2
And After polishing the surface of this flat plate with # 1500 sandpaper, buffing and observing with a microscope, the short carbon fibers in nylon 66 were well dispersed into single fibers, and the thermal decomposition product of the epoxy resin was 10 μm. Below, it was dispersed away from the short carbon fibers. The average fiber length of the short carbon fibers was measured and found to be 175 μm. In addition, the average fiber length is obtained by dissolving a sample cut out from a flat plate in formic acid to separate carbon short fibers, magnifying 100 times with a microscope, measuring the length of 100 fibers one by one, and measuring the value every 50 μm. It was calculated as a weighted average value calculated by dividing. next,
The tensile strength, bending strength, and bending elastic modulus of the flat plate were measured, and were as follows. Note that N
The number was 5. Tensile strength: 1,450 kgf / cm2 Bending strength: 1,950 kgf / cm2 Bending elastic modulus: 930 × 10 2 kgf / cm2 Example 3 The short carbon fiber occupies 4% by weight of the carbon fiber mass obtained in Example 1. So that 1,360g of aggregate (No. 5 silica sand)
After kneading with 5,410 g of cement, 2,560 g of water and an omni mixer, pouring the kneaded product into a mold, removing the mold the next day, and curing for 5 hours in an autoclave at 180 ° C. and 10 atmospheres After leaving it in a room at 20 ° C. and 65% RH for 7 days, a CFRC molded plate having a thickness of 10 mm was obtained. When the bending strength of this CFRC molded plate was measured, it was 460 kgf / cm 2 .

【発明の効果】この発明の炭素繊維塊は、多数本の炭素
短繊維を熱硬化性樹脂の熱分解物によって一体に結着し
てなるものであるから、利用に際して炭素短繊維が単繊
維によく分離し、他材料中に容易に分散できる。また、
鱗片状をしているから、他材料との混合が極めて容易で
ある。しかも、この炭素繊維塊は、母集団における最大
寸法が30mm以下のものが90重量%以上を占め、か
つ、その最大寸法の炭素繊維塊の厚みに対する比が3以
上のものが60重量%以上を占めているから、上記他材
料との混合性や押出機における通過特性等が向上する。
さらに、熱硬化性樹脂の熱分解物の量が1〜20重量%
の範囲にあるときは、炭素繊維塊の形態保持が良好に行
えるばかりでなく、利用の際の各種工程における加工性
がよくなり、炭素短繊維の分散性が一層向上する。これ
らから、この発明の炭素繊維塊を使用すれば、力学的特
性に優れたCFRTP製品やCFRC成形体を得ること
ができるようになる。また、この発明は、CFRPを実
質的に非酸化性雰囲気下にて300〜1,000℃の温
度範囲で乾留した後、鱗片状に破砕することによって炭
素繊維塊を製造するから、上述した従来の方法のように
熱硬化性樹脂の助燃剤を必要とせず、回収コストを低減
できるばかりか、実質的に非酸化性雰囲気下で乾留する
から熱硬化性樹脂の燃焼に伴う炭素繊維の酸化、減量や
特性の劣化を防止することができ、回収量も増大する。
さらに、この発明の熱可塑性樹脂ペレットは、炭素短繊
維と熱硬化性樹脂の熱分解物とを含んでいるから、耐薬
品性や耐熱性に優れ、しかも、成形に際して発煙を伴う
サイジング剤やコーテング剤のようなものを含んでいな
いから、これを使用すれば、ボイドが少なく、力学的特
性に優れたCFRTP製品を得ることができるようにな
る。また、耐摩耗性に優れ、黒い色相の商品価値に優れ
たCFRTP製品を得ることができるようになる。しか
も、そのような熱可塑性樹脂ペレットは、上述した炭素
繊維塊と熱可塑性樹脂チップとを含む混合物を溶融、混
練しながら線状に押出成形した後、所望の長さに切断す
ることで簡単に製造することができる。さらにまた、こ
の発明のCFRC成形体は、炭素短繊維と熱硬化性樹脂
の熱分解物とがセメント中によく分散しているから、火
災等に際して発煙したり爆裂するような心配が少なく、
耐火性に優れている。しかも、そのようなCFRC成形
体は、炭素繊維塊と、少なくとも骨材、セメントおよび
水とを混練し、所望の形状に成形することによって簡単
に製造することができる すなわち、この発明は、いわ
ゆる廃CFRP製品の処理、再利用に有効であるばかり
でなく、CFRP製品の製造時に発生する切屑等の処
理、再利用をも可能とする。
EFFECTS OF THE INVENTION Since the carbon fiber mass of the present invention is formed by integrally binding a large number of carbon short fibers with a thermal decomposition product of a thermosetting resin, the carbon short fibers are converted into single fibers when used. It separates well and can be easily dispersed in other materials. Also,
Since it has a scaly shape, it is extremely easy to mix with other materials. Moreover, this carbon fiber mass is the largest in the population.
90% by weight or less occupies 30 mm or less,
The ratio of the maximum dimension to the thickness of the carbon fiber mass is 3 or less.
Since the above ones account for more than 60% by weight, the above other materials
Mixability with the raw material and passage characteristics in the extruder are improved.
Further, the amount of the thermally decomposed product of the thermosetting resin is 1 to 20% by weight.
Within the range, not only can the morphology of the carbon fiber mass be maintained well, but also the processability in various steps during use will be improved, and the dispersibility of the short carbon fibers will be further improved. From these, it is possible to obtain a CFRTP product or a CFRC molded product having excellent mechanical properties by using the carbon fiber mass of the present invention. Further, according to the present invention, since CFRP is carbonized in a temperature range of 300 to 1,000 ° C. under a substantially non-oxidizing atmosphere and then crushed into scales to produce a carbon fiber mass, the above-mentioned conventional method is used. The method does not require a thermosetting resin as a combustion improver, and not only can the recovery cost be reduced, but since carbonization is carried out in a substantially non-oxidizing atmosphere, the carbon fiber is oxidized by the combustion of the thermosetting resin, It is possible to prevent weight loss and characteristic deterioration, and increase the recovery amount.
Furthermore, since the thermoplastic resin pellets of the present invention contain short carbon fibers and a pyrolyzate of a thermosetting resin, they are excellent in chemical resistance and heat resistance, and moreover, they are sizing agents and coatings that emit smoke during molding. Since it does not contain an agent or the like, the use of this agent makes it possible to obtain a CFRTP product having few voids and excellent mechanical properties. Further, it becomes possible to obtain a CFRTP product which is excellent in abrasion resistance and has a black hue and a high commercial value. Moreover, such a thermoplastic resin pellet is easily melted by extruding a mixture containing the above-mentioned carbon fiber lump and the thermoplastic resin chip into a linear shape while kneading, and then cutting the mixture into a desired length. It can be manufactured. Further, in the CFRC molded product of the present invention, since the short carbon fibers and the thermal decomposition product of the thermosetting resin are well dispersed in the cement, there is little concern that smoke or explosion will occur during a fire,
Excellent fire resistance. Moreover, such a CFRC compact can be easily manufactured by kneading the carbon fiber mass and at least the aggregate, cement and water and molding the mixture into a desired shape . That is, the present invention is not only effective for the treatment and reuse of so-called waste CFRP products, but also enables the treatment and reuse of chips and the like generated during the production of CFRP products.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 28/02 B29C 67/14 X (56)参考文献 特開 平4−323009(JP,A) 特開 平5−185056(JP,A) 特開 昭53−40085(JP,A) 特開 平6−99160(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08J 11/00 - 11/28 B29B 17/00 - 17/02 B09B 3/00 - 5/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C04B 28/02 B29C 67/14 X (56) References JP-A-4-323009 (JP, A) JP-A-5-185056 ( JP, A) JP 53-40085 (JP, A) JP 6-99160 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08J 11 / 00-11 / 28 B29B 17/00-17/02 B09B 3/00-5/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多数本の炭素短繊維が熱硬化性樹脂の熱分
解物によって一体に結着され、全体として鱗片状をして
いる炭素繊維塊であって、該炭素繊維塊は、母集団にお
ける最大寸法が30mm以下のものが90重量%以上を
占め、かつ、その最大寸法の炭素繊維塊の厚みに対する
比が3以上のものが60重量%以上を占めていることを
特徴とする炭素繊維塊。
1. A carbon fiber mass having a plurality of short carbon fibers integrally bound by a pyrolyzate of a thermosetting resin, and having a scale-like shape as a whole, wherein the carbon fiber mass is a population. To
90% by weight or more for the maximum dimension of 30 mm or less
Occupy and to the thickness of the carbon fiber mass of its largest dimension
The ratio of 3 or more accounts for 60% by weight or more.
Characteristic carbon fiber lump.
【請求項2】多数本の炭素短繊維が熱硬化性樹脂の熱分
物によって一体に結着されている薄片が層状をなし
ており、かつ、薄片相互が熱硬化性樹脂の熱分解物に
よって一体に結着されて全体として鱗片状をしている炭
素繊維塊であって、該炭素繊維塊は、母集団における最
大寸法が30mm以下のものが90重量%以上を占め、
かつ、その最大寸法の炭素繊維塊の厚みに対する比が3
以上のものが60重量%以上を占めていることを特徴と
する炭素繊維塊。
2. A plurality of short carbon fibers are heat components of a thermosetting resin.
Carbon flakes that are bound together by hydrolyzate is, have a layered, and that the flakes each other has a scaly as a whole is bound together by thermal decomposition product of the thermosetting resin A lump of fibers, the lump of carbon fibers being the largest in the population.
90% by weight or more of large size 30 mm or less,
Moreover, the ratio of the maximum dimension to the thickness of the carbon fiber mass is 3
Characterized by the above occupying more than 60% by weight
A lump of carbon fiber that does.
【請求項3】熱硬化性樹脂の熱分解物の炭素繊維に対す
る量が1〜20重量%の範囲にある、請求項1または2
の炭素繊維塊。
3. The amount of the thermal decomposition product of the thermosetting resin with respect to the carbon fiber is in the range of 1 to 20% by weight.
Lump of carbon fiber.
【請求項4】炭素繊維強化プラスチックを実質的に非酸
化性雰囲気下にて300〜1,000℃の温度範囲で乾
留した後、鱗片状に破砕することにより、該炭素繊維塊
を、母集団における最大寸法が30mm以下のものが9
0重量%以上を占め、かつ、その最大寸法の炭素繊維塊
の厚みに対する比が3以上のものが60重量%以上を占
めるようにすることを特徴とする炭素繊維塊の製造方
法。
4. A carbon fiber reinforced plastic, which is obtained by dry-distilling a carbon fiber reinforced plastic in a temperature range of 300 to 1,000 ° C. in a substantially non-oxidizing atmosphere and then crushing it into flakes.
The maximum dimension in the population is 30 mm or less
Carbon fiber mass that occupies 0% by weight or more and has the maximum size
If the ratio to the thickness of 3 is 3 or more, 60% or more
Of producing carbon fiber lumps characterized by
Law.
【請求項5】請求項1、2または3の炭素繊維塊の物理
的分解による炭素繊維塊および/または物理的分解によ
る炭素繊維と熱硬化性樹脂の熱分解製樹脂の熱分解物と
を含む熱硬化性樹脂ペレット。
5. A carbon fiber mass obtained by physically decomposing the carbon fiber mass of claim 1, 2 or 3 and / or carbon fiber by physical decomposition and a thermally decomposed product of a thermally decomposed resin of a thermosetting resin. Thermosetting resin pellet.
【請求項6】請求項1、2または3の炭素繊維塊と熱硬
化性樹脂チップとを含む混合物を溶融、混練しながら線
状に押出成形した後、所望の長さに切断することを特徴
とする、熱硬化性樹脂ペレットの製造方法。
6. A method of extruding a mixture containing the carbon fiber mass of claim 1, 2 or 3 and a thermosetting resin chip into a linear shape while melting and kneading, and then cutting the mixture into a desired length. And a method for producing thermosetting resin pellets.
【請求項7】請求項1、2または3の炭素繊維塊の物理
的分解による炭素繊維塊および/または物理的分解によ
る炭素繊維と熱硬化性樹脂の熱分解物とを含む炭素繊維
強化セメント成形体。
7. A carbon fiber reinforced cement molding comprising the carbon fiber lump by the physical decomposition of the carbon fiber lump of claim 1, 2 or 3 and / or the carbon fiber by the physical decomposition and a pyrolyzate of a thermosetting resin. body.
【請求項8】請求項1、2または3の炭素繊維塊と少な
くとも骨材、セメントおよび水とを混練し、所望の形状
に成形することを特徴とする、炭素繊維強化セメント成
形体の製造方法。
8. A method for producing a carbon fiber-reinforced cement molded product, which comprises kneading the carbon fiber mass of claim 1, 2 or 3 with at least aggregate, cement and water and molding the mixture into a desired shape. .
JP26643793A 1993-10-25 1993-10-25 Carbon fiber lump and method for producing the same Expired - Lifetime JP3401865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26643793A JP3401865B2 (en) 1993-10-25 1993-10-25 Carbon fiber lump and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26643793A JP3401865B2 (en) 1993-10-25 1993-10-25 Carbon fiber lump and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07118440A JPH07118440A (en) 1995-05-09
JP3401865B2 true JP3401865B2 (en) 2003-04-28

Family

ID=17430929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26643793A Expired - Lifetime JP3401865B2 (en) 1993-10-25 1993-10-25 Carbon fiber lump and method for producing the same

Country Status (1)

Country Link
JP (1) JP3401865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712813B1 (en) * 2016-12-22 2017-03-07 중경산업 주식회사 Method for preparing filter
WO2018212016A1 (en) 2017-05-17 2018-11-22 株式会社新菱 Methods for producing regenerated carbon fiber bundles, regenerated carbon fibers and regenerated milled carbon fibers, apparatus for producing regenerated carbon fiber bundles, method for producing carbon fiber-reinforced resin, and regenerated carbon fiber bundles

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468690B2 (en) * 1998-04-09 2003-11-17 株式会社アシックス Carbon fiber production method
JP3535972B2 (en) * 1998-05-21 2004-06-07 株式会社アシックス Highly conductive carbon fiber and method for producing the same
JP4026268B2 (en) * 1999-03-10 2007-12-26 東レ株式会社 Waste FRP crushed material and cement material, concrete member or resin member containing the same
JP2002284563A (en) * 2001-03-27 2002-10-03 Sumitomo Osaka Cement Co Ltd Method for manufacturing solidified concrete product and solidified concrete product
JP4371609B2 (en) * 2001-04-15 2009-11-25 實 三輪 Method for treating fiber reinforced plastic waste and method for reusing reinforced fibers recovered by the method
JP5182779B2 (en) * 2006-08-03 2013-04-17 東レ株式会社 Inorganic matrix / carbon fiber composite wire for reinforcing concrete or mortar, method for producing the same, and concrete or mortar structure
JP5046276B2 (en) * 2007-03-14 2012-10-10 東レ株式会社 Concrete or mortar structure and method for producing concrete or mortar structure
JP4452740B2 (en) 2007-12-07 2010-04-21 トヨタ自動車株式会社 Recycling method of fiber reinforced plastic
JP5498144B2 (en) * 2009-12-09 2014-05-21 一般財団法人ファインセラミックスセンター Collection method of carbon fiber
JP5941747B2 (en) * 2012-05-11 2016-06-29 カーボンファイバーリサイクル工業株式会社 Method for producing regenerated carbon fiber and apparatus for producing regenerated carbon fiber
JP2017002125A (en) * 2015-06-05 2017-01-05 東レ株式会社 Recycled carbon fiber bundle
JP6764689B2 (en) * 2016-05-19 2020-10-07 東芝環境ソリューション株式会社 How to dismantle fiber reinforced plastic
US10563023B2 (en) * 2016-08-26 2020-02-18 The Boeing Company Carbon fiber composite, a medium incorporating the carbon fiber composite, and a related method
JP7082916B2 (en) * 2017-07-27 2022-06-09 大阪ガスケミカル株式会社 Manufacturing method of carbon fiber milled
JP2019085515A (en) * 2017-11-08 2019-06-06 株式会社Subaru Treatment method
JP7326752B2 (en) * 2018-01-25 2023-08-16 東レ株式会社 Manufacturing method of recycled carbon fiber
KR102025598B1 (en) * 2018-04-24 2019-10-01 재단법인 한국탄소융합기술원 Apparatus for recycling carbon fiber reinforced composite
JP2020049820A (en) * 2018-09-27 2020-04-02 佐久間特殊鋼 株式会社 Method for manufacturing composite which contains recycle carbon fiber
JP7325277B2 (en) * 2019-09-13 2023-08-14 佐久間特殊鋼 株式会社 Resin composite material containing recycled carbon fiber and method for producing the same
WO2022254947A1 (en) 2021-06-02 2022-12-08 東洋インキScホールディングス株式会社 Thermoplastic resin composition and molded body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340085A (en) * 1976-09-25 1978-04-12 Naigai Haigurasu Kk Apparatus for crushing reinforced plastic scraps and process for producing reinforced plastics
JP2523229B2 (en) * 1991-04-23 1996-08-07 東レ株式会社 Method for recycling and utilizing carbon fiber reinforced resin moldings
JPH05185056A (en) * 1992-01-09 1993-07-27 Toshiba Mach Co Ltd Treatment of composite plastic waste material and equipment therefor
JP3180463B2 (en) * 1992-09-21 2001-06-25 東レ株式会社 Processing method of carbon fiber reinforced plastic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712813B1 (en) * 2016-12-22 2017-03-07 중경산업 주식회사 Method for preparing filter
WO2018212016A1 (en) 2017-05-17 2018-11-22 株式会社新菱 Methods for producing regenerated carbon fiber bundles, regenerated carbon fibers and regenerated milled carbon fibers, apparatus for producing regenerated carbon fiber bundles, method for producing carbon fiber-reinforced resin, and regenerated carbon fiber bundles
US11359060B2 (en) 2017-05-17 2022-06-14 Shinryo Corporation Method of producing reclaimed carbon fiber bundles, reclaimed carbon fibers, or reclaimed milled carbon fibers, device for producing reclaimed carbon fiber bundles, method of producing carbon fiber reinforced resin, and reclaimed carbon fiber bundles

Also Published As

Publication number Publication date
JPH07118440A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
JP3401865B2 (en) Carbon fiber lump and method for producing the same
CN106832905A (en) Polymer matrix micro-/ nano composite material powder and preparation method thereof
Zhu et al. Banana fibre strands reinforced polyester composites
JPH08216122A (en) Method and apparatus for extrusion molding reinforced woody synthetic plate
JP3535972B2 (en) Highly conductive carbon fiber and method for producing the same
CN110804303A (en) Regenerated carbon fiber reinforced PA6 material and preparation method thereof
Arya et al. Preparation and characterization of woven jute fabric layered composite by using bamboo fiber reinforced polymers as resin matrix
JPH05309753A (en) Fiber-reinforced plastic molded body with disposed fiber-reinforced plastics as filler and manufacture thereof
JPH0742151B2 (en) Cement-based cured product containing fiber-reinforced thermosetting plastic powder as an aggregate
CN110317400A (en) The green drainpipe in municipal gardens
KR102439573B1 (en) Manufacturing method of carbon fiber-reinforced Acrylonitrile-Butadiene-Styrene composite by LFT process and long-fiber reinforced Acrylonitrile-Butadiene-Styrene composite manufactured thereby
CA1305283C (en) Composite material
JPH08164551A (en) Method and apparatus for extrusion molding of reinforced resin synthetic panel
Lubis et al. The Influence of Coconut Shell Actived Carbon (X= 0; 0.05; 0.10; 0.15) to Lightweight Concrete
JPS63286469A (en) Composition for molding carbon fiber composite resin
Gündüz Processing of unsaturated polyesters
JP2604220B2 (en) Fiber reinforced cement molding
Hassanien A Low Cost Process for Fabricating FDM Filaments Reinforced with Inorganic Fillers
JPH0641524B2 (en) Fiber-containing lump resin composition and method for producing the same
JPS63210082A (en) Manufacture of lightweight cement products
Tabassum et al. Effects of Geometry and Forms of Recycled Plastics on Strength Properties of Silty Soils
Sathish et al. Design of Polymer Hybrid Composites
JPH03261513A (en) Fiber molded body for reinforcing and its manufacture
Yamaji et al. USA) US Pat 4 923 832 (8 May 1990) A parent metal is at least partially spaced
Co low workpieces

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

EXPY Cancellation because of completion of term