JP3397999B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3397999B2
JP3397999B2 JP35053196A JP35053196A JP3397999B2 JP 3397999 B2 JP3397999 B2 JP 3397999B2 JP 35053196 A JP35053196 A JP 35053196A JP 35053196 A JP35053196 A JP 35053196A JP 3397999 B2 JP3397999 B2 JP 3397999B2
Authority
JP
Japan
Prior art keywords
region
oxide film
concentration
forming
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35053196A
Other languages
Japanese (ja)
Other versions
JPH10189964A (en
Inventor
康雄 北平
康成 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP35053196A priority Critical patent/JP3397999B2/en
Publication of JPH10189964A publication Critical patent/JPH10189964A/en
Application granted granted Critical
Publication of JP3397999B2 publication Critical patent/JP3397999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は半導体装置及び半導
体装置の製造方法に関し、特に、横型高耐圧MOSFE
Tに形成されるLOCOS(Local oxidation of silic
on)直下に設けられた耐圧向上のために形成された不純
物拡散層の濃度の安定化に関する。 【0002】 【従来の技術】以下に、従来例に係る横型高耐圧MOS
FETについて図面を参照しながら説明する。図2は、
一般的な横型高耐圧MOSFETの断面図であり、横型
高耐圧MOSFETは、半導体基板1と、その基板表層
にドレイン領域となる第1のウェル領域2と、その第1
のウェル領域2に形成された耐圧を向上させるための拡
散領域3(以下、高耐圧用拡散領域3という。)、及び
高濃度ドレイン領域8と、高耐圧用拡散領域3上に形成
されたLOCOS酸化膜5と、チャネルを形成する高濃
度の第2のウェル領域12と、その第2のウェル領域1
2に形成された高濃度ソース領域7及びソース領域7を
共通接続するP型の高濃度共通接続領域13と、第2の
ウェル12とLOCOS酸化膜5上に形成されたゲート
電極6とをから構成される。 【0003】この横型高耐圧MOSFETは、図2に示
すように、例えば、P型の半導体基板1上に、N型不純
物を拡散してドレイン領域となる第1のウェル領域2が
形成され、その表層にボロン(B+ )などのP型の不純
物を注入、拡散して高耐圧用拡散領域3が形成されてい
る。この高耐圧用拡散領域3は、ドレイン−ソース間、
特にドレイン領域となる第1のウェル領域2で生じるジ
ャンクション効果により、空乏層の広がりを内側に向け
る事により、ドレイン−ソース間の高耐圧化を向上させ
るものであり、横型高耐圧MOSFETにおいては必須
の拡散領域である。 【0004】高耐圧用拡散領域3上にはゲート・ドレイ
ン間耐圧を向上させるために所定の厚みのLOCOS酸
化膜5が形成されており、LOCOS酸化膜5が形成さ
れていない領域の半導体基板1上には酸化膜或いは窒化
膜等によりゲート絶縁膜4が形成されている。また、第
1のウェル領域2に隣接して高濃度のP型不純物を拡散
してチャネルを形成する高濃度の第2のウェル領域12
が形成され、その表層にはN+ 型不純物が拡散されて高
濃度ソース領域7が形成されている。さらに、高耐圧用
拡散領域3が形成されていない第1のウェル領域2の表
層上には、N+ 不純物を注入・拡散して高濃度ドレイン
領域8が形成される。 【0005】さらにゲート絶縁膜4からLOCOS酸化
膜5上に、第2のウェル領域12にチャネル形成及び耐
圧特性を向上させるためのポリシリコンを堆積してゲー
ト電極6及び耐圧用電極6Aが形成されており、それら
を被覆するように層間絶縁膜9が形成されている。ソー
ス領域7、ドレイン領域8の形成領域の層間絶縁膜9に
は開口が形成され、この開口中にアルミなどからなるソ
ース電極10,ドレイン電極11が形成されている。上
記耐圧用電極6Aはドレイン電極11と電気的に接続さ
れる。また、上記高耐圧用拡散領域3は、図示されない
が、ソース電極10と電気的に接続され基板1と同電位
にしてある。 【0006】上述した横型高耐圧MOSFETにおいて
は、耐圧特性をいかに向上させるかの検討が行われてい
る。耐圧特性を向上させるために、上述したように、L
OCOS酸化膜5の直下に、例えば、P+型の不純物拡
散で高耐圧用拡散領域3を形成している。この高耐圧用
拡散領域3は、LOCOS酸化膜5の形成と同一の熱処
理工程により形成される。以下に、高耐圧用拡散領域3
の形成方法を図3及び図4を参照しながら説明する。 【0007】まず、図3に示すように、表層にドレイン
領域となるN型の第1のウェル領域2を形成したP型半
導体基板1表面にシリコン酸化膜等の酸化膜Aを形成
し、その酸化膜Aの所定領域にフォトレジストPRを選
択形成する。このフォトレジストPRをマスクにして、
例えば、ボロンイオン(B+ )を加速電圧100ke
V,ドーズ量3×1013cm-2の条件で注入する。 【0008】次いで、図4に示すようにLOCOS法に
よって酸化膜Aの所定領域、ボロンイオンが注入された
注入領域上にLOCOS酸化膜5を形成する。このと
き、先に注入されたボロンイオン(B+ )が、LOCO
S酸化膜形成時の熱により拡散され、LOCOS酸化膜
5の直下に所定の濃度を有した高耐圧用拡散領域3が形
成される。 【0009】 【発明が解決しようとする課題】上述したように、この
高耐圧用拡散領域3は、LOCOS酸化膜5の酸化工程
を経て形成されるので、酸化膜中のB+ の偏析係数及び
LOCOS酸化膜5の膜厚のばらつきにより、高耐圧用
拡散領域3の不純物濃度が不安定になり、場所ごとにば
らついてしまう。 【0010】上記従来の条件によって形成された高耐圧
用拡散領域3のボロンイオンの不純物濃度のプロファイ
ルを図5に示す。このときは、LOCOS酸化膜の膜厚
は7000オングストロームで基板内に約3150オン
グストロームの深さを有している。これによると、図5
に示すように、加速電圧が100keVと比較的低いた
めにボロンイオンは注入時にあまり深く入らずに基板表
面近くに集中するため、不純物濃度の最も高い箇所(以
下、不純物濃度のピークと称する。)が、その後形成さ
れるLOCOS酸化成長のバラツキによって、LOCO
S酸化膜内に留まってしまうものとそうでないものとが
あった。即ち、同一機種或いは同一工程で製造しなが
ら、LOCOS酸化膜のバラツキにより、高耐圧用拡散
領域の濃度がLOCOS酸化膜中に吸収され、その濃度
ピークがLOCOS酸化膜内で形成される。 【0011】従って、高耐圧用拡散領域3形成後に残留
する不純物の総量は、図5の斜線部に示した領域面積と
同じとなり、図5に示すように、その大部分がLOCO
S酸化膜内に吸収されるので、高耐圧用拡散領域3自体
の不純物の総量も少なくなる。LOCOS酸化膜3を形
成する場合、そのバラツキ(矢印)は深さ方向で約±3
50オングストローム〜±約700オングストローム程
度あり、その膜厚の制御は難しく、素子が複数形成され
た場合に、その膜厚が場所によってばらつくことを避け
る事はほとんど不可能である。従って、高耐圧用拡散領
域の不純物濃度のバラツキは避けられないことから、横
型高耐圧MOSFETの耐圧が場所によってばらつくこ
ともまた避けられず耐圧特性を均一化、即ち、耐圧特性
の向上化の妨げの原因となっていた。 【0012】本発明は、上記した事情に鑑みてなされた
ものであり、LOCOS酸化膜直下に耐圧向上のために
形成された高耐圧用拡散領域の不純物濃度をLOCOS
酸化膜形成時のバラツキに影響されない横型高耐圧MO
SFETを提供することを目的とする。 【0013】 【課題を解決するための手段】本発明は、上記課題を解
決するために、以下の構成及び方法を採用した。即ち、
本発明の半導体装置は、一導電型の半導体基板と、前記
半導体基板に形成される逆導電型のドレイン領域と、前
記ドレイン領域に形成されたLOCOS酸化膜と、前記
LOCOS酸化膜の直下に所定の幅を有し、前記ドレイ
ン領域に形成される空乏層の広がりを抑制する一導電型
の高耐圧用拡散領域と、前記ドレイン領域に形成された
逆導電型の高濃度ドレイン領域と、チャネルを形成する
一導電型のウェル領域と、前記LOCOS酸化膜上に形
成されたゲート電極とを有し、前記LOCOS酸化膜と
前記ドレイン領域との一番深い界面領域より深い位置
に、前記一導電型の高耐圧用拡散領域の濃度ピークを設
定することを特徴としている。 【0014】また、本発明の半導体装置の製造方法は、
一導電型の半導体基板の表層に酸化膜を形成する工程
と、前記酸化膜のLOCOS酸化膜を形成する領域に、
前記LOCOS酸化膜を形成した時の一番深い界面領域
より深い領域で濃度ピークを有するように一導電型の高
濃度不純物を注入する工程と、前記LOCOS酸化膜を
形成する領域に所定膜厚のLOCOS酸化膜を形成する
と同時に前記一導電型の高濃度不純物を拡散し一導電型
の高耐圧用拡散領域を形成する工程と、前記基板表層に
一導電型の高濃度不純物を注入・拡散し、チャネル領域
を形成するウェル領域を形成する工程と、前記ウェル領
域及び前記基板表層にソース領域及びドレイン領域とな
る逆導電型の高濃度不純物を注入する工程と、前記LO
COS酸化膜の形成されていない領域にゲート絶縁膜を
形成する工程と、前記ウェル領域及び前記LOCOS酸
化膜上にチャネルを形成するためのゲート電極を形成す
る工程とを有したことを特徴としている。 【0015】ここで、前記一導電型の高濃度不純物は1
50keV〜220KeVの加速電圧で注入することを
特徴としている。上述したように、LOCOS酸化膜と
前記ドレイン領域との一番深い界面領域より深い位置
に、一導電型の高耐圧用拡散領域の濃度ピークを設定す
ることにより、高耐圧用拡散領域の不純物濃度の低下又
は、増加する度合いが著しく減少するために耐圧特性を
均一化させることができる。 【0016】また、LOCOS酸化膜を形成する領域
に、LOCOS酸化膜を形成した時の一番深い界面領域
より深い領域で濃度ピークを有するように一導電型の高
濃度不純物を注入し、LOCOS酸化膜を形成すると同
時に一導電型の高濃度不純物を拡散し一導電型の高耐圧
用拡散領域を形成することにより、LOCOS酸化膜形
成時に膜厚にバラツキがあったとしても、高耐圧用拡散
領域の濃度低下及び増加の度合いを著しく減少でき耐圧
特性の均一化が可能となる。 【0017】 【発明の実施の形態】以下に、本発明の実施形態に係る
半導体装置、及びその製造方法について説明する。本発
明の半導体装置は、横型高耐圧MOSFETに関するも
のであり、一般的な横型高耐圧MOSFETは従来例で
説明したが再度説明する。図2は、一般的な横型高耐圧
MOSFETの断面図であり、横型高耐圧MOSFET
は、半導体基板1と、その基板表層にドレイン領域とな
る第1のウェル領域2と、その第1のウェル領域2に形
成された耐圧を向上させるための拡散領域3(以下、高
耐圧用拡散領域3という。)、及び高濃度ドレイン領域
8と、高耐圧用拡散領域3上に形成されたLOCOS酸
化膜5と、チャネルを形成する高濃度の第2のウェル領
域12と、その第2のウェル領域12に形成された高濃
度ソース領域7及びソース領域7を共通接続するP型の
高濃度共通接続領域13と、第2のウェル12とLOC
OS酸化膜5上に形成されたゲート電極6とをから構成
される。 【0018】この横型高耐圧MOSFETは、図2に示
すように、例えば、P型の半導体基板1上に、N型不純
物を拡散してドレイン領域となる第1のウェル領域2が
形成され、その表層にボロン(B+ )などのP型の不純
物を注入、拡散して高耐圧用拡散領域3が形成されてい
る。この高耐圧用拡散領域3は、ドレイン−ソース間、
特にドレイン領域となる第1のウェル領域2で生じるジ
ャンクション効果により、空乏層の広がりを内側に向け
る事により、ドレイン−ソース間の高耐圧化を向上させ
るものであり、横型高耐圧MOSFETにおいては必須
の拡散領域である。 【0019】高耐圧用拡散領域3上にはゲート耐圧を向
上させるために所定の厚みのLOCOS酸化膜5が形成
されており、LOCOS酸化膜5が形成されていない領
域の半導体基板1上には酸化膜或いは窒化膜等によりゲ
ート絶縁膜4が形成されている。また、第1のウェル領
域2に隣接して高濃度のP型不純物を拡散してチャネル
を形成する高濃度の第2のウェル領域12が形成され、
その表層にはN+ 型不純物が拡散されて高濃度ソース領
域7が形成されている。さらに、高耐圧用拡散領域3が
形成されていない第1のウェル領域2の表層上には、N
+ 不純物を注入・拡散して高濃度ドレイン領域8が形成
される。 【0020】さらにゲート絶縁膜4からLOCOS酸化
膜5上に、第2のウェル領域12にチャネル形成及び耐
圧特性を向上させるためのポリシリコンを堆積してゲー
ト電極6及び耐圧用電極6Aが形成されており、それら
を被覆するように層間絶縁膜9が形成されている。ソー
ス領域7、ドレイン領域8の形成領域の層間絶縁膜9に
は開口が形成され、この開口中にアルミなどからなるソ
ース電極10,ドレイン電極11が形成されている。上
記耐圧用電極6Aはドレイン電極11と電気的に接続さ
れる。また、上記高耐圧用拡散領域3は、図示されない
が、ソース電極10と電気的に接続され基板1と同電位
にしてある。 【0021】本発明の特徴とするところは、上記した高
耐圧用拡散領域3の濃度がLOCOS酸化膜5を形成す
る際に生じる膜厚のバラツキによる高耐圧用拡散領域3
の濃度の低下及び増加により生じる耐圧特性の低下及び
バラツキを改善するものであり、具体的には、本発明で
は、LOCOS酸化膜5とドレイン領域8との一番深い
界面領域Xより深い位置に、高耐圧用拡散領域3の濃度
ピークCPを設定するものである。 【0022】以下に、高耐圧用拡散領域3の形成方法に
ついて図1,図3,図4を参照しながら説明する。ま
ず、図3に示すように、例えば、表層に約6μm程度の
ドレイン領域となるN型の第1のウェル領域2を形成し
たP型半導体基板1表面にシリコン酸化膜等の酸化膜A
を形成し、その酸化膜Aの所定領域にフォトレジストP
Rを選択形成する。 【0023】このフォトレジストPRをマスクにして、
例えば、ボロンイオン(B+ )を注入する。このボロン
イオンの注入は、LOCOS酸化膜を形成したときに、
LOCOS酸化膜形成時におけるバラツキを考慮して、
LOCOS酸化膜の一番深い界面領域より深い領域で濃
度ピークを有するようにボロンイオンを注入する。具体
的には、例えば、ドレイン領域となる第1のウェル領域
2の濃度が5×1012cm-2の時、加速電圧約150〜
220keV,ドーズ量1.3〜1.1×1013cm-2
の条件でドレイン領域となる第1のウェル2内に深く注
入する。 【0024】次いで、図4に示すようにLOCOS法に
よって酸化膜Aの所定領域、ボロンイオンが注入された
注入領域上に厚さ約7000オングストロームのLOC
OS酸化膜5を形成する。このとき、先に注入されたボ
ロンイオン(B+ )が、LOCOS酸化膜形成時の熱に
より拡散され、LOCOS酸化膜5の直下に約1.5μ
mで所定の濃度を有した高耐圧用拡散領域3が形成され
る。 【0025】本実施形態においては、上記のボロンイオ
ン(B+ )の注入工程において、従来よりも約1.5倍
以上の大きい加速電圧で加速して注入しているので、基
板内でのボロンイオンの飛程距離が長くなり、ボロンイ
オンは従来よりも基板1の内部に深く打ち込まれ、従来
と異なり基板1の奥深くに集中する。また、打ち込みの
際のドーズ量が従来の半分程度の1.3×1013cm-2
になっている。これらのことより、このときのボロンイ
オンの濃度のプロファイルは、図1に示すようになり、
不純物濃度のピーク(図1のCp)が、従来のようにL
OCOS酸化膜5内に現れるのではなく、高耐圧用拡散
領域3にまで達する。 【0026】すると、図1に示すように、図1の斜線部
に示す領域面積は、その大部分がLOCOS酸化膜5の
界面領域ょり深い領域で存在し、LOCOS酸化膜3形
成後において膜厚にバラツキ(矢印)がある場合でも高
耐圧用拡散領域3の不純物の総量は、図5に示す従来の
方法による不純物の総量に比して多くなる。従って、L
OCOS酸化膜5形成時に生じる膜厚のバラツキがあっ
たとしても、高耐圧用拡散領域を形成する不純物の濃度
ピークはLOCOS酸化膜5の界面領域より深い領域と
成るために、LOCOS酸化膜5が深さ方向にバラツキ
があっても高耐圧用拡散領域自体の不純物濃度は従来に
比してバラツキがなくなるので、横型高耐圧MOSFE
Tの耐圧特性を均一化することができる。 【0027】なお、本実施形態では、注入の際の加速電
圧を150〜220keVとし、注入の際のドーズ量を
1.3×1013cm-2とし、加速電圧を従来の約1.5
倍程度、注入の際のドーズ量を従来の半分程度にしてい
るが、本発明はこれに限らず、不純物濃度のピークが高
耐圧用拡散領域3において現れるような条件で注入すれ
ば同様の効果を奏する。 【0028】また、本実施形態では、高耐圧用拡散領域
3の不純物としてボロンイオンを注入しているが、P型
不純物であれば同様の効果を奏する。さらに、本実施形
態では、ドレイン領域を第1のウェル領域2として用い
たが、本発明はこれに限定されるものではなく、ドレイ
ン領域として第1のウェル領域の代わりに、P型基板1
上にN型エピタキシャル層を形成して、そのエピタキシ
ャル層をドレイン領域として用いることも可能である。 【0029】上述した実施形態ではNチャネル横型高耐
圧MOSFETについて説明したが、本発明はPチャネ
ル横型高耐圧MOSFETにおいても同様に成し得るこ
とは説明するまでもない。 【0030】 【発明の効果】上述したように、本発明の半導体装置に
よれば、LOCOS酸化膜とドレイン領域との一番深い
界面領域より深い位置に、一導電型の高耐圧用拡散領域
の濃度ピークを設定することにより、高耐圧用拡散領域
の不純物濃度の増減を著しく抑制するために耐圧特性を
均一化することがき、信頼性の優れた横型高耐圧MOS
FETを提供することができる。 【0031】また、本発明の半導体装置の製造方法によ
れば、LOCOS酸化膜を形成する領域に、LOCOS
酸化膜を形成した時の一番深い界面領域より深い領域で
濃度ピークを有するように一導電型の高濃度不純物を注
入し、LOCOS酸化膜を形成すると同時に一導電型の
高濃度不純物を拡散し一導電型の高耐圧用拡散領域を形
成することにより、LOCOS酸化膜形成時に膜厚にバ
ラツキがあったとしても、高耐圧用拡散領域の濃度の増
減を抑制でき耐圧特性を均一化することができる。その
結果、同一工程で製造しても耐圧特性の優れた横型高耐
圧MOSFETを提供することができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device and a method of manufacturing a semiconductor device, and more particularly, to a lateral high voltage MOSFET.
LOCOS (Local oxidation of silic) formed in T
on) The present invention relates to stabilization of the concentration of an impurity diffusion layer formed immediately below for improving withstand voltage. 2. Description of the Related Art A conventional high-voltage lateral high-voltage MOS is described below.
The FET will be described with reference to the drawings. FIG.
1 is a cross-sectional view of a general lateral high-voltage MOSFET. The lateral high-voltage MOSFET includes a semiconductor substrate 1, a first well region 2 serving as a drain region on a surface layer of the substrate, and a first well region 2.
A diffusion region 3 (hereinafter referred to as a high-breakdown-voltage diffusion region 3) formed in the well region 2 and a high-concentration drain region 8 and a LOCOS formed on the high-breakdown-voltage diffusion region 3 are formed. Oxide film 5, high-concentration second well region 12 for forming a channel, and second well region 1
The P-type high-concentration common connection region 13 that connects the high-concentration source region 7 and the source region 7 formed in the second well 2, the second well 12 and the gate electrode 6 formed on the LOCOS oxide film 5 Be composed. In this lateral high-voltage MOSFET, as shown in FIG. 2, for example, a first well region 2 serving as a drain region is formed on a P-type semiconductor substrate 1 by diffusing an N-type impurity. A high breakdown voltage diffusion region 3 is formed by implanting and diffusing a P-type impurity such as boron (B +) into the surface layer. This high breakdown voltage diffusion region 3 is formed between the drain and the source,
In particular, the junction effect generated in the first well region 2 serving as the drain region improves the breakdown voltage between the drain and the source by directing the expansion of the depletion layer toward the inside. This is essential for a lateral high breakdown voltage MOSFET. Is a diffusion region. A LOCOS oxide film 5 having a predetermined thickness is formed on the high-breakdown-voltage diffusion region 3 in order to improve the gate-drain breakdown voltage, and the semiconductor substrate 1 in a region where the LOCOS oxide film 5 is not formed is formed. A gate insulating film 4 made of an oxide film, a nitride film, or the like is formed thereon. A high concentration second well region 12 is formed adjacent to the first well region 2 to form a channel by diffusing a high concentration P-type impurity.
Is formed, and an N + -type impurity is diffused in the surface layer to form a high-concentration source region 7. Further, on the surface layer of the first well region 2 where the high breakdown voltage diffusion region 3 is not formed, an N + impurity is implanted and diffused to form a high concentration drain region 8. Further, polysilicon is deposited on the second well region 12 from the gate insulating film 4 to the LOCOS oxide film 5 to form a channel and improve withstand voltage characteristics to form a gate electrode 6 and a withstand voltage electrode 6A. And an interlayer insulating film 9 is formed so as to cover them. An opening is formed in the interlayer insulating film 9 in a region where the source region 7 and the drain region 8 are formed, and a source electrode 10 and a drain electrode 11 made of aluminum or the like are formed in the opening. The withstand voltage electrode 6 </ b> A is electrically connected to the drain electrode 11. Although not shown, the high-breakdown-voltage diffusion region 3 is electrically connected to the source electrode 10 and has the same potential as the substrate 1. In the above-mentioned lateral high-voltage MOSFET, how to improve the withstand voltage characteristics is being studied. In order to improve the breakdown voltage characteristics, as described above, L
Immediately below the OCOS oxide film 5, the high breakdown voltage diffusion region 3 is formed by, for example, P + type impurity diffusion. This high-breakdown-voltage diffusion region 3 is formed by the same heat treatment step as that for forming the LOCOS oxide film 5. The following describes the diffusion region 3 for high withstand voltage.
Will be described with reference to FIGS. 3 and 4. FIG. First, as shown in FIG. 3, an oxide film A such as a silicon oxide film is formed on the surface of a P-type semiconductor substrate 1 having an N-type first well region 2 serving as a drain region formed in a surface layer. A photoresist PR is selectively formed in a predetermined region of the oxide film A. Using this photoresist PR as a mask,
For example, boron ions (B +) are accelerated at an acceleration voltage of 100 ke.
V is implanted under the conditions of a dose of 3 × 10 13 cm −2. Next, as shown in FIG. 4, a LOCOS oxide film 5 is formed on a predetermined region of the oxide film A, that is, on the implantation region into which boron ions have been implanted, by the LOCOS method. At this time, the previously implanted boron ions (B +)
The diffusion region 3 for high breakdown voltage having a predetermined concentration is formed immediately below the LOCOS oxide film 5 by being diffused by the heat at the time of forming the S oxide film. As described above, since the high-breakdown-voltage diffusion region 3 is formed through the oxidation process of the LOCOS oxide film 5, the segregation coefficient of B + in the oxide film and Due to the variation in the thickness of the LOCOS oxide film 5, the impurity concentration of the high-breakdown-voltage diffusion region 3 becomes unstable and varies from place to place. FIG. 5 shows the profile of the impurity concentration of boron ions in the high breakdown voltage diffusion region 3 formed under the above conventional conditions. At this time, the thickness of the LOCOS oxide film is 7,000 angstroms, and has a depth of about 3150 angstroms in the substrate. According to FIG.
As shown in (1), since the acceleration voltage is relatively low at 100 keV, boron ions do not enter deeply at the time of implantation and concentrate near the substrate surface. Therefore, a portion having the highest impurity concentration (hereinafter referred to as an impurity concentration peak). Is caused by the variation of LOCOS oxidation growth that is formed thereafter.
Some remained in the S oxide film and others did not. That is, while manufacturing the same type or in the same process, the concentration of the high breakdown voltage diffusion region is absorbed in the LOCOS oxide film due to the variation of the LOCOS oxide film, and the concentration peak is formed in the LOCOS oxide film. Therefore, the total amount of impurities remaining after the formation of the high-breakdown-voltage diffusion region 3 is the same as the area of the region shown by hatching in FIG. 5, and as shown in FIG.
Since it is absorbed in the S oxide film, the total amount of impurities in the high breakdown voltage diffusion region 3 itself also decreases. When the LOCOS oxide film 3 is formed, its variation (arrow) is about ± 3 in the depth direction.
The thickness is about 50 angstroms to about ± 700 angstroms, and it is difficult to control the film thickness. When a plurality of elements are formed, it is almost impossible to prevent the film thickness from varying depending on the location. Therefore, since the variation in the impurity concentration of the high-breakdown-voltage diffusion region is inevitable, the breakdown voltage of the lateral high-breakdown-voltage MOSFET cannot be scattered from place to place. Was the cause. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made to reduce the impurity concentration of a high-breakdown-voltage diffusion region formed immediately below a LOCOS oxide film to improve the breakdown voltage.
Horizontal high withstand voltage MO not affected by variations in oxide film formation
It is intended to provide an SFET. In order to solve the above-mentioned problems, the present invention employs the following constitution and method. That is,
The semiconductor device of the present invention includes a semiconductor substrate of one conductivity type, a drain region of opposite conductivity type formed on the semiconductor substrate, a LOCOS oxide film formed on the drain region, and a predetermined LOCOS oxide film immediately below the LOCOS oxide film. A diffusion region for high breakdown voltage of one conductivity type, which suppresses the spread of a depletion layer formed in the drain region; a high-concentration drain region of opposite conductivity type formed in the drain region; A well region of one conductivity type to be formed; and a gate electrode formed on the LOCOS oxide film. The one conductivity type well region is located deeper than a deepest interface region between the LOCOS oxide film and the drain region. Is characterized by setting a concentration peak of the diffusion region for high breakdown voltage. Further, a method of manufacturing a semiconductor device according to the present invention
A step of forming an oxide film on a surface layer of a semiconductor substrate of one conductivity type, and a step of forming a LOCOS oxide film on the oxide film,
Implanting a high-concentration impurity of one conductivity type so as to have a concentration peak in a region deeper than the deepest interface region when the LOCOS oxide film is formed; Forming a LOCOS oxide film and simultaneously diffusing the one-conductivity-type high-concentration impurity to form a one-conductivity-type high-withstand-voltage diffusion region; and injecting and diffusing one-conductivity-type high-concentration impurity into the substrate surface layer; Forming a well region for forming a channel region; implanting a high-concentration impurity of a reverse conductivity type to be a source region and a drain region into the well region and the substrate surface layer;
A step of forming a gate insulating film in a region where the COS oxide film is not formed, and a step of forming a gate electrode for forming a channel on the well region and the LOCOS oxide film. . Here, the one-conductivity-type high-concentration impurity is 1%.
The injection is performed at an acceleration voltage of 50 keV to 220 keV. As described above, the impurity concentration of the high breakdown voltage diffusion region is set by setting the concentration peak of the one conductivity type high breakdown voltage diffusion region at a position deeper than the deepest interface region between the LOCOS oxide film and the drain region. , Or the degree of increase is significantly reduced, so that the breakdown voltage characteristics can be made uniform. Further, a high-concentration impurity of one conductivity type is implanted into a region where the LOCOS oxide film is formed so as to have a concentration peak in a region deeper than a deepest interface region when the LOCOS oxide film is formed. Simultaneously with the formation of the film, the one-conductivity-type high-concentration impurity is diffused to form the one-conductivity-type high-breakdown-voltage diffusion region. Therefore, even if the film thickness varies when the LOCOS oxide film is formed, the high-breakdown-voltage diffusion region is formed. And the degree of concentration decrease and increase can be remarkably reduced, and the breakdown voltage characteristics can be made uniform. DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device according to an embodiment of the present invention and a method for manufacturing the same will be described below. The semiconductor device of the present invention relates to a lateral high-voltage MOSFET, and a general lateral high-voltage MOSFET has been described in the conventional example, but will be described again. FIG. 2 is a sectional view of a general lateral high-voltage MOSFET.
Are a semiconductor substrate 1, a first well region 2 serving as a drain region in a surface layer of the substrate, and a diffusion region 3 (hereinafter referred to as a high withstand voltage diffusion) formed in the first well region 2 for improving the withstand voltage. Region 3), a high-concentration drain region 8, a LOCOS oxide film 5 formed on the high-breakdown-voltage diffusion region 3, a high-concentration second well region 12 for forming a channel, and a second A high-concentration source region 7 formed in the well region 12 and a P-type high-concentration common connection region 13 for commonly connecting the source regions 7;
And a gate electrode 6 formed on the OS oxide film 5. In this lateral high-voltage MOSFET, as shown in FIG. 2, for example, a first well region 2 serving as a drain region is formed on a P-type semiconductor substrate 1 by diffusing an N-type impurity. A high breakdown voltage diffusion region 3 is formed by implanting and diffusing a P-type impurity such as boron (B +) into the surface layer. This high breakdown voltage diffusion region 3 is formed between the drain and the source,
In particular, the junction effect generated in the first well region 2 serving as the drain region improves the breakdown voltage between the drain and the source by directing the expansion of the depletion layer toward the inside. This is essential for a lateral high breakdown voltage MOSFET. Is a diffusion region. A LOCOS oxide film 5 having a predetermined thickness is formed on the high-breakdown-voltage diffusion region 3 in order to improve the gate breakdown voltage, and the LOCOS oxide film 5 is formed on the semiconductor substrate 1 in a region where the LOCOS oxide film 5 is not formed. The gate insulating film 4 is formed of an oxide film, a nitride film, or the like. A high concentration second well region 12 is formed adjacent to the first well region 2 to diffuse a high concentration P-type impurity to form a channel.
In the surface layer, an N + type impurity is diffused to form a high concentration source region 7. Further, on the surface layer of the first well region 2 where the high breakdown voltage diffusion region 3 is not formed, N
+ A high concentration drain region 8 is formed by implanting and diffusing impurities. Further, polysilicon is deposited on the second well region 12 from the gate insulating film 4 to the LOCOS oxide film 5 to improve channel formation and breakdown voltage characteristics, thereby forming a gate electrode 6 and a breakdown voltage electrode 6A. And an interlayer insulating film 9 is formed so as to cover them. An opening is formed in the interlayer insulating film 9 in a region where the source region 7 and the drain region 8 are formed, and a source electrode 10 and a drain electrode 11 made of aluminum or the like are formed in the opening. The withstand voltage electrode 6 </ b> A is electrically connected to the drain electrode 11. Although not shown, the high-breakdown-voltage diffusion region 3 is electrically connected to the source electrode 10 and has the same potential as the substrate 1. The feature of the present invention resides in that the concentration of the high-breakdown-voltage diffusion region 3 is varied due to a variation in film thickness caused when the LOCOS oxide film 5 is formed.
In the present invention, specifically, in the present invention, at a position deeper than the deepest interface region X between the LOCOS oxide film 5 and the drain region 8, it is intended to improve the reduction and the variation of the breakdown voltage characteristic caused by the decrease and increase of the concentration of , A concentration peak CP of the high withstand voltage diffusion region 3 is set. Hereinafter, a method of forming the high withstand voltage diffusion region 3 will be described with reference to FIGS. First, as shown in FIG. 3, for example, an oxide film A such as a silicon oxide film is formed on the surface of a P-type semiconductor substrate 1 in which an N-type first well region 2 serving as a drain region of about 6 μm is formed in a surface layer.
Is formed, and a photoresist P is formed in a predetermined region of the oxide film A.
R is selectively formed. Using this photoresist PR as a mask,
For example, boron ions (B +) are implanted. This boron ion implantation is performed when a LOCOS oxide film is formed.
In consideration of the variation at the time of forming the LOCOS oxide film,
Boron ions are implanted so as to have a concentration peak in a region deeper than the deepest interface region of the LOCOS oxide film. Specifically, for example, when the concentration of the first well region 2 serving as the drain region is 5.times.10@12 cm @ -2, the acceleration
220 keV, dose 1.3 to 1.1.times.10@13 cm @ -2
Is deeply implanted into the first well 2 serving as the drain region under the conditions described above. Next, as shown in FIG. 4, a LOCOS method having a thickness of about 7000 angstroms is formed on a predetermined region of the oxide film A, that is, on an implantation region where boron ions are implanted.
An OS oxide film 5 is formed. At this time, the boron ions (B @ +) implanted earlier are diffused by the heat at the time of forming the LOCOS oxide film, and about 1.5 .mu.
A high withstand voltage diffusion region 3 having a predetermined concentration at m is formed. In the present embodiment, in the above-described boron ion (B +) implantation step, boron ions (B +) are implanted by accelerating at an acceleration voltage that is about 1.5 times or more larger than that in the prior art. The range of the ions becomes longer, and boron ions are implanted deeper into the substrate 1 than before, and are concentrated deep inside the substrate 1 unlike the conventional case. In addition, the dose at the time of implantation is 1.3 × 10 13 cm −2, which is about half of the conventional dose.
It has become. From these facts, the profile of the concentration of boron ions at this time is as shown in FIG.
The peak of the impurity concentration (Cp in FIG. 1) is L
Instead of appearing in the OCOS oxide film 5, it reaches the high breakdown voltage diffusion region 3. Then, as shown in FIG. 1, most of the area of the region indicated by the hatched portion in FIG. 1 exists in a region deeper than the interface region of the LOCOS oxide film 5, and the film area after the LOCOS oxide film 3 is formed. Even if the thickness varies (arrows), the total amount of impurities in the high-breakdown-voltage diffusion region 3 is larger than the total amount of impurities according to the conventional method shown in FIG. Therefore, L
Even if the thickness of the LOCOS oxide film 5 varies when the OCOS oxide film 5 is formed, the concentration peak of the impurity forming the high-breakdown-voltage diffusion region is deeper than the interface region of the LOCOS oxide film 5. Even if there is variation in the depth direction, the impurity concentration of the high-breakdown-voltage diffusion region itself does not vary as compared with the conventional case, so that the lateral high-breakdown-voltage MOSFE is used.
The breakdown voltage characteristics of T can be made uniform. In this embodiment, the acceleration voltage at the time of implantation is 150 to 220 keV, the dose at the time of implantation is 1.3.times.10@13 cm @ -2, and the acceleration voltage is about 1.5 times that of the conventional one.
Although the dose at the time of implantation is about half that of the conventional case, the present invention is not limited to this, and the same effect can be obtained by implanting under the condition that the impurity concentration peak appears in the high breakdown voltage diffusion region 3. To play. In the present embodiment, boron ions are implanted as impurities in the high-breakdown-voltage diffusion region 3. However, similar effects can be obtained with P-type impurities. Further, in the present embodiment, the drain region is used as the first well region 2. However, the present invention is not limited to this, and instead of the first well region, the P-type substrate 1 is used as the drain region.
It is also possible to form an N-type epitaxial layer thereon and use the epitaxial layer as a drain region. In the above embodiment, an N-channel lateral high breakdown voltage MOSFET has been described. However, it is needless to say that the present invention can be similarly applied to a P-channel lateral high breakdown voltage MOSFET. As described above, according to the semiconductor device of the present invention, the one conductivity type high withstand voltage diffusion region is located at a position deeper than the deepest interface region between the LOCOS oxide film and the drain region. By setting the concentration peak, the withstand voltage characteristics can be made uniform in order to significantly suppress the increase or decrease in the impurity concentration of the high withstand voltage diffusion region.
An FET can be provided. According to the method of manufacturing a semiconductor device of the present invention, the LOCOS oxide film is formed in the region where the LOCOS oxide film is to be formed.
One conductivity type high concentration impurity is implanted so as to have a concentration peak in a region deeper than the deepest interface region when the oxide film is formed, and at the same time as the LOCOS oxide film is formed, the one conductivity type high concentration impurity is diffused. By forming the one-conductivity type high-breakdown-voltage diffusion region, even if the film thickness varies at the time of forming the LOCOS oxide film, it is possible to suppress an increase or decrease in the concentration of the high-breakdown-voltage diffusion region and to make the breakdown voltage characteristics uniform. it can. As a result, it is possible to provide a lateral high withstand voltage MOSFET having excellent withstand voltage characteristics even when manufactured in the same process.

【図面の簡単な説明】 【図1】本発明の実施形態に係る高耐圧用拡散領域の不
純物注入後の不純物濃度のプロファイルを示す図であ
る。 【図2】一般の高耐圧MOSFETの構造を説明する断
面図である。 【図3】高耐圧MOSFETの高耐圧用拡散領域を形成
する工程を説明する第1の断面図である。 【図4】高耐圧MOSFETの高耐圧用拡散領域を形成
する工程を説明する第2の断面図である。 【図5】従来の高耐圧用拡散領域の不純物注入後の不純
物濃度のプロファイルを示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a profile of an impurity concentration after impurity implantation in a high breakdown voltage diffusion region according to an embodiment of the present invention. FIG. 2 is a cross-sectional view illustrating a structure of a general high breakdown voltage MOSFET. FIG. 3 is a first cross-sectional view illustrating a step of forming a high-breakdown-voltage diffusion region of a high-breakdown-voltage MOSFET. FIG. 4 is a second sectional view illustrating a step of forming a high-breakdown-voltage diffusion region of the high-breakdown-voltage MOSFET. FIG. 5 is a diagram showing a profile of impurity concentration after impurity implantation in a conventional high breakdown voltage diffusion region.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 29/78

Claims (1)

(57)【特許請求の範囲】 【請求項1】 一導電型の半導体基板の表層に酸化膜を
形成する工程と、前記酸化膜のLOCOS酸化膜を形成
する領域に、前記LOCOS酸化膜を形成した時の一番
深い界面領域より深い領域で濃度ピークを有するように
一導電型の高濃度不純物を注入する工程と、 前記LOCOS酸化膜を形成する領域に所定膜厚のLO
COS酸化膜を形成すると同時に前記一導電型の高濃度
不純物を拡散し前記LOCOS酸化膜の下で前記濃度ピ
ークを有する一導電型の高耐圧用拡散領域を形成する工
程と、 前記基板表層に一導電型の高濃度不純物を注入・拡散
し、チャネル領域を形成するウェル領域を形成する工程
と、 前記ウェル領域及び前記基板表層にソース領域及びドレ
イン領域となる逆導電型の高濃度不純物を注入する工程
と、 前記LOCOS酸化膜の形成されていない領域にゲート
絶縁膜を形成する工程と、 前記ウェル領域及び前記LOCOS酸化膜上にチャネル
を形成するためのゲート電極を形成する工程とを、具備
することを特徴とする半導体装置の製造方法。
(57) Claims 1. A step of forming an oxide film on a surface layer of a semiconductor substrate of one conductivity type, and forming the LOCOS oxide film in a region of the oxide film where a LOCOS oxide film is formed. Implanting a one-conductivity-type high-concentration impurity so as to have a concentration peak in a region deeper than the deepest interface region when the LOCOS oxide film is formed.
At the same time as forming the COS oxide film, the one-conductivity-type high-concentration impurity is diffused and the concentration pin is formed under the LOCOS oxide film.
Forming a one-conductivity-type high-withstand-voltage diffusion region having a peak, implanting and diffusing one-conductivity-type high-concentration impurities into the surface layer of the substrate, and forming a well region for forming a channel region; Implanting a high-concentration impurity of the opposite conductivity type to be a source region and a drain region into a well region and the surface layer of the substrate; forming a gate insulating film in a region where the LOCOS oxide film is not formed; And a step of forming a gate electrode for forming a channel on the LOCOS oxide film.
JP35053196A 1996-12-27 1996-12-27 Method for manufacturing semiconductor device Expired - Fee Related JP3397999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35053196A JP3397999B2 (en) 1996-12-27 1996-12-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35053196A JP3397999B2 (en) 1996-12-27 1996-12-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH10189964A JPH10189964A (en) 1998-07-21
JP3397999B2 true JP3397999B2 (en) 2003-04-21

Family

ID=18411135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35053196A Expired - Fee Related JP3397999B2 (en) 1996-12-27 1996-12-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3397999B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268005C (en) 2002-10-24 2006-08-02 松下电器产业株式会社 Semiconductor device and its manufacturing method
JP2010118419A (en) * 2008-11-12 2010-05-27 Sharp Corp Semiconductor device
JP5769915B2 (en) * 2009-04-24 2015-08-26 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5534298B2 (en) * 2009-06-16 2014-06-25 ルネサスエレクトロニクス株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPH10189964A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
US5654569A (en) Retarded double diffused drain device structure
US6897525B1 (en) Semiconductor device and method of manufacturing the same
JPH09121058A (en) Method of adjusting threshold voltage of semiconductor element to be manufactured on insulating substrate semiconductor
US4924277A (en) MIS transistor device
US6331458B1 (en) Active region implant methodology using indium to enhance short channel performance of a surface channel PMOS device
JP2760709B2 (en) Semiconductor device having LDD structure with high breakdown voltage and method of manufacturing the same
JPH0575115A (en) Semiconductor device and manufacture thereof
US6150698A (en) Semiconductor device and method of forming semiconductor device having non-uniformly doped well
US5557129A (en) Semiconductor MOSFET device having a shallow nitrogen implanted channel region
JPS58147074A (en) Metal oxide semiconductor transistor device and method of producing same
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JP3075225B2 (en) Method for manufacturing semiconductor device
US6576521B1 (en) Method of forming semiconductor device with LDD structure
JP3397999B2 (en) Method for manufacturing semiconductor device
US6153910A (en) Semiconductor device with nitrogen implanted channel region
JP3276872B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2849199B2 (en) Method for manufacturing semiconductor device
JP3363810B2 (en) Semiconductor device and manufacturing method thereof
JP3213560B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3369862B2 (en) Method for manufacturing semiconductor device
JP3063051B2 (en) Method for manufacturing semiconductor device
JP2873942B2 (en) Method of manufacturing MOS field effect transistor
JP3061157B2 (en) Method for forming semiconductor device
JPH05275693A (en) Manufacture of mosfet
KR100549941B1 (en) gate electrode structure for semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees