JP3397470B2 - Optical element molding die and method of manufacturing the same - Google Patents

Optical element molding die and method of manufacturing the same

Info

Publication number
JP3397470B2
JP3397470B2 JP25502294A JP25502294A JP3397470B2 JP 3397470 B2 JP3397470 B2 JP 3397470B2 JP 25502294 A JP25502294 A JP 25502294A JP 25502294 A JP25502294 A JP 25502294A JP 3397470 B2 JP3397470 B2 JP 3397470B2
Authority
JP
Japan
Prior art keywords
intermediate layer
optical element
molding
mold
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25502294A
Other languages
Japanese (ja)
Other versions
JPH08119642A (en
Inventor
靖行 中居
鉄夫 桑原
正樹 大森
直 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25502294A priority Critical patent/JP3397470B2/en
Publication of JPH08119642A publication Critical patent/JPH08119642A/en
Application granted granted Critical
Publication of JP3397470B2 publication Critical patent/JP3397470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/31Two or more distinct intermediate layers or zones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/38Mixed or graded material layers or zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ、プリズム等の
ガラスよりなる光学素子をガラス素材のプレス成形によ
り製造するのに使用される型及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold used for manufacturing an optical element made of glass such as a lens and a prism by press molding of a glass material, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】研磨工程を必要としないでガラス素材の
プレス成形によってレンズを製造する技術は、従来のレ
ンズの製造において必要とされた複雑な工程をなくし、
簡単かつ安価にレンズを製造することを可能とし、近来
レンズのみならずプリズム、その他のガラスよりなる光
学素子の製造に使用されるようになってきた。
2. Description of the Related Art A technique for manufacturing a lens by press molding a glass material without the need for a polishing step eliminates the complicated process required in the conventional lens manufacturing,
It has become possible to manufacture lenses easily and inexpensively, and it has come to be used for manufacturing not only lenses but also prisms and other optical elements made of glass.

【0003】このようなガラスの光学素子のプレス成形
に使用される型材に要求される性質としては、硬さ、耐
熱性、離型性、鏡面加工性等に優れていることが挙げら
れる。従来、この種の型材として、金属、セラミックス
及びそれらをコーティングした材料等数多くの提案がさ
れている。いくつかの例を挙げるならば、特開昭49−
51112号公報には13Crマルテンサイト鋼が、特
開昭52−45613号公報にはSiC及びSi34
が、特開昭60−246230号公報には超硬合金に貴
金属をコーティングした材料が、特開平3−13703
2号公報には超硬合金上にTiNをコーティングした材
料が、また特開昭61−183134号公報、特開昭6
1−281030号公報、特開平1−301864号公
報にはダイアモンド薄膜またはダイアモンド状炭素膜を
コーティングした材料が、特開昭64−83529号公
報には硬質炭素膜をコーティングした材料が提案されて
いる。
Properties required for the mold material used for press molding of such glass optical elements include excellent hardness, heat resistance, mold release property, mirror surface workability and the like. Heretofore, as this type of mold material, many proposals have been made such as metals, ceramics and materials coated with them. To give some examples, JP-A-49-
51112 discloses 13Cr martensitic steel, and JP-A-52-45613 discloses SiC and Si 3 N 4.
However, in JP-A-60-246230, a material obtained by coating a cemented carbide with a noble metal is disclosed in JP-A-3-13703.
No. 2 discloses a material in which a cemented carbide is coated with TiN, and JP-A No. 61-183134 and JP-A No. 6-183134.
JP-A 1-281030 and JP-A-1-301864 propose a material coated with a diamond thin film or a diamond-like carbon film, and JP-A 64-83529 proposes a material coated with a hard carbon film. .

【0004】[0004]

【発明が解決しようとする課題】しかし、13Crマル
テンサイト鋼は酸化し易く、更に高温下でFeがガラス
中に拡散してガラスが着色するという欠点を持つ。ま
た、SiC,Si34 は一般的に酸化されにくいとさ
れるが、高温下ではやはり酸化が起こり、表面にSiO
2 の膜が形成されるためガラスと融着を起こす。一方、
貴金属をコーティングした材料は融着を起こしにくい
が、極めて柔らかいため傷がつき易くまた変形し易い欠
点を持つ。また、ダイアモンド薄膜、ダイアモンド状炭
素膜、水素化アモルファス炭素膜、硬質炭素膜を用いた
型は、型とガラスの離型性が良く、ガラスの融着を起こ
さないが、成形操作を数百回以上繰り返して行うと、前
記膜が部分的に剥離し、成形品において十分な成形性能
が得られないことがある。また、型母材の一つの材料で
ある超硬合金上にTiNなどの中間層を設け、成形によ
る型母材の変形や酸化劣化を防止する手法が特開平3−
137032号公報に提案されているが、型母材と中間
層の密着が悪い場合、成形操作を数百回以上繰り返して
行うと、前記膜が部分的に剥離し、成形品において十分
な成形性能が得られないことがある。
However, 13Cr martensitic steel is apt to oxidize, and further, Fe diffuses into the glass at a high temperature and the glass is colored. Although SiC and Si 3 N 4 are generally considered to be difficult to oxidize, they also oxidize at high temperatures, resulting in SiO 2 on the surface.
Since the film of 2 is formed, it fuses with the glass. on the other hand,
A material coated with a noble metal is unlikely to cause fusion, but has the drawback that it is easily soft and easily deformed because it is extremely soft. Further, the mold using the diamond thin film, the diamond-like carbon film, the hydrogenated amorphous carbon film, and the hard carbon film has a good mold-releasing property between the mold and the glass, and does not cause glass fusion, but the molding operation is performed several hundred times. When the above process is repeated, the film may be partially peeled off, and a molded product may not have sufficient molding performance. In addition, a method of forming an intermediate layer such as TiN on a cemented carbide which is one of the materials for the mold base material to prevent the deformation and oxidative deterioration of the mold base material due to molding is disclosed in Japanese Patent Laid-Open No. 3-300.
As proposed in Japanese Patent No. 137032, when the adhesion between the mold base material and the intermediate layer is poor, the film is partially peeled off when the molding operation is repeated several hundred times or more, and the molding product has sufficient molding performance. May not be obtained.

【0005】従って、本発明の目的は、プレス成形を多
数回行っても中間層の剥離やクラック、傷等の欠陥が生
じない極めて耐久性の高い光学素子成形用型及びその製
造方法を提供することにある。
Therefore, an object of the present invention is to provide an optical element molding die having extremely high durability, which does not cause defects such as peeling, cracks and scratches of the intermediate layer even if press molding is carried out many times, and a manufacturing method thereof. Especially.

【0006】[0006]

【課題を解決するための手段及び作用】すなわち、本発
明は、ガラスよりなる光学素子のプレス成形に用いる成
形用型において、型母材と成形表面層の間に中間層を有
し、型母材を構成する少なくとも1種類以上の元素の濃
度が型母材側から中間層側に向かって減少しかつ中間層
を構成する少なくとも1種類以上の元素の濃度が中間層
側から型母材側に向かって減少しているミキシング層を
し、中間層材料がTiN、TaN、ZrN及びHfN
から選ばれ、かつ、成形表面層が炭素またはPtと、中
間層を構成する元素の少なくとも1種類以上からなり、
炭素原子またはPt濃度が中間層側に向かって減少しか
つその他の原子濃度が表面層側に向かって減少している
ミキシング層を有することを特徴とする光学素子成形用
型である。
That is, the present invention provides a mold for use in press molding of an optical element made of glass, which has an intermediate layer between a mold base material and a molding surface layer, The concentration of at least one element constituting the material decreases from the mold base material side toward the intermediate layer side, and the concentration of at least one element constituting the intermediate layer changes from the intermediate layer side to the mold base material side. headed have a mixing layer which has decreased, the intermediate layer material is TiN, TaN, ZrN and HfN
And the molding surface layer is carbon or Pt, and
Consisting of at least one of the elements that make up the interlayer,
Only the carbon atom or Pt concentration decreases toward the intermediate layer side
And other atomic concentrations decrease toward the surface layer
Is a type optical element molding characterized by have a mixing layer.

【0007】本発明はイオンビーム等により型母材と中
間層の間にミキシング層を設け、従来型母材上に設けて
いた中間層の型母材への密着力を上げることにより上述
の問題を解決したものである。図1−aにミキシングの
状態を模式図で示す。図1−a中破線の左側が「ミキシ
ング層」、破線の右側が「型母材又は中間層」である。
図1−bはそのイメージ図である。図1−a中横軸は表
面から型母材に向かう深さを表しており、深さ0の位置
が表面である。一方、縦軸は原子濃度を表している。ミ
キシング層の状態は、中間層を構成する原子(例えばT
i)の原子濃度が表面に向かって増大し母材側に向かっ
て減少しているのに対し、その他の原子濃度が表面に向
かって減少し母材側に向かって増加していることが主た
る特徴である。
According to the present invention, a mixing layer is provided between the mold base material and the intermediate layer by an ion beam or the like to increase the adhesion of the intermediate layer provided on the conventional mold base material to the mold base material. Is the solution. FIG. 1-a shows a schematic view of the mixing state. The left side of the broken line in Fig.
And the right side of the broken line is the "mold base material or intermediate layer".
FIG. 1-b is an image diagram thereof. The horizontal axis in FIG. 1-a represents the depth from the surface toward the die base material, and the position where the depth is 0 is the surface. On the other hand, the vertical axis represents the atomic concentration. The state of the mixing layer depends on the atoms (for example, T
While the atomic concentration of i) increases toward the surface and decreases toward the base metal side, the other atomic concentrations mainly decrease toward the surface and increase toward the base metal side. It is a feature.

【0008】以下にその作用を示す。従来の型母材上に
中間層を設ける場合、PVDやCVDなどの手法が知ら
れているが、数百回以上の高耐久光学素子成形用型とし
ては十分な密着力が得られない場合がある。その原因は
型母材と中間層の密着が良くないことが考えられる。そ
こで、型母材成分と中間層成分が混じり合う界面(ミキ
シング層)を作ることにより密着力を上昇させた。上記
界面(ミキシング層)は成形時の熱サイクルによる型母
材と中間層の熱膨張率差が起こす型母材と中間層間の応
力を吸収することができる。また、成形時の型−ガラス
間に発生する密着力にも耐え得る強度が得られる。
The operation will be described below. When providing an intermediate layer on a conventional mold base material, PVD, CVD, and other techniques are known, but there are cases where sufficient adhesion cannot be obtained as a mold for molding a highly durable optical element several hundred times or more. is there. It is considered that the reason is that the adhesion between the mold base material and the intermediate layer is not good. Therefore, the adhesive force was increased by forming an interface (mixing layer) in which the mold base material component and the intermediate layer component were mixed. The interface (mixing layer) can absorb the stress between the mold base material and the intermediate layer caused by the difference in the coefficient of thermal expansion between the mold base material and the intermediate layer due to the thermal cycle at the time of molding. Further, the strength that can withstand the adhesion force generated between the mold and the glass during molding can be obtained.

【0009】[0009]

【実施例】[参考例1 Pt表面層、TiN中間層、
(TiN,WC)ミキシング層] 図2、図3は参考例に係わる光学素子成形用型の一つの
実施様態を示すものである。図2は光学素子のプレス成
形面の状態を示し、図3は光学素子成形後の状態を示
す。図2中1,2は型母材、1−a,2−aは成形表面
層であるPt膜、1−c,2−cは中間層であるTiN
膜、1−d,2−dは中間層と型母材のミキシング層で
あり、図2中3はガラス素材であり、図3中4は光学素
子である。図2、3に示すように型の間に置かれたガラ
ス素材3をプレス成形することによってレンズ等の光学
素子4ができる。
EXAMPLES [ Reference Example 1 Pt surface layer, TiN intermediate layer,
(TiN, WC) Mixing Layer] FIGS. 2 and 3 show an embodiment of an optical element molding die according to the reference example . 2 shows the state of the press-molded surface of the optical element, and FIG. 3 shows the state after the optical element is molded. 2, 1 and 2 are mold base materials, 1-a and 2-a are Pt films which are molding surface layers, and 1-c and 2-c are TiN which are intermediate layers.
Membranes 1-d and 2-d are a mixing layer of the intermediate layer and the mold base material, 3 in FIG. 2 is a glass material, and 4 in FIG. 3 is an optical element. As shown in FIGS. 2 and 3, the glass material 3 placed between the molds is press-molded to form the optical element 4 such as a lens.

【0010】次に、参考例の光学素子成形用型について
詳細に説明する。
Next, the optical element molding die of the reference example will be described in detail.

【0011】型母材として超硬合金を所定の形状に加工
した後、成形面をRmax=0.02μmに鏡面研磨し
た。この型をよく洗浄した後、図6に示す成膜装置に設
置した。図中11は真空槽、12はイオンビーム装置、
13はイオン化室、14はガス導入口、15はイオンビ
ーム引き出しグリット、16はイオンビーム、17は取
り付けられた型、18は基板ホルダー及びヒーター、1
9は排気口、25はバイアス電源、44はイオン化電
極、45は直流電源、46は電子銃、47は金属チタン
である。まず、真空槽11内を4×10-3Paまで減圧
し、ガス導入口よりアルゴンガス10SCCMをイオン
化室に導入しイオン化した後、イオンビーム引き出しグ
リットに500Vの電圧を印加してイオンビームを引き
出し、基板バイアスを−300Vかけ、型表面に5分間
照射して型表面の洗浄を行った。次に、窒素ガス30S
CCMをイオン化室に導入してガス圧3.5×10-2
aとし、加速電圧9KeV−エミッション電流300m
Aの電子線蒸着条件で金属チタンを蒸発させ、加速電圧
10KeVで窒素イオンビームを引き出し、型表面に照
射して0.1μmの金属チタン、窒素と型母材とのミキ
シング層を得た。次に、加速電圧200Vで窒素イオン
ビームを引き出し型表面に照射しながらイオン化電極に
+20Vの電圧をかけ、イオンプレーティングにより型
表面にTiN膜を1μm形成した。次に、金属チタンタ
ーゲットをPtターゲットに切り替え、連続してPt膜
をTiN上に形成した。なお、この時のPt膜成膜は加
速電圧9KeV−エミッション電流400mAの電子線
蒸着条件でPtを蒸発させ、100nmの膜厚に成膜し
た。
After processing a cemented carbide as a mold base material into a predetermined shape, the molding surface was mirror-polished to Rmax = 0.02 μm. After thoroughly washing this mold, it was installed in the film forming apparatus shown in FIG. In the figure, 11 is a vacuum chamber, 12 is an ion beam device,
13 is an ionization chamber, 14 is a gas inlet, 15 is an ion beam extraction grit, 16 is an ion beam, 17 is a mold attached, 18 is a substrate holder and a heater, 1
9 is an exhaust port, 25 is a bias power supply, 44 is an ionization electrode, 45 is a direct current power supply, 46 is an electron gun, and 47 is metallic titanium. First, the pressure inside the vacuum chamber 11 was reduced to 4 × 10 −3 Pa, 10 SCCM of argon gas was introduced into the ionization chamber through the gas introduction port for ionization, and then a voltage of 500 V was applied to the ion beam extraction grid to extract the ion beam. The substrate surface was washed by applying a substrate bias of -300 V and irradiating the surface of the die for 5 minutes. Next, nitrogen gas 30S
Gas pressure of 3.5 × 10 -2 P by introducing CCM into the ionization chamber
a, acceleration voltage 9 KeV-emission current 300 m
Metallic titanium was evaporated under the electron beam evaporation conditions of A, a nitrogen ion beam was extracted at an accelerating voltage of 10 KeV, and the surface of the mold was irradiated to obtain a mixing layer of 0.1 μm of metallic titanium, nitrogen and the mold base material. Next, a voltage of +20 V was applied to the ionization electrode while irradiating the mold surface with a nitrogen ion beam at an acceleration voltage of 200 V, and a TiN film of 1 μm was formed on the mold surface by ion plating. Next, the metallic titanium target was switched to the Pt target, and a Pt film was continuously formed on TiN. At this time, the Pt film was formed by evaporating Pt under an electron beam evaporation condition of an acceleration voltage of 9 KeV and an emission current of 400 mA to form a film having a thickness of 100 nm.

【0012】次に、参考例による光学素子成形用型によ
ってプレス成形を行った例を示す。図7は光学素子成形
装置の断面図である。以下に参考例の光学素子成形用型
を用いた光学素子の製造方法を記す。ガラスブランク置
き台50から不図示のオートハンドであらかじめ所定の
量に調整したゴブ状のクラウン系ガラスブランク(SK
12)51をシフタ172へ搬送し、シリンダ180の
制御によりピストンロッド180Aを上昇させ、入換え
チャンバー171を上昇して、その開口171Aを上記
ゲートバルブ110に気密に密着し、不図示のロータリ
ーポンプで入換えチャンバー171内を約1Paまで減
圧し、その後窒素ガスを充填し、ゲートバルブ110を
開放して、成形チャンバー300と入換えチャンバー1
71とを連通する。そして、昇降機173でガラスブラ
ンクが置かれたシフタ172を成形チャンバー300内
に導入し、旋回ハンドル回転軸401を軸に回転する旋
回ハンド400を用い、吸着ハンド403でシフタ17
2上のガラスブランクを吸着搬送し、胴型100内に組
み込んだ光学素子成形用の上型と下型の間に投入し、該
下型上にガラスブランク51を置いた。
[0012] Next, an example of press molding was carried out by the optical element molding die according to a reference example. FIG. 7 is a sectional view of the optical element molding apparatus. The method for producing an optical element using the optical element molding die of Reference Example will be described below. A gob-shaped crown-type glass blank (SK-blank) that has been adjusted to a predetermined amount from the glass blank holder 50 by an auto hand (not shown).
12) 51 is conveyed to the shifter 172, the piston rod 180A is moved up by the control of the cylinder 180, the exchange chamber 171 is moved up, and the opening 171A is airtightly attached to the gate valve 110. The exchange chamber 171 is depressurized to about 1 Pa, then nitrogen gas is filled, the gate valve 110 is opened, and the molding chamber 300 and the exchange chamber 1 are opened.
It communicates with 71. Then, the shifter 172 on which the glass blank is placed by the elevator 173 is introduced into the molding chamber 300, and the swivel hand 400 that rotates about the swivel handle rotation shaft 401 is used, and the shifter 17 is moved by the suction hand 403.
The glass blank on 2 was suction-conveyed and put into a space between the upper mold and the lower mold for molding an optical element incorporated in the barrel mold 100, and the glass blank 51 was placed on the lower mold.

【0013】次に、型温を上昇させブランク温度が62
0℃になった段階で、上記シリンダの制御により、光学
素子成形用上型と一体になっている上軸ロッド200を
下降し、荷重3000Nでガラスブランクのプレス成形
を行った。プレス終了後、−80℃/minの速度で冷
却し、400℃で型を開き、成形品を吸着ハンド403
で取り出し、シフタ172上に置き、昇降機173でシ
フタ172を降ろし、ゲートバルブ110を閉め、入換
えチャンバー171を降ろし、不図示のオートハンドで
成形品を取り出した。上記のようにしてクラウン系光学
ガラス(軟化点Sp=692℃,転移点Tg=550
℃)を使用して図3に示すレンズを成形した。以上のよ
うなプレス行程により10000回成形した後の型部材
の成形面及び成形された光学素子の表面粗さ、並びに型
部材と成形された光学素子との離型性は良好であった。
特に、型部材の成形面について光学顕微鏡、走査電子顕
微鏡(SEM)で観察しても傷やクラック等の欠陥やガ
ラス成分の反応析出物、ガラスの融着はなかった。
Next, the mold temperature is raised to a blank temperature of 62.
When the temperature reached 0 ° C., the upper shaft rod 200 integrated with the optical element molding upper die was lowered by the control of the cylinder, and the glass blank was press-molded with a load of 3000 N. After the press is finished, it is cooled at a rate of −80 ° C./min, the mold is opened at 400 ° C., and the molded product is sucked by a hand 403.
And then placed on the shifter 172, the shifter 172 was lowered by the elevator 173, the gate valve 110 was closed, the exchange chamber 171 was lowered, and the molded product was taken out by an unillustrated auto hand. As described above, the crown optical glass (softening point Sp = 692 ° C., transition point Tg = 550
C) was used to mold the lens shown in FIG. The molding surface of the mold member and the surface roughness of the molded optical element after molding 10,000 times by the above pressing process and the releasability between the mold member and the molded optical element were good.
In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), defects such as scratches and cracks, reaction precipitates of glass components, and glass fusion did not occur.

【0014】[実施例 Pt表面層、(Pt,Ti
N)ミキシング層、TiN中間層、(TiN,WC)ミ
キシング層] 図4及び図5は本発明に係わる光学素子成形用型の一つ
の実施様態を示すものである。図4は光学素子のプレス
成形面の状態を示し、図5は光学素子成形後の状態を示
す。図4中1,2は型母材である超硬合金、1−a,2
−aは成形表面層であるPt膜、1−b,2−bは成形
表面層と中間層のミキシング層、1−c,2−cは中間
層であるTiN膜、1−d,2−dは中間層と型母材の
ミキシング層であり、図4中3はガラス素材であり、図
5中4は光学素子である。図4、5に示すように型の間
に置かれたガラス素材3をプレス成形することによって
レンズ等の光学素子4ができる。
Example 1 Pt surface layer, (Pt, Ti
N) Mixing Layer, TiN Intermediate Layer, (TiN, WC) Mixing Layer] FIGS. 4 and 5 show one embodiment of the optical element molding die according to the present invention. FIG. 4 shows the state of the press-molded surface of the optical element, and FIG. 5 shows the state after the optical element is molded. In FIG. 4, reference numerals 1 and 2 are cemented carbide as a base material, 1-a and 2
-A is a Pt film which is a molding surface layer, 1-b and 2-b are mixing layers of a molding surface layer and an intermediate layer, 1-c and 2-c are TiN films which are intermediate layers, 1-d and 2- d is a mixing layer of the intermediate layer and the mold base material, 3 in FIG. 4 is a glass material, and 4 in FIG. 5 is an optical element. As shown in FIGS. 4 and 5, the glass material 3 placed between the molds is press-molded to form the optical element 4 such as a lens.

【0015】次に本発明の光学素子成形用型について詳
細に説明する。
Next, the optical element molding die of the present invention will be described in detail.

【0016】中間層であるTiNと型母材である超硬合
金とのミキシング層及び中間層の成膜は参考例1と同様
に行った。
The mixing layer of TiN as the intermediate layer and the cemented carbide as the die base material and the intermediate layer were formed in the same manner as in Reference Example 1.

【0017】次に、成形表面層であるPt膜の成膜につ
いて述べる。
Next, the formation of the Pt film which is the molding surface layer will be described.

【0018】TiN成膜終了後、TiターゲットをPt
ターゲットに切り替え、連続してPt膜をミキシング層
を作りながらTiN上に形成した。このときの製造方法
を次に述べる。真空度を4×10-3Paまで上げアルゴ
ンガスを20sccmイオン化室に導入してガス圧3.
5×10-2Paとし、加速電圧9KeV−エミッション
電流400mAの電子線蒸着条件でPtを蒸発させ、加
速電圧10KeVでイオンビームを引き出し、型表面に
照射してPtと型母材とのミキシング層約30nmを設
け膜厚100nmの成形表面膜を得た。
After the TiN film formation, the Ti target is changed to Pt.
After switching to the target, a Pt film was continuously formed on TiN while forming a mixing layer. The manufacturing method at this time will be described below. 2. The vacuum degree was raised to 4 × 10 −3 Pa, and argon gas was introduced into the 20 sccm ionization chamber to obtain a gas pressure of 3.
Pt is evaporated under electron beam deposition conditions of 5 × 10 -2 Pa and acceleration voltage of 9 KeV-emission current of 400 mA, an ion beam is extracted at an acceleration voltage of 10 KeV, and the mold surface is irradiated to mix Pt and the mold base material. About 30 nm was provided to obtain a molded surface film having a film thickness of 100 nm.

【0019】次に、上記参考例1に示した方法によって
ガラスレンズのプレス成形を行った結果、20000回
成形した後の型部材の成形面及び成形された光学素子の
表面粗さ、並びに型部材と成形された光学素子との離型
性は良好であった。特に、型部材の成形面について光学
顕微鏡、走査電子顕微鏡(SEM)で観察しても膜剥離
や傷やクラック等の欠陥やガラス成分の反応析出物、ガ
ラスの融着はなかった。
Next, as a result of press molding of the glass lens by the method shown in Reference Example 1, the molding surface of the mold member after molding 20,000 times and the surface roughness of the molded optical element, and the mold member. The mold releasability between the molded optical element and In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), defects such as film peeling, scratches and cracks, reaction precipitates of glass components, and glass fusion did not occur.

【0020】[参考 炭化水素膜表面層、TiN中
間層、(TiN,WC)ミキシング層] 本参考例の構成は参考例1の構成と同等である。つまり
図2中1,2は型母材である超硬合金、1−a,2−a
は成形表面層である炭化水素膜、1−c,2−cの中間
層はTiN、1−d,2−dは中間層と型母材のミキシ
ング層である。中間層であるTiNと型母材である超硬
合金とのミキシング層および中間層の成膜は参考例1と
同様に行った。
[ Reference Example 2 Hydrocarbon film surface layer, TiN intermediate layer, (TiN, WC) mixing layer] The configuration of this Reference Example is the same as that of Reference Example 1. That is, reference numerals 1 and 2 in FIG.
Is a hydrocarbon film which is a molding surface layer, TiN is an intermediate layer of 1-c and 2-c, and 1-d and 2-d are mixing layers of the intermediate layer and the mold base material. The mixing layer of TiN as the intermediate layer and the cemented carbide as the die base material and the intermediate layer were formed in the same manner as in Reference Example 1.

【0021】次に、成形表面層である炭化水素膜の成膜
について述べる。図8は図5の成膜装置にいわゆる容量
結合型高周波プラズマCVD装置を加えたものであって
原料ガスの供給系27、高周波放電(あるいは直流電源
でもよい)発生手段などが図5に示す装置に追加されて
いる。すなわち、図8中28は上記高周波放電発生手段
のコイル状アンテナであり、これには真空槽11の外側
に設けた高周波放電用電源30からマッチングボックス
29を介して高周波電流が供給される。次に、炭化水素
膜の成膜方法を述べる。TiN成膜終了後、真空度4×
10-3Paとし、基板バイアス−300Vをかけ、原料
ガス供給系27からCH4 ガスを上記成膜チャンバーに
供給する。また、高周波電源30からマッチングボック
ス29を介して高周波電力をアンテナ28に供給し、放
電を開始した後、CH4 ガスを1×10-1Paに調整す
る。このように高周波放電を開始すると、CH4 ガスの
放電で型表面に炭化水素膜が成膜される。この手法によ
りTiN上に100nmの炭化水素膜を成膜した。
Next, the formation of the hydrocarbon film which is the molding surface layer will be described. FIG. 8 shows a film-forming apparatus of FIG. 5 to which a so-called capacitively coupled high-frequency plasma CVD apparatus is added, and the source gas supply system 27, high-frequency discharge (or DC power supply) generating means, etc. are shown in FIG. Has been added to. That is, reference numeral 28 in FIG. 8 denotes a coil-shaped antenna of the high-frequency discharge generating means, to which a high-frequency current is supplied from a high-frequency discharge power source 30 provided outside the vacuum chamber 11 via a matching box 29. Next, a method for forming the hydrocarbon film will be described. After TiN film formation, vacuum degree 4 ×
The substrate bias is set to 10 −3 Pa, a substrate bias of −300 V is applied, and CH 4 gas is supplied from the source gas supply system 27 to the film formation chamber. Further, high frequency power is supplied from the high frequency power supply 30 to the antenna 28 through the matching box 29 to start the discharge, and then the CH 4 gas is adjusted to 1 × 10 −1 Pa. When the high frequency discharge is started in this way, a hydrocarbon film is formed on the mold surface by the discharge of CH 4 gas. A hydrocarbon film having a thickness of 100 nm was formed on TiN by this method.

【0022】次に、上記参考例1に示した方法によって
ガラスレンズのプレス成形を行った結果、20000回
成形した後の型部材の成形面及び成形された光学素子の
表面粗さ、並びに型部材と成形された光学素子との離型
性は良好であった。特に、型部材の成形面について光学
顕微鏡、走査電子顕微鏡(SEM)で観察しても膜剥離
や傷やクラック等の欠陥やガラス成分の反応析出物、ガ
ラスの融着はなかった。
Next, as a result of press molding of the glass lens by the method shown in Reference Example 1, the molding surface of the mold member after molding 20000 times, the surface roughness of the molded optical element, and the mold member. The mold releasability between the molded optical element and In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), defects such as film peeling, scratches and cracks, reaction precipitates of glass components, and glass fusion did not occur.

【0023】[実施例 硬質炭素膜表面層、(硬質炭
素膜,TiN)ミキシング層、TiN中間層、(Ti
N,WC)ミキシング層] 図4及び図5は本発明に係わる光学素子成形用型の一つ
の実施様態を示すものである。図4は光学素子のプレス
成形面の状態を示し、図5は光学素子成形後の状態を示
す。図4中1,2は型母材、1−a,2−aは硬質炭素
膜、1−b,2−bは硬質炭素膜と中間層のミキシング
層、1−c,2−cは中間層であるTiN膜、1−d,
2−dは中間層と型母材のミキシング層であり、図4中
3はガラス素材であり、図5中4は光学素子である。図
4、5に示すように型の間に置かれたガラス素材3をプ
レス成形することによってレンズ等の光学素子4ができ
る。
Example 2 Hard carbon film surface layer, (hard carbon film, TiN) mixing layer, TiN intermediate layer, (Ti
N, WC) Mixing Layer] FIGS. 4 and 5 show one embodiment of the optical element molding die according to the present invention. FIG. 4 shows the state of the press-molded surface of the optical element, and FIG. 5 shows the state after the optical element is molded. 4, 1 and 2 are mold base materials, 1-a and 2-a are hard carbon films, 1-b and 2-b are mixing layers of hard carbon film and an intermediate layer, and 1-c and 2-c are intermediate. TiN film which is a layer, 1-d,
2-d is a mixing layer of the intermediate layer and the mold base material, 3 in FIG. 4 is a glass material, and 4 in FIG. 5 is an optical element. As shown in FIGS. 4 and 5, the glass material 3 placed between the molds is press-molded to form the optical element 4 such as a lens.

【0024】次に、本発明の光学素子成形用型について
詳細に説明する。
Next, the optical element molding die of the present invention will be described in detail.

【0025】型母材として超硬合金を所定の形状に加工
した後、成形面をRmax=0.02μmに鏡面研磨し
た。この型をよく洗浄した後、図6に示す成膜装置に設
置した。図中11は真空槽、12はイオンビーム装置、
13はイオン化室、14はガス導入口、15はイオンビ
ーム引き出しグリット、16はイオンビーム、17は取
りつけられた型、18は基板ホルダー及びヒーター、1
9は排気口、44はイオン化電極、45は直流電源、4
6は電子銃、47は金属チタンである。まず、真空槽1
1内を4×10-3Paまで減圧し、ガス導入口よりアル
ゴンガス10SCCMをイオン化室に導入しイオン化し
た後、イオンビーム引き出しグリットに500Vの電圧
を印加してイオンビームを引き出し、型表面に5分間照
射して型表面の洗浄を行った。次に、窒素ガス30SC
CMをイオン化室に導入してガス圧3.5×10-2Pa
とし、加速電圧9KeV−エミッション電流300mA
の電子線蒸着条件で金属チタンを蒸発させ、加速電圧9
KeVで窒素イオンビームを引き出し、型表面に照射し
て0.1μmの金属チタン、窒素と型母材とのミキシン
グ層を得た。次に、加速電圧200Vで窒素イオンビー
ムを引き出し型表面に照射しながらイオン化電極に+2
0Vの電圧をかけ、イオンプレーティングにより型表面
にTiN膜を1μm形成した。次に、CH4 15SCC
M,H2 30SCCMをイオン化室に導入してガス圧
3.5×10-2Paとし、加速電圧10KeVでイオン
ビームを引き出し成形面に照射してミキシング層を約3
0nm形成し、成形表面に100nmの硬質炭素膜を成
膜し光学素子成形用型を得た。
After processing a cemented carbide as a mold base material into a predetermined shape, the molding surface was mirror-polished to Rmax = 0.02 μm. After thoroughly washing this mold, it was installed in the film forming apparatus shown in FIG. In the figure, 11 is a vacuum chamber, 12 is an ion beam device,
13 is an ionization chamber, 14 is a gas inlet, 15 is an ion beam extraction grit, 16 is an ion beam, 17 is a mold attached, 18 is a substrate holder and a heater, 1
9 is an exhaust port, 44 is an ionization electrode, 45 is a DC power source, 4
6 is an electron gun and 47 is metallic titanium. First, the vacuum tank 1
After depressurizing the inside of 1 to 4 × 10 −3 Pa and introducing 10 SCCM of argon gas into the ionization chamber from the gas inlet to ionize it, a voltage of 500 V is applied to the ion beam extraction grit to extract the ion beam, and then the mold surface The mold surface was washed by irradiation for 5 minutes. Next, nitrogen gas 30SC
Gas pressure is 3.5 × 10 -2 Pa by introducing CM into the ionization chamber.
And acceleration voltage 9 KeV-emission current 300 mA
The metal titanium is evaporated under the electron beam evaporation conditions of
A nitrogen ion beam was extracted with KeV and irradiated on the mold surface to obtain a 0.1 μm metallic titanium / nitrogen / mixing layer of the mold base material. Next, while irradiating the surface of the extraction mold with a nitrogen ion beam at an acceleration voltage of 200 V, +2 is applied to the ionization electrode.
A voltage of 0 V was applied to form a TiN film of 1 μm on the mold surface by ion plating. Next, CH 4 15SCC
M, H 2 30 SCCM was introduced into the ionization chamber to a gas pressure of 3.5 × 10 -2 Pa, an ion beam was extracted at an accelerating voltage of 10 KeV, and the molding surface was irradiated with about 3 layers of the mixing layer.
Then, a hard carbon film having a thickness of 100 nm was formed on the molding surface to obtain an optical element molding die.

【0026】次に、上記参考例1に示した方法によって
ガラスレンズのプレス成形を行った結果、20000回
成形した後の型部材の成形面及び成形された光学素子の
表面粗さ、並びに型部材と成形された光学素子との離型
性は良好であった。特に、型部材の成形面について光学
顕微鏡、走査電子顕微鏡(SEM)で観察しても膜剥離
や傷やクラック等の欠陥やガラス成分の反応析出物、ガ
ラスの融着はなかった。
Next, as a result of press molding of the glass lens by the method shown in Reference Example 1, the molding surface of the mold member after molding 20000 times, the surface roughness of the molded optical element, and the mold member. The mold releasability between the molded optical element and In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), defects such as film peeling, scratches and cracks, reaction precipitates of glass components, and glass fusion did not occur.

【0027】以下、参考例3〜48、実施例3〜48
ついて参考例1〜2、実施例1〜を含め次表にまとめ
る。
Reference Examples 3 to 48 and Examples 3 to 48 are summarized in the following table including Reference Examples 1 and 2 and Examples 1 and 2 .

【0028】なお、成形表面層にはPt、炭化水素膜、
硬質炭素膜をイオンビーム蒸着、高周波プラズマCVD
により中間層上に成膜した。
The molded surface layer contains Pt, a hydrocarbon film,
Ion beam evaporation of hard carbon film, high frequency plasma CVD
To form a film on the intermediate layer.

【0029】また、中間層材料であるTaN,ZrN,
HfNは参考例1の蒸発源(図6の47)をそれぞれの
金属であるTa,Zr,Hfに置き換えて成膜した。
Further, the intermediate layer materials TaN, ZrN,
HfN was formed by replacing the evaporation source of Reference Example 1 (47 in FIG. 6) with Ta, Zr, and Hf, which are the respective metals.

【0030】また、型母材材料であるサーメットはTi
N−TiC系のものを、高膨張鋼材は日立金属製YHD
50FM(α=17×10-6)等を用いた。
Cermet, which is the material of the die base material, is made of Ti.
N-TiC type, high expansion steel material is YHD made by Hitachi Metals
50FM (α = 17 × 10 −6 ) or the like was used.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【発明の効果】以上説明したように本発明の光学素子成
形用型によれば、型母材と中間層間にミキシング層を設
け、型母材と中間層の密着を高めたことにより、ガラス
のプレス成形において中間層の型母材からの剥離を抑え
ることに成功した。更にこの型を用いてプレス成形を多
数回行っても中間層の剥離やクラック、傷等の欠陥が生
じない極めて耐久性の高い光学素子成形用型が得られ
た。
As described above, according to the optical element molding die of the present invention, the mixing layer is provided between the die base material and the intermediate layer to enhance the adhesion between the die base material and the intermediate layer. In press molding, we succeeded in suppressing the peeling of the intermediate layer from the mold base material. Further, even if press molding was carried out a number of times using this mold, an extremely durable optical element molding mold was obtained in which defects such as peeling, cracks and scratches of the intermediate layer did not occur.

【0036】本発明により得られた光学素子成形用型を
用いることにより、生産性の向上とコストダウンを実現
することが可能となった。
By using the optical element molding die obtained by the present invention, it has become possible to improve productivity and reduce cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる光学素子成形用型の成形表面に
形成したミキシング層の原子結合状態を示す模式図であ
る。
FIG. 1 is a schematic view showing an atomic bond state of a mixing layer formed on a molding surface of a mold for molding an optical element according to the present invention.

【図2】参考例の光学素子成形用型の一例を示す断面図
で、プレス成形前の状態を示す。
FIG. 2 is a cross-sectional view showing an example of an optical element molding die of a reference example , showing a state before press molding.

【図3】参考例の光学素子成形用型の一例を示す断面図
で、プレス成形後の状態を示す。
FIG. 3 is a cross-sectional view showing an example of an optical element molding die of a reference example , showing a state after press molding.

【図4】本発明に係わる光学素子成形用型の一例を示す
断面図で、プレス成形前の状態を示す。
FIG. 4 is a cross-sectional view showing an example of an optical element molding die according to the present invention, showing a state before press molding.

【図5】本発明に係わる光学素子成形用型の一例を示す
断面図で、プレス成形後の状態を示す。
FIG. 5 is a cross-sectional view showing an example of an optical element molding die according to the present invention, showing a state after press molding.

【図6】本発明の実施例で用いる成膜装置を示す概略図
である。
FIG. 6 is a schematic view showing a film forming apparatus used in an example of the present invention.

【図7】本発明に係わる光学素子成形用型を使用するレ
ンズの成形装置を示す断面図で非連続タイプである。
FIG. 7 is a cross-sectional view showing a lens molding apparatus using an optical element molding die according to the present invention, which is a discontinuous type.

【図8】本発明の実施例で用いる成膜装置を示す概略図
である。
FIG. 8 is a schematic view showing a film forming apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 型母材(上型) 1−a 成形表面層 1−b 成形表面層と中間層間のミキシング層 1−c 中間層 1−d 中間層と型母材間のミキシング層 2 型母材(上型) 2−a 成形表面層 2−b 成形表面層と中間層間のミキシング層 2−c 中間層 2−d 中間層と型母材間のミキシング層 3 ガラス素材 4 成形されたレンズ 11 真空槽 12 イオンビーム装置 13 イオン化室 14 ガス導入口 15 イオンビーム引き出しグリット 16 イオンビーム 17 型母材 18 基板ホルダー及びヒーター 19 排気口 25 バイアス電源 27 原料ガス供給系 28 アンテナ 29 マッチングボックス 30 高周波放電用電源 44 イオン化電極 45 直流電源 46 電子銃 47 金属チタン 50 ガラスブランク置き台 11 クラウン系ガラスブランク 100 胴型 110 ゲートバルブ 171 入換えチャンバー 171A 入換えチャンバー開口 172 シフタ 173 昇降機 180 シリンダ 180A ピストンロッド 200 上軸ロッド 300 成形チャンバー 400 旋回ハンド 401 旋回ハンド回転軸 403 吸着ハンド 1 type base material (upper type) 1-a molding surface layer 1-b Mixing layer between molding surface layer and intermediate layer 1-c middle layer 1-d mixing layer between the intermediate layer and the mold base material 2 type base material (upper mold) 2-a Molded surface layer 2-b Mixing layer between molding surface layer and intermediate layer 2-c Intermediate layer 2-d mixing layer between the intermediate layer and the mold base material 3 glass material 4 Molded lens 11 vacuum chamber 12 Ion beam device 13 Ionization room 14 gas inlet 15 Ion beam extraction grid 16 ion beam 17 type base material 18 Substrate holder and heater 19 exhaust port 25 bias power supply 27 Raw material gas supply system 28 antenna 29 Matching Box 30 High frequency discharge power supply 44 Ionization electrode 45 DC power supply 46 electron gun 47 metal titanium 50 glass blank holder 11 Crown glass blank 100 body type 110 gate valve 171 Exchange chamber 171A Exchange chamber opening 172 shifter 173 Elevator 180 cylinders 180A piston rod 200 Upper shaft rod 300 molding chamber 400 turning hand 401 swivel hand rotation axis 403 Suction hand

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 直 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平3−257031(JP,A) 特開 平5−124825(JP,A) 特開 昭60−246230(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 11/00 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Nao Miyazaki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) Reference JP-A-3-257031 (JP, A) JP-A-5 -124825 (JP, A) JP-A-60-246230 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 11/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラスよりなる光学素子のプレス成形に
用いる成形用型において、 型母材と成形表面層の間に中間層を有し、型母材を構成
する少なくとも1種類以上の元素の濃度が型母材側から
中間層側に向かって減少しかつ中間層を構成する少なく
とも1種類以上の元素の濃度が中間層側から型母材側に
向かって減少しているミキシング層を有し、 中間層材料がTiN、TaN、ZrN及びHfNから選
ばれ、 かつ、成形表面層が炭素またはPtと、中間層を構成す
る元素の少なくとも1種類以上からなり、炭素原子また
はPt濃度が中間層側に向かって減少しかつその他の原
子濃度が表面層側に向かって減少しているミキシング層
を有 することを特徴とする光学素子成形用型。
1. A molding die used for press molding of an optical element made of glass, which has an intermediate layer between a mold base material and a molding surface layer, and has a concentration of at least one or more elements constituting the mold base material. There have a mixing layer in which the concentration of at least one element constituting the reduced and intermediate layer toward the intermediate layer side from the mold base material side is decreased toward the intermediate layer side to the mold base material side, The intermediate layer material is selected from TiN, TaN, ZrN and HfN.
And the molding surface layer is carbon or Pt and constitutes an intermediate layer.
Of at least one of the elements
Indicates that the Pt concentration decreases toward the intermediate layer and other sources
Mixing layer whose child concentration decreases toward the surface layer
A mold for molding an optical element, comprising:
【請求項2】 中間層材料がTiN、TaN,ZrN及
びHfNから選ばれる請求項1記載の光学素子成形用
型。
2. The optical element molding die according to claim 1, wherein the intermediate layer material is selected from TiN, TaN, ZrN and HfN.
【請求項3】 中間層の形成に際し、電子ビームにより
Tiを蒸発させ、窒素イオンまたはアルゴンイオンを1
0KeVで加速し、まずTiと型母材とのミキシング層
を型母材表面に形成し、次いで、連続してイオンプレー
ティングによりTiN膜を形成することを特徴とする、
請求項1記載の光学素子成形用型の製造方法。
3. When the intermediate layer is formed, Ti is evaporated by an electron beam and nitrogen ions or argon ions are converted into 1
Accelerating at 0 KeV, first forming a mixing layer of Ti and the mold base material on the surface of the mold base material, and then continuously forming a TiN film by ion plating,
The method for manufacturing the optical element molding die according to claim 1.
JP25502294A 1994-10-20 1994-10-20 Optical element molding die and method of manufacturing the same Expired - Fee Related JP3397470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25502294A JP3397470B2 (en) 1994-10-20 1994-10-20 Optical element molding die and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25502294A JP3397470B2 (en) 1994-10-20 1994-10-20 Optical element molding die and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08119642A JPH08119642A (en) 1996-05-14
JP3397470B2 true JP3397470B2 (en) 2003-04-14

Family

ID=17273107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25502294A Expired - Fee Related JP3397470B2 (en) 1994-10-20 1994-10-20 Optical element molding die and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3397470B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052036B1 (en) 2006-05-27 2011-07-26 한국수력원자력 주식회사 Ceramic coating and ion beam mixing device to improve corrosion resistance at high temperature and method of modifying interface of thin film using same
KR100790409B1 (en) * 2007-04-26 2008-01-03 (주)비피에스 Apparatus and method for forming coating layer on subject with curved surface

Also Published As

Publication number Publication date
JPH08119642A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
US5711780A (en) Mold for molding optical element
JPH07138033A (en) Die for forming optical element and its production method
EP0581013B1 (en) Mold for forming optical element and method for producing the same
JPH09301722A (en) Formation of release film
JP3397470B2 (en) Optical element molding die and method of manufacturing the same
JP5627214B2 (en) Mold and its manufacturing method
JP2010116295A (en) Mold for molding optical element and method for manufacturing the same
JPH06345448A (en) Production of optical element
JP3847805B2 (en) Mold for optical element molding
JPH08259241A (en) Method for forming optical device
JP2571290B2 (en) Mold for optical element molding
JPH0729786B2 (en) Mold for optical element molding
JP3841186B2 (en) Mold for optical element molding
JP2505897B2 (en) Mold for optical element molding
JP2612621B2 (en) Mold for optical element molding
JP3810022B2 (en) Method for manufacturing optical element molding die
KR20190002858A (en) Molding Core for Fly-Eye Lens and Manufacturing Method Thereof
JP3625295B2 (en) Optical element molding die and manufacturing method thereof
JP2785903B2 (en) Mold for optical element molding
JP3149149B2 (en) Optical element molding die
JPH07157318A (en) Production of mold for forming optics
JP3144608B2 (en) Optical element molding die and method of manufacturing the same
JPH0925130A (en) Die for forming optical element and its production
JPH0672728A (en) Mold for molding optical element and its production
JP2002255568A (en) Method for manufacturing die for forming optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees