JP3394972B2 - Automatic machine tool - Google Patents

Automatic machine tool

Info

Publication number
JP3394972B2
JP3394972B2 JP04233294A JP4233294A JP3394972B2 JP 3394972 B2 JP3394972 B2 JP 3394972B2 JP 04233294 A JP04233294 A JP 04233294A JP 4233294 A JP4233294 A JP 4233294A JP 3394972 B2 JP3394972 B2 JP 3394972B2
Authority
JP
Japan
Prior art keywords
tool
reflector
automatic machine
coordinates
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04233294A
Other languages
Japanese (ja)
Other versions
JPH07246547A (en
Inventor
幸司 豊田
充夫 後藤
収 中村
吉久 谷村
幹男 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tokyo Seimitsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tokyo Seimitsu Co Ltd
Priority to JP04233294A priority Critical patent/JP3394972B2/en
Publication of JPH07246547A publication Critical patent/JPH07246547A/en
Application granted granted Critical
Publication of JP3394972B2 publication Critical patent/JP3394972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の利用分野】本発明は自動工作機械に係り、特
に、大型の自動工作機械の加工精度の改良に関する。 【0002】 【従来の技術】従来、マシンニングセンタやNC工作機
械等の自動工作機械は、X、Yの2軸、又はX、Y、Z
の3軸に備えた測長スケールで工具取付け軸の先端部に
取り付けられた工具の2次元又は3次元の座標を検出
し、その検出結果から工具の現在位置を確認すると共
に、確認した工具の現在位置と予め工具移動経路に従っ
て指令された指令位置とを比較補正しながら前記工具を
ワークに対して相対的に指令位置に移動させることによ
りワークを加工していく。従って、自動工作機械の加工
精度は、工具の座標を検出する測長スケールの精度が重
要になる。 【0003】 【発明が解決しようとする課題】しかしながら、従来の
自動工作機械に備えられる測長スケールの場合、測長ス
ケールが通常取り付けられる各軸の案内面の精度や、測
長スケールと案内面の材質の違いによる熱伸縮差、或い
は、各軸の静的変形や動的変形等の検出誤差要因の影響
を受け易く、工具の座標を高精度に検出することが難し
いという欠点があった。特に、大型の自動工作機械で
は、工具の位置と測長スケールとの距離が大きくなるの
で、所謂アッベの原理から外れて測長スケールでの検出
誤差が拡大し易い。 【0004】従って、特に大型の自動工作機械の場合、
加工精度を向上させることが難しかった。本発明は、こ
のような事情に鑑みてなされたもので、各軸の案内面の
精度や材質に影響されず、大型でも高精度な加工精度を
得ることのできる自動工作機械を提供することを目的と
する。 【0005】 【課題を解決する為の手段】本発明は、前記目的を達成
する為に、工具取付け軸に取付けた工具の座標を検出手
段で検出し、その検出結果から前記工具の現在位置を確
認すると共に、確認した工具の現在位置と予め工具移動
経路に従って指令された指令位置とを比較補正しながら
前記工具をワークに対して相対的に指令位置に移動させ
ることによりワークを加工していく自動工作機械に於い
て、前記検出手段は、前記工具取付け軸に取付けられた
反射体と、前記反射体を追尾して、その追尾する反射体
の移動量を測定すると共に、反射体の移動量から前記工
具の座標を検出する4基のレーザ追尾式測定装置と、か
ら成り、前記4基のレーザ追尾式測定装置で前記工具の
3次元座標を測定すると共に、前記レーザ追尾式測定装
置の基準点間距離4基の相互距離の検定を行うことを特
徴とする。 【0006】 【作用】本発明によれば、工具の座標を検出する検出手
段を、工具取付け軸に取付けられた反射体と、前記反射
体を追尾して、その追尾する反射体の移動量を測定する
と共に、反射体の移動量から前記工具の座標を検出する
レーザ追尾式測定装置と、から構成した。これにより、
自動工作機械の各軸の案内面とは別のところに測定基準
が設けられるので、案内面とは無関係に工具の座標を検
出することができる。 【0007】 【実施例】以下添付図面に従って本発明に係る自動工作
機械の好ましい実施例について詳説する。図1は、本発
明の自動工作機械の一例で門型マシンニングセンタ10
の斜視図である。 【0008】図1に示すように、門型マシンニングセン
タ10は、X軸方向に移動自在なXキャリッジ12、X
キャリッジ12の中をZ軸方向に移動自在な工具取付け
軸14及び基台16上を前後方向、即ちY軸方向にスラ
イドするY軸テーブル18を有すると共に、工具取付け
軸14の先端部に工具14Aが取付けられる。そして、
制御部15からの工具移動経路を指令する指令情報に従
ってサーボモータ等の図示しない駆動手段がXキャリッ
ジ12、Y軸テーブル18及び工具取付け軸14を図中
X−X方向、Y−Y方向、Z−Z方向に駆動して工具1
4Aを移動させると共に、工具14Aの座標が後記する
検出手段により検出されて制御部15に逐次フィードバ
ックされる。 【0009】次に、工具14Aの座標を検出する検出手
段について説明する。検出手段は、主として工具取付け
軸14に取付けられた反射体24と、反射体24を追尾
して、その追尾する反射体24の移動量を測定すると共
に、反射体24の移動量データから工具14Aの座標を
検出するレーザ追尾式の測定装置20とで構成される。
また、レーザ追尾式の測定装置20はY軸テーブル18
の後端に設けられ、測定装置20はその前面4隅に追尾
式レーザ干渉計22、22…が図示しない回転支持機構
を介して夫々設けられる。この回転支持機構により反射
レーザ光を追尾できるようになっている。一方、工具取
付け軸14の先端部近傍には、反射体24が前記追尾式
レーザ干渉計側22に向けて取付けられている。これに
より、工具取付け軸14の移動と共に移動する反射体2
4に各追尾式レーザ干渉計22からレーザ光を照射し
て、反射体24から反射した反射レーザ光を追尾するこ
とにより反射体24の移動量を測定する。そして、測定
された反射体24の移動量データは、測定装置20内の
演算処理部で演算されて反射体24の基準点から所定距
離だけ離れた工具14Aのヘッド部14aの座標として
表されるようになっている。尚、Y軸テーブル18の移
動においては、反射体24はY軸テーブル16と共に移
動する追尾式レーザ干渉計22に対して相対的に変位す
る。 【0010】次に、上記の如く構成された本発明の自動
工作機械の一例である門型マシンニングセンタ10でワ
ーク(図示せず)を加工する方法を説明する。ワークを
加工する場合、先ず、ワークをY軸テーブル18の所定
位置に固定する。次に、制御部15からの工具移動経路
を指令する指令情報に従ってXキャリッジ12、Y軸テ
ーブル18及び工具取付け軸14を駆動して工具14A
を移動させる。これにより、工具取付け軸14に取付け
られた反射体24も工具14Aの移動に伴われて移動す
るので、レーザ追尾式の測定装置20の追尾式レーザ干
渉計22により反射体24を追尾して反射体24の移動
量を測定し、測定した反射体24の移動量データを測定
装置20内の演算処理部で演算して工具14Aのヘッド
部14aの座標として表わす。 【0011】次に、レーザ追尾式の測定装置20で検出
された工具14Aの座標は制御部15にフィードバック
される。制御部15では、測定装置20で検出された座
標から工具14Aの現在位置を確認すると共に、確認し
た工具14Aの現在位置と前記指令情報で指令された指
令位置とを比較してXキャリッジ12、Y軸テーブル1
8及び工具取付け軸14の駆動を補正し、工具14Aを
ワークに対して相対的に指令位置に移動させることによ
りワークを加工していく。これにより、工具14Aの移
動補正を自動的に行いながらワークを加工することがで
きる。 【0012】次に、工具14Aのヘッド部14aの座標
を検出する検出手段を、工具取付け軸14に取付けられ
た反射体24と、反射体24を追尾して、その追尾する
反射体24の移動量を測定すると共に、反射体24の移
動量データから工具14Aの座標を検出するレーザ追尾
式の測定装置20とで構成したことによる作用効果を説
明する。 【0013】上記のように検出手段を構成したので、前
述したワークの加工方法から分かるように、門型マシン
ニングセンタ10のX、Y、Zの各軸の案内面とは無関
係に工具14Aの座標を検出することができる。これに
より、従来の門型マシンニングセンタの検出手段である
測長スケールのように案内面の精度や材質に影響を受け
ることがないと共に、各軸の静的な構造や移動に伴う動
的変形にも影響されることがなく、更には、測定基準が
レーザであり、レーザは測長スケールの精度検定に用い
られるものであるから、測長スケールに比べて測長精度
そのものを向上させることができる。また、追尾式レー
ザ干渉計22で反射体24を追尾する方式は、広い範囲
に渡って精度良く反射体の移動量を測定でき、工具14
Aの座標の検出精度が良くなる。従って、工具14Aの
座標を検出する検出精度を向上させることができるの
で、門型マシンニングセンタ10の加工精度を向上で
き、特に大型の門型マシンニングセンタ10でも高精度
の加工精度を得ることができる。 【0014】尚、本実施例では、3次元の自動工作機械
の例で説明したが、2次元の自動工作機械にも適用で
き、この場合は図2に示すように、レーザ追尾式の測定
装置20を門型マシンニングセンタ10を設置する床に
固定することによって、Xキャリッジ12と工具取付け
軸14の座標を検出する。また、3基の追尾式レーザ干
渉計22があれば反射体24の移動量を測定することは
可能であるが、本実施例のように4基の追尾式レーザ干
渉計22を使用すれば、追尾式レーザ干渉計22の基準
点間距離4基の相互距離の検定を行うことができると共
に、1基の追尾式レーザ干渉計22と反射体24の間の
光路に障害物があっても測定を行うことができる。ま
た、本発明の自動工作機械は、門型マシンニングセンタ
10に限定されることはなく、縦型或いは横型のマシン
ニングセンタにも適用することができる。更には、自動
工作機械でも特に2軸以上の直線運動または円弧運動
(回転運動は除く)する構造のものに適用することがで
きる。また、工具取付け軸14に固定する反射体の数は
1個に限定するものではない。 【0015】 【発明の効果】以上説明したように、本発明の自動工作
機械によれば、工具の座標を検出する検出手段を、工具
取付け軸に取付けられた反射体と、前記反射体を追尾し
て、その追尾する反射体の移動量を測定すると共に、反
射体の移動量から前記工具の座標を検出するレーザ追尾
式の測定装置と、から構成したので、自動工作機械の各
軸の案内面とは無関係に工具の座標を検出できる。 【0016】これにより、従来の自動工作機械の検出手
段である測長スケールのように案内面の精度や材質に影
響を受けることがないと共に、各軸の静的な構造や移動
に伴う動的変形にも影響されることがなく、更には、測
長スケールに比べて測長精度そのものを向上させること
ができる。また、レーザ追尾式の場合、広い範囲に渡っ
て精度良く工具の座標を検出できる。 【0017】従って、工具の座標を検出する検出精度を
向上させることができるので、自動工作機械の加工精度
を向上でき、特に大型の自動工作機械でも高精度の加工
精度を得ることができる。また、4基のレーザ追尾式測
定装置を使用するので、レーザ追尾式測定装置の基準点
間距離4基の相互距離の検定を行うことができると共
に、1基のレーザ追尾式測定装置と反射体の間の光路に
障害物があっても測定を行うことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic machine tool, and more particularly to an improvement in machining accuracy of a large automatic machine tool. 2. Description of the Related Art Conventionally, automatic machine tools such as a machining center and an NC machine tool have two axes of X and Y or X, Y and Z.
The two-dimensional or three-dimensional coordinates of the tool attached to the tip of the tool attachment axis are detected by the length measuring scale provided for the three axes, and the current position of the tool is confirmed from the detection result, and the confirmed tool The workpiece is machined by moving the tool relatively to the workpiece to the commanded position while comparing and correcting the current position and a commanded position previously instructed according to the tool movement path. Therefore, the accuracy of the length measurement scale for detecting the coordinates of the tool is important for the processing accuracy of the automatic machine tool. [0003] However, in the case of a length measuring scale provided in a conventional automatic machine tool, however, the accuracy of the guide surface of each axis to which the length measuring scale is usually mounted, and the length measuring scale and the guide surface. However, there is a disadvantage that it is easily affected by a detection error factor such as a difference in thermal expansion or contraction due to a difference in material of each of the above or static deformation and dynamic deformation of each axis, and it is difficult to detect the coordinates of the tool with high accuracy. In particular, in a large-sized automatic machine tool, the distance between the position of the tool and the length measuring scale becomes large, so that the detection error on the length measuring scale is likely to deviate from the so-called Abbe principle. Therefore, especially in the case of a large automatic machine tool,
It was difficult to improve the processing accuracy. The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an automatic machine tool capable of obtaining high-precision machining accuracy even in a large size without being affected by the accuracy and material of a guide surface of each shaft. Aim. According to the present invention, in order to achieve the above object, the coordinates of a tool mounted on a tool mounting shaft are detected by detecting means, and the current position of the tool is determined from the detection result. Work is performed by moving the tool to the command position relatively to the work while checking and confirming the current position of the tool and the command position previously commanded according to the tool movement path in advance. In the automatic machine tool, the detecting means tracks the reflector mounted on the tool mounting shaft and the reflector, measures the amount of movement of the reflector to be tracked, and measures the amount of movement of the reflector. from Ri consists, laser tracking type measuring apparatus four to detect the coordinates of the tool, the tool is a laser tracking type measuring apparatus of the four
In addition to measuring three-dimensional coordinates, the laser tracking measurement device
It is characterized in that the mutual distance of the four reference point distances is tested . According to the present invention, the detecting means for detecting the coordinates of the tool includes a reflector mounted on the tool mounting shaft, the tracking of the reflector, and the amount of movement of the reflector to be tracked. And a laser tracking type measuring device that measures the coordinates of the tool from the amount of movement of the reflector. This allows
Since the measurement reference is provided separately from the guide surface of each axis of the automatic machine tool, the coordinates of the tool can be detected independently of the guide surface. Preferred embodiments of an automatic machine tool according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows an example of an automatic machine tool according to the present invention.
It is a perspective view of. As shown in FIG. 1, a portal type machining center 10 has an X carriage 12, which is movable in the X-axis direction.
It has a tool mounting shaft 14 movable in the Z-axis direction in the carriage 12 and a Y-axis table 18 that slides on the base 16 in the front-rear direction, that is, in the Y-axis direction. Is attached. And
Drive means (not shown), such as a servomotor, moves the X carriage 12, Y-axis table 18, and tool mounting shaft 14 in the XX direction, YY direction, Z Drive tool 1 in the -Z direction
4A is moved, and the coordinates of the tool 14A are detected by detection means described later and are sequentially fed back to the control unit 15. Next, detection means for detecting the coordinates of the tool 14A will be described. The detecting means mainly tracks the reflector 24 attached to the tool mounting shaft 14, the reflector 24, measures the amount of movement of the reflector 24 to be tracked, and detects the tool 14A from the movement amount data of the reflector 24. And a laser tracking type measuring device 20 for detecting the coordinates of
In addition, the laser tracking type measuring device 20 is a Y-axis table 18.
Are provided at the rear end, and tracking laser interferometers 22, 22,... Are respectively provided at four corners of the front surface thereof via rotation support mechanisms (not shown). The reflected laser light can be tracked by this rotation support mechanism. On the other hand, a reflector 24 is mounted near the tip of the tool mounting shaft 14 toward the tracking type laser interferometer 22. Thereby, the reflector 2 that moves with the movement of the tool mounting shaft 14
4 irradiates laser light from each tracking type laser interferometer 22 and tracks the reflected laser light reflected from the reflector 24 to measure the movement amount of the reflector 24. The measured movement amount data of the reflector 24 is calculated by an arithmetic processing unit in the measuring device 20 and is represented as the coordinates of the head 14a of the tool 14A separated from the reference point of the reflector 24 by a predetermined distance. It has become. When the Y-axis table 18 moves, the reflector 24 is displaced relatively to the tracking laser interferometer 22 that moves together with the Y-axis table 16. Next, a method of processing a work (not shown) by the portal type machining center 10 which is an example of the automatic machine tool of the present invention configured as described above will be described. When processing a work, first, the work is fixed at a predetermined position on the Y-axis table 18. Next, the X carriage 12, the Y-axis table 18, and the tool mounting shaft 14 are driven in accordance with command information for commanding a tool moving path from the control unit 15 to drive the tool 14A.
To move. As a result, the reflector 24 attached to the tool attachment shaft 14 also moves with the movement of the tool 14A, so that the reflector 24 is tracked and reflected by the tracking laser interferometer 22 of the laser tracking measuring device 20. The amount of movement of the body 24 is measured, and the measured data of the amount of movement of the reflector 24 is calculated by an arithmetic processing unit in the measuring device 20 and is represented as coordinates of the head 14a of the tool 14A. Next, the coordinates of the tool 14A detected by the laser tracking type measuring device 20 are fed back to the control unit 15. The control unit 15 confirms the current position of the tool 14A from the coordinates detected by the measuring device 20, compares the confirmed current position of the tool 14A with the commanded position commanded by the command information, and compares the X carriage 12, Y axis table 1
The workpiece is machined by correcting the drive of the tool 8 and the tool mounting shaft 14 and moving the tool 14A to a command position relatively to the workpiece. Thus, the workpiece can be machined while automatically correcting the movement of the tool 14A. Next, a detecting means for detecting the coordinates of the head portion 14a of the tool 14A is provided with a reflector 24 attached to the tool mounting shaft 14, a tracking of the reflector 24, and a movement of the reflector 24 to be tracked. A description will be given of the operation and effect of the laser tracking type measuring device 20 which measures the amount and detects the coordinates of the tool 14A from the movement amount data of the reflector 24. Since the detecting means is constituted as described above, as can be seen from the above-described work processing method, the tool 14A of the portal type machining center 10 is independent of the guide surfaces of the X, Y and Z axes. Coordinates can be detected. As a result, the accuracy and material of the guide surface are not affected by the length measuring scale, which is the detection means of the conventional portal-type machining center, and the dynamic deformation due to the static structure and movement of each axis In addition, the measurement standard is a laser, and the laser is used for the accuracy verification of the length measurement scale. Therefore, the measurement accuracy itself can be improved as compared with the length measurement scale. it can. In addition, the method of tracking the reflector 24 by the tracking laser interferometer 22 can accurately measure the amount of movement of the reflector over a wide range.
The detection accuracy of the coordinates of A is improved. Therefore, since the detection accuracy for detecting the coordinates of the tool 14A can be improved, the processing accuracy of the portal machining center 10 can be improved, and in particular, even with the large portal machining center 10, high processing accuracy can be obtained. Can be. Although this embodiment has been described with reference to an example of a three-dimensional automatic machine tool, the present invention can also be applied to a two-dimensional automatic machine tool. In this case, as shown in FIG. The coordinates of the X carriage 12 and the tool mounting shaft 14 are detected by fixing 20 to the floor on which the portal type machining center 10 is installed. Also, if there are three tracking laser interferometers 22, it is possible to measure the amount of movement of the reflector 24. However, if four tracking laser interferometers 22 are used as in this embodiment, The distance between the reference points of the tracking laser interferometer 22 can be tested for the mutual distance, and even if there is an obstacle in the optical path between the tracking laser interferometer 22 and the reflector 24, it can be measured. It can be performed. Further, the automatic machine tool of the present invention is not limited to the portal type machining center 10, but can be applied to a vertical or horizontal type machining center. Further, the present invention is also applicable to an automatic machine tool having a structure in which two or more axes move linearly or circularly (excluding rotational movement). Further, the number of reflectors fixed to the tool mounting shaft 14 is not limited to one. As described above, according to the automatic machine tool of the present invention, the detecting means for detecting the coordinates of the tool includes the reflector mounted on the tool mounting shaft and the reflector. And a laser tracking type measuring device that measures the amount of movement of the reflector to be tracked and detects the coordinates of the tool from the amount of movement of the reflector, so that each axis of the automatic machine tool is guided. The coordinates of the tool can be detected independently of the surface. Thus, the accuracy and material of the guide surface are not affected by the length measuring scale, which is the detecting means of the conventional automatic machine tool, and the dynamic structure associated with the static structure and movement of each axis. It is not affected by the deformation, and the length measurement accuracy itself can be improved as compared with the length measurement scale. In the case of the laser tracking method, the coordinates of the tool can be detected with high accuracy over a wide range. Therefore, the detection accuracy for detecting the coordinates of the tool can be improved, so that the processing accuracy of the automatic machine tool can be improved, and particularly, even with a large automatic machine tool, high processing accuracy can be obtained. In addition, four laser tracking type measurement
The reference point of the laser tracking type measuring device
It is possible to test the mutual distance of four units.
In the optical path between one laser tracking measuring device and the reflector
Measurement can be performed even if there is an obstacle.

【図面の簡単な説明】 【図1】図1は、本発明の自動工作機械の門型マシンニ
ングセンタの一例で、測定装置をY軸テーブル上に配置
した斜視図 【図2】図2は、本発明の自動工作機械の門型マシンニ
ングセンタの一例で、測定装置を床上に配置した斜視図 【符号の説明】 10…門型マシンニングセンタ 12…Xキャリッジ 14…工具取付け軸 14A…工具 15…制御部 16…基台 18…Y軸テーブル 20…測定装置 22…追尾式レーザ干渉計 24…反射体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an example of a portal type machining center of an automatic machine tool according to the present invention, and is a perspective view in which a measuring device is arranged on a Y-axis table. A perspective view of an example of a portal type machining center of an automatic machine tool according to the present invention, in which a measuring device is arranged on a floor. [Description of Signs] 10 ... Portal type machining center 12 ... X carriage 14 ... Tool mounting shaft 14A ... Tool 15 Control unit 16 Base 18 Y-axis table 20 Measuring device 22 Tracking laser interferometer 24 Reflector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 充夫 茨城県つくば市梅園1丁目1番4 工業 技術院 計量研究所内 (72)発明者 中村 収 茨城県つくば市梅園1丁目1番4 工業 技術院 計量研究所内 (72)発明者 谷村 吉久 茨城県つくば市梅園1丁目1番4 工業 技術院 計量研究所内 (72)発明者 辻 幹男 東京都三鷹市下連雀九丁目7番1号 株 式会社東京精密内 (56)参考文献 特開 平2−249909(JP,A) 特開 平2−119120(JP,A) 特開 平7−239209(JP,A) 特開 平7−239217(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23Q 17/00 - 23/00 G01B 9/02 G01B 11/00 - 11/30 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Mitsuo Goto 1-1-4 Umezono, Tsukuba City, Ibaraki Pref. Institute of Metrology (72) Inventor Osamu Nakamura 1-4-1 Umezono, Tsukuba City, Ibaraki Pref. Inside the Metrology Research Institute (72) Inventor Yoshihisa Tanimura 1-1-4 Umezono, Tsukuba, Ibaraki Pref.Institute of Metrology (72) Inventor Mikio Tsuji 9-7-1 Shimorenjaku, Mitaka-shi, Tokyo (56) References JP-A-2-249909 (JP, A) JP-A-2-119120 (JP, A) JP-A-7-239209 (JP, A) JP-A-7-239217 (JP, A) ( 58) Fields surveyed (Int.Cl. 7 , DB name) B23Q 17/00-23/00 G01B 9/02 G01B 11/00-11/30

Claims (1)

(57)【特許請求の範囲】 【請求項1】 工具取付け軸に取付けた工具の座標を検
出手段で検出し、その検出結果から前記工具の現在位置
を確認すると共に、確認した工具の現在位置と予め工具
移動経路に従って指令された指令位置とを比較補正しな
がら前記工具をワークに対して相対的に指令位置に移動
させることによりワークを加工していく自動工作機械に
於いて、 前記検出手段は、 前記工具取付け軸に取付けられた反射体と、 前記反射体を追尾して、その追尾する反射体の移動量を
測定すると共に、反射体の移動量から前記工具の座標を
検出する4基のレーザ追尾式測定装置と、から成り、 前記4基のレーザ追尾式測定装置で前記工具の3次元座
標を測定すると共に、前記レーザ追尾式測定装置の基準
点間距離4基の相互距離の検定を行う ことを特徴とする
自動工作機械。
(57) [Claims] [Claim 1] The coordinates of a tool mounted on a tool mounting shaft are detected by a detecting means, the current position of the tool is confirmed from the detection result, and the current position of the confirmed tool is confirmed. An automatic machine tool for processing a workpiece by moving the tool to a commanded position relative to the workpiece while comparing and correcting a commanded location instructed according to a tool movement path in advance. It includes a reflector attached to the tool mounting shaft, and tracking the reflector, as well as measuring the amount of movement of the reflector to the tracking, to detect the coordinates of the tool from the amount of movement of the reflector four a laser tracking type measuring apparatus, formed Ri from 3D seat of the tool in the laser tracking type measuring apparatus of the four
Measure the target and set the standard for the laser tracking type measuring device.
An automatic machine tool characterized by performing a test of a mutual distance between four points .
JP04233294A 1994-03-14 1994-03-14 Automatic machine tool Expired - Lifetime JP3394972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04233294A JP3394972B2 (en) 1994-03-14 1994-03-14 Automatic machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04233294A JP3394972B2 (en) 1994-03-14 1994-03-14 Automatic machine tool

Publications (2)

Publication Number Publication Date
JPH07246547A JPH07246547A (en) 1995-09-26
JP3394972B2 true JP3394972B2 (en) 2003-04-07

Family

ID=12633060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04233294A Expired - Lifetime JP3394972B2 (en) 1994-03-14 1994-03-14 Automatic machine tool

Country Status (1)

Country Link
JP (1) JP3394972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056493B1 (en) * 2012-12-04 2019-12-16 두산공작기계 주식회사 Position error correction device of machine tool using static displacement and method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541713B2 (en) * 2009-08-21 2014-07-09 キヤノン株式会社 Laser interferometer, processing apparatus using the same, and method of manufacturing parts
CN102062575B (en) * 2010-11-10 2012-07-04 西安交通大学 Method for detecting geometric accuracy of numerically-controlled machine tool based on multi-channel laser time-sharing measurement
JP5745646B2 (en) * 2011-11-30 2015-07-08 株式会社牧野フライス製作所 Error measuring method and machine tool
ES2912525T3 (en) * 2017-12-22 2022-05-26 Ldi Finances Three-dimensional target with double structure, device and optical measurement procedure with said target
TWI786221B (en) 2017-12-22 2022-12-11 瑞士商謹觀股份公司 Machine-tool with an optical measuring device for the three-dimensional registration between the tool-holder and the workpiece holder
CH714503A1 (en) * 2017-12-22 2019-06-28 Watch Out Sa Machine tool with an optical measuring device for three-dimensional registration between the tool holder and the workpiece support.
CH714501B1 (en) * 2017-12-22 2024-01-31 Watchoutcorp Sa Three-dimensional target with double structure, device and method for optical measurement with such a target.
CH716246A1 (en) 2019-06-03 2020-12-15 Watch Out Sa Machining and machine tool module comprising a unit for monitoring tool wear, and methods for detecting the position, profile and wear of the tool.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056493B1 (en) * 2012-12-04 2019-12-16 두산공작기계 주식회사 Position error correction device of machine tool using static displacement and method thereof

Also Published As

Publication number Publication date
JPH07246547A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
US5467289A (en) Method of and an apparatus for measuring surface contour
KR101906942B1 (en) Calibration of a coordinate measuring machine using a calibration laser head at the tool centre point
US6973738B2 (en) Measuring method and device, machine tool having such device, and work processing method
JP2018106604A (en) Measurement calibration compensation system and method for machine tool
CN101352817A (en) Method of measuring position detection error in machine tool
US3884580A (en) Apparatus for measuring and positioning by interferometry
JP3394972B2 (en) Automatic machine tool
CN109318059A (en) The calibrating installation and method of numerically-controlled machine tool translation shaft geometric error
JP6747151B2 (en) Inspection method and device for positioning machine using tracking laser interferometer
US4714344A (en) Laser apparatus for monitoring geometric errors
JP2001518606A (en) Device for detecting the position of two objects
JPH038683B2 (en)
CN106736863B (en) It is a kind of measure boring and milling machine space thermal deformation errors rapid survey rule and its method
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP2755346B2 (en) Method and apparatus for measuring motion accuracy of automatic machine tool
US6351313B1 (en) Device for detecting the position of two bodies
JP2858926B2 (en) Master measuring device for measuring machine static accuracy
JPH0123041B2 (en)
Liu et al. Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages
JPH04140691A (en) Positioner
JP6830997B1 (en) Multi-axis machining equipment and its compensation method
JP7448895B2 (en) feeding device
JP2539097B2 (en) Machining error correction method and machine tool
EP2754992A1 (en) Optical profilometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term