JP3394661B2 - Steam control valve - Google Patents

Steam control valve

Info

Publication number
JP3394661B2
JP3394661B2 JP24744196A JP24744196A JP3394661B2 JP 3394661 B2 JP3394661 B2 JP 3394661B2 JP 24744196 A JP24744196 A JP 24744196A JP 24744196 A JP24744196 A JP 24744196A JP 3394661 B2 JP3394661 B2 JP 3394661B2
Authority
JP
Japan
Prior art keywords
valve
valve body
steam
protrusion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24744196A
Other languages
Japanese (ja)
Other versions
JPH1089494A (en
Inventor
文雄 加藤
晴幸 山崎
信義 坪井
修 横田
孝徳 室星
和典 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24744196A priority Critical patent/JP3394661B2/en
Publication of JPH1089494A publication Critical patent/JPH1089494A/en
Application granted granted Critical
Publication of JP3394661B2 publication Critical patent/JP3394661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気タービンの蒸
気流量を制御する蒸気加減弁の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a steam control valve for controlling a steam flow rate of a steam turbine.

【0002】[0002]

【従来の技術】蒸気加減弁は、蒸気タービンへの蒸気量
を制御するために使用される弁装置である。蒸気タービ
ン用加減弁は、蒸気圧力が25MPa前後、温度が約5
38〜550℃の高温、高圧下で使用され、起動から定
格負荷までの弁前後の圧力比(P2/P1、P1:弁上
流側圧力;P2:弁下流側圧力)は約0〜0.98の範
囲で変化する。その際、臨界圧力比(P2/P1=0.
546)以下では弁の最大絞り部における流速は超音速
となり、それ以上では亜音速となる。
BACKGROUND OF THE INVENTION Steam control valves are valve devices used to control the amount of steam to a steam turbine. The steam turbine control valve has a steam pressure of around 25 MPa and a temperature of approximately 5 MPa.
It is used under high temperature and high pressure of 38 to 550 ° C, and the pressure ratio (P2 / P1, P1: valve upstream side pressure; P2: valve downstream side pressure) from the start to the rated load is about 0 to 0.98. Changes in the range of. At that time, the critical pressure ratio (P2 / P1 = 0.
Below 546), the flow velocity at the maximum throttle of the valve becomes supersonic, and above that, it becomes subsonic.

【0003】このように蒸気加減弁はタービン要素機器
の中でも最も過酷な条件下で使用されるため、強度信頼
性については十分な配慮が必要である。蒸気加減弁はタ
ービン起動時に弁前後の圧力比が最大となり、弁を開け
ていく時に大きな圧力と衝撃的な流体力が弁部に働く
これを緩和するために蒸気タービンでは図4に示されて
いるようなダブルリフト弁が採用されている。
As described above, since the steam control valve is used under the harshest conditions among the turbine element equipment, it is necessary to give sufficient consideration to strength reliability. In the steam control valve, the pressure ratio before and after the valve is maximized when the turbine is started, and when opening the valve, a large pressure and a shocking fluid force act on the valve section .
To alleviate this, the steam turbine employs a double lift valve as shown in FIG.

【0004】すなわち、この型式の弁は親弁5と子弁4
で構成され、親弁5の内部に子弁4があって、起動時に
先に子弁が約2〜3mm程度リフトする。この時点で弁
スリーブ7と弁体5との間隙を通って弁体5の内部
れ込んだ蒸気は弁体底部の蒸気流出孔12を通って弁下
流へ流れる。この子弁4は、いわゆる蒸気流のバイパス
弁としての役目を担い、弁前後の圧力差を緩和し衝撃的
な蒸気圧力の負荷を軽減している。
That is, this type of valve is composed of a master valve 5 and a slave valve 4.
The child valve 4 is provided inside the parent valve 5, and the child valve lifts about 2 to 3 mm before starting. At this time point, the steam flowing into the inside of the valve body 5 through the gap between the valve sleeve 7 and the valve body 5 flows to the downstream side of the valve through the steam outlet hole 12 at the bottom of the valve body. The child valve 4 plays a role as a so-called steam flow bypass valve, and alleviates a pressure difference between the front and the rear of the valve to reduce a shock load of steam pressure.

【0005】蒸気加減弁に関するトラブル事例は比較的
多く、騒音、振動、エロジョンあるいは材料劣化などの
報告がある。特に騒音の問題は騒音値が100dBを越え
る場合もあり、全プラント最大の騒音源となる場合が多
い。また騒音と弁構成要素個体の振動とは直接相関がな
い場合もあるが、多くの場合、騒音レベルの高いところ
では弁を構成する各要素個体の振動も高いのが一般的で
ある。それは騒音、個体振動の発生原因が弁廻りの流れ
の乱れや不安定流れなどによって誘発されるためであ
る。
There are relatively many cases of troubles related to the steam control valve, and there are reports of noise, vibration, erosion, material deterioration and the like. In particular, the problem of noise is that the noise value may exceed 100 dB, and it is often the largest noise source in the entire plant. In some cases, there is no direct correlation between the noise and the vibration of the individual valve constituent elements, but in many cases, the vibration of each individual constituent element of the valve is also high where the noise level is high. This is because the cause of noise and solid vibration is induced by turbulence and unstable flow around the valve.

【0006】このように騒音の発生源が流れに起因する
ものを一般に流体騒音と呼んでいる。この流体騒音の大
きさは Lighthill 等の研究によって速度の6〜8乗に
比例することが知られている。その発生メカニズムをミ
クロ的に見るならば、最大絞り部からの噴流(ジェッ
ト)が下流側の低速部分に加速されるとき、低速部分と
の間に大きな速度勾配が発生し、噴流内に流れの剪断層
ができる。剪断層の周りからは小さな剪断乱流渦がで
き、その渦が交互に衝突、混合、干渉などを起こすこと
により、部分的に圧力の高い部分が発生し、それが音波
となって伝搬するときに騒音として感知される。
Such a source of noise caused by the flow is generally called fluid noise. It is known from the study of Lighthill et al. That the magnitude of this fluid noise is proportional to the 6th to 8th power of the velocity. From a microscopic view of the generation mechanism, when the jet (jet) from the maximum throttle is accelerated to the low speed portion on the downstream side, a large velocity gradient is generated between the jet and the low speed portion, and Shearing layer is created. Small shear turbulent vortices are formed around the shear layer, and the vortices alternately collide, mix, and interfere with each other to generate a part with high pressure, which propagates as a sound wave. Perceived as noise.

【0007】以上の観点から、この流体騒音の低減法と
しては次のような対応が必要となる。すなわち、 (1)絞り部での最大流速を低く抑える。
From the above viewpoints, the following measures are required for this fluid noise reduction method. That is, (1) The maximum flow velocity at the throttle portion is kept low.

【0008】(2)剪断層からの渦の発生を抑えるため
周囲流体との速度差を小さくする。
(2) The velocity difference with the surrounding fluid is made small in order to suppress the generation of vortices from the shear layer.

【0009】(3)周囲流体との合流、混合、干渉がス
ムーズになる流れとする。
(3) The flow is such that merging, mixing and interference with the surrounding fluid are smooth.

【0010】(4)流動パターンが変動する不安定領域
をなくし、安定した流れ場とする。
(4) A stable flow field is created by eliminating an unstable region where the flow pattern fluctuates.

【0011】である。[0011]

【0012】前述した図4は従来一般に採用されている
代表的な弁構造であるが、この弁における弁体(親弁)
5は、その弁体底部がカットされ、平坦な弁体底面10
とその外縁部に円環状の突起9が配置されている。この
ように弁体底部をカットする利点は、弁体の外周曲面1
1に沿って流れてきた流体をカット部で強制的に剥離さ
せることにより、弁体底部で発生する流れパターンの遷
移による流体不安定領域を解消し、弁座8、8側に沿う
安定した弁座付着流14、14を形成することにある。
The above-mentioned FIG. 4 shows a typical valve structure generally adopted in the past, and the valve body (parent valve) of this valve is shown in FIG.
5, the bottom of the valve body is cut to form a flat bottom 10
And an annular projection 9 is arranged on the outer edge thereof. The advantage of cutting the bottom of the valve body in this way is that the outer peripheral curved surface 1 of the valve body is
By forcibly separating the fluid flowing along 1 along the cut portion at the cut portion, the fluid unstable region due to the transition of the flow pattern generated at the bottom of the valve body is eliminated, and a stable valve along the valve seats 8 and 8 side is eliminated. To form the seated streams 14, 14.

【0013】なお、この種の弁に関連するものとして
は、例えば特開昭56−109954号公報、特開昭6
1−43589号公報あるいは実開昭62−73165
号公報などが挙げられる。
Incidentally, as a valve related to this kind of valve, for example, JP-A-56-109954 and JP-A-6-196954.
1-43589 or Japanese Utility Model Laid-Open No. 62-73165.
No. Gazette and the like.

【0014】[0014]

【発明が解決しようとする課題】このように形成されて
いる蒸気加減弁であると、弁体底部のカットおよびその
外縁部の円環状の突起により、弁体底部に循環流域が形
成される。その循環流の大きさや流れの向きは弁体底面
および突起形状によって大きく左右される。従来型のよ
うに弁体底面が水平平面に設置され、突起の角度が広く
とられる場合には、この循環流が主流13、13と衝突
あるいは干渉して騒音を生ずる恐れがあった。
In the steam control valve thus formed, the cut portion at the bottom of the valve body and the annular projection at the outer edge thereof form a circulation flow region at the bottom of the valve body. The size of the circulating flow and the direction of the flow greatly depend on the bottom surface of the valve body and the shape of the protrusion. When the bottom surface of the valve body is installed on a horizontal plane as in the conventional type and the angle of the projection is wide, this circulating flow may collide with or interfere with the mainstreams 13, 13 to generate noise.

【0015】本発明はこれに鑑みなされたもので、その
目的とするところは、たとえ弁体底部に大きな循環流が
発生した場合であっても、噴流主流と循環流との衝突、
混合、あるいは干渉により発生する流体騒音を充分低減
することが可能な蒸気加減弁を提供するにある。
The present invention has been made in view of this, and an object of the present invention is to collide the main jet flow with the circulating flow, even if a large circulating flow occurs at the bottom of the valve body.
Another object of the present invention is to provide a steam control valve capable of sufficiently reducing fluid noise generated by mixing or interference.

【0016】[0016]

【課題を解決するための手段】すなわち本発明は、弁箱
および弁座を備えた蒸気室に弁体を上下に移動させ、弁
体と弁座との間の絞りによって蒸気量を制御するように
形成されている蒸気加減弁において、前記弁体の底部の
円周外縁部に、弁体の移動方向に突出した環状の突起を
設けるとともに、この突起に続く内面側の弁体底部を、
中心側が凹部となる傾斜面に形成し所期の目的を達成す
るようにしたものである。
That is, according to the present invention, a valve body is moved up and down in a steam chamber having a valve box and a valve seat, and the amount of steam is controlled by a restriction between the valve body and the valve seat. In the steam control valve formed in, the circumferential outer edge portion of the bottom portion of the valve element is provided with an annular protrusion protruding in the moving direction of the valve element, and the valve element bottom portion on the inner surface side following the protrusion is
The center side is formed as an incline that is a recess to achieve the intended purpose.

【0017】またこの場合、前記弁体底面を平坦面ある
いは曲面に形成するようにしたものである。また、前記
突起形状を、突起先端から突起に内接する円の接線方向
とこの突起の内面側壁面方向のなす角度が55°以下と
なるように形成したものである。また、前記突起形状
を、突起先端から突起に内接する円の接線方向とこの突
起の内面側壁面方向のなす角度が55°以下で、かつこ
の突起の高さが弁体曲面(円弧面)の高さの1/4〜1
/3の範囲となるようにしたものである。
In this case, the bottom surface of the valve body is formed into a flat surface or a curved surface. Further, the projection shape is formed such that an angle formed by a tangential direction of a circle inscribed in the projection from a tip of the projection and an inner side wall surface direction of the projection is 55 ° or less. In addition, an angle between the tangential direction of a circle inscribed in the projection from the tip of the projection and an inner side wall surface direction of the projection is 55 ° or less, and the height of the projection is a curved surface of a valve body (arc surface). 1/4 to 1 of height
The range is / 3.

【0018】また、弁箱および弁座を備えた蒸気室に弁
体を上下に移動させ、弁体と弁座との間の絞りによって
蒸気量を制御するように形成されている蒸気加減弁にお
いて、前記弁体の底部の円周外縁部に、弁体の移動方向
に突出した環状の突起を設けるとともに、この突起の形
状を、突起先端からこの突起に内接する円の接線方向と
この突起の内面側壁面方向のなす角度が55度以下で、
かつこの突起の高さが弁体曲面(円弧面)の高さの1/
4〜1/3の範囲となるように形成したものである。
Further, in a steam control valve formed so that a valve body is moved up and down in a steam chamber having a valve box and a valve seat, and the amount of steam is controlled by a throttle between the valve body and the valve seat. , A circular projection protruding in the moving direction of the valve body is provided on the outer circumferential edge of the bottom of the valve body, and the shape of this projection is defined by the tangential direction of a circle inscribed in the projection from the tip of the projection and this projection. The angle formed by the inner wall surface direction is 55 degrees or less,
Moreover, the height of this protrusion is 1 / the height of the curved surface of the valve body (arc surface).
It is formed to have a range of 4 to 1/3.

【0019】また、弁箱および弁座を備えた蒸気室に弁
体を上下に移動させることにより、弁体と弁座との間の
絞りによって蒸気量を制御するように形成されるととも
に、前記弁体の内部に子弁を備え、この子弁の上下移動
によりバイパス蒸気を弁体底部下流部に流通させるよう
に形成されている蒸気加減弁において、前記子弁部から
のバイパス蒸気を弁体底部下流部に流通させるバイパス
蒸気流通路を、このバイパス蒸気流通路から噴出される
バイパス蒸気が弁体底部下流部に形成される主蒸気循環
流の向きと同じ向きに噴出されるように形成したもので
ある。
Further, the valve body is moved up and down in the steam chamber provided with the valve box and the valve seat, so that the amount of steam is controlled by the restriction between the valve body and the valve seat. In the steam control valve, which is provided with a child valve inside the valve body and is configured to cause the bypass steam to flow to the downstream portion of the valve body bottom by the vertical movement of the child valve, the bypass steam from the child valve portion is supplied to the valve body. The bypass steam flow passage that is circulated to the bottom downstream portion is formed so that the bypass steam that is jetted from this bypass steam flow passage is jetted in the same direction as the direction of the main steam circulation flow that is formed in the valve body bottom downstream portion. It is a thing.

【0020】また、弁箱および弁座を備えた蒸気室に弁
体を上下に移動させることにより、弁体と弁座との間の
絞りによって蒸気量を制御するように形成されるととも
に、前記弁体の内部に子弁を備え、この子弁の上下移動
によりバイパス蒸気を弁体底部下流部に流通させるよう
に形成されている蒸気加減弁において、前記子弁部から
のバイパス蒸気を弁体底部下流部に流通させるバイパス
蒸気流通路の蒸気噴出口を、前記弁体底部の周縁近傍に
設けるようにしたものである。
Further, the valve body is moved up and down in the steam chamber provided with the valve box and the valve seat, so that the amount of steam is controlled by the restriction between the valve body and the valve seat. In the steam control valve, which is provided with a child valve inside the valve body and is configured to cause the bypass steam to flow to the downstream portion of the valve body bottom by the vertical movement of the child valve, the bypass steam from the child valve portion is supplied to the valve body. The bypass jet of the bypass steam flow passage, which is circulated to the downstream portion of the bottom portion, is provided near the peripheral edge of the bottom portion of the valve body.

【0021】また、弁箱および弁座を備えた蒸気室に弁
体を上下に移動させることにより、弁体と弁座との間の
絞りによって蒸気量を制御するように形成されるととも
に、前記弁体の内部に子弁を備え、この子弁の上下移動
によりバイパス蒸気を弁体底部下流部に流通させるよう
に形成されている蒸気加減弁において、前記弁体の底部
の円周外縁部に、弁体の移動方向に突出した環状の突起
を設けるとともに、前記子弁部からのバイパス蒸気を弁
体底部下流部に流通させるバイパス蒸気流通路の蒸気噴
出口を、前記弁体底部で環状の突起の内側に並設するよ
うにしたものである。
Further, the valve body is moved up and down in the steam chamber provided with the valve box and the valve seat, so that the amount of steam is controlled by the restriction between the valve body and the valve seat. A steam control valve provided with a child valve inside the valve body, and by vertically moving the child valve, bypass steam is formed to flow to a downstream portion of the valve body bottom portion, in a circumferential outer edge portion of the bottom portion of the valve body. , A ring-shaped projection protruding in the moving direction of the valve body is provided, and a steam outlet of a bypass steam flow passage for circulating the bypass steam from the sub-valve portion to a downstream portion of the valve body bottom portion is formed in an annular shape at the valve body bottom portion. They are arranged side by side inside the protrusions.

【0022】またこの場合、前記バイパス蒸気流通路の
蒸気噴出口を、周方向に等間隔に複数個設けるようにし
たものである。
Further, in this case, a plurality of steam outlets of the bypass steam flow passage are provided at equal intervals in the circumferential direction.

【0023】すなわちこのように形成された蒸気加減弁
であると、騒音の発生源となる弁体底部下流部の干渉領
域における主流と循環流の合流、混合の抵抗損失が少な
くなり、すなわち、主流流速によって循環流の流速が誘
引、加速されるので、これにより弁半径方向の急激な速
度勾配の発生が抑制され、かつ安定、固定化した大きな
循環流が形成され、したがって噴流主流と循環流との衝
突、混合、あるいは干渉により発生する流体騒音は低減
されるのである。
That is, with the steam control valve thus formed, the resistance loss of merging and mixing of the main flow and the circulation flow in the interference region at the downstream portion of the valve body bottom, which is a source of noise, is reduced, that is, the main flow is reduced. The flow velocity induces and accelerates the flow velocity of the circulation flow, which suppresses the generation of a rapid velocity gradient in the radial direction of the valve and forms a stable and fixed large circulation flow. Fluid noise generated by collisions, mixing, or interference with the is reduced.

【0024】[0024]

【発明の実施の形態】以下図示した実施例に基づいて本
発明を詳細に説明する。図1にはその蒸気加減弁の要部
が断面で示されている。5が図中上下に移動する弁体で
あり、8がその弁座である。弁体5と弁座8との接合は
弁体下方部の外周曲面11と弁座の周曲面で行なわれ
る。弁体5の外周曲面11は、曲率半径R1の円弧によ
り形成される。なお、この図では便宜的にその曲率中心
を弁体曲面に内接する円の中心と一致させて描いている
が、その必然性はない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 shows a main part of the steam control valve in cross section. Reference numeral 5 is a valve body that moves up and down in the figure, and 8 is its valve seat. The valve body 5 and the valve seat 8 are joined to each other by the outer peripheral curved surface 11 at the lower portion of the valve body and the peripheral curved surface of the valve seat. The outer peripheral curved surface 11 of the valve body 5 is formed by an arc having a radius of curvature R1. In this figure, for convenience, the center of curvature is drawn so as to coincide with the center of the circle inscribed in the curved surface of the valve body, but this is not essential.

【0025】この図は弁体5が最大リフト状態の場合を
示している。なお、全閉時は弁体曲面11上の点C1
弁座8上の点C2が一致する。したがって点C1,C2
弁のストロークとなる。弁体曲面の中心O1と弁座8の
曲率中心O2(曲率半径=R2)を結ぶ線上の弁座8との
交点をT1,弁体側交点をT2とすると、T1,T2は最大
ストローク時の最小絞り部長さ(スロート)となり、理
論上この断面で最大流速となる。
This drawing shows the case where the valve body 5 is in the maximum lift state. When the valve is fully closed, the point C 1 on the valve body curved surface 11 coincides with the point C 2 on the valve seat 8. Therefore, the points C 1 and C 2 are strokes of the valve. T 1 the intersection of the valve seat 8 of the line connecting the center of curvature O 2 (radius of curvature = R 2) of the center O 1 and the valve seat 8 of the valve body curved, when the valve body side intersection and T 2, T 1, T 2 is the minimum throttle length (throat) at the maximum stroke, which theoretically gives the maximum flow velocity.

【0026】図から明らかなように、弁体5の底部で、
その円周外縁部には、弁体5の移動方向に突出した環状
の突起17が設けられており、そしてこの突起に続く内
面側の弁体底部10は、中心側が凹部となる傾斜面(θ
3)に形成されている。
As is clear from the figure, at the bottom of the valve body 5,
An annular protrusion 17 protruding in the moving direction of the valve body 5 is provided on the outer circumferential portion of the circumference, and the valve body bottom portion 10 on the inner surface side continuing from this protrusion has an inclined surface (θ
3 ) is formed.

【0027】この場合、突起17の先端Qの位置は流れ
の下流側への拡散をスムーズに行わせるために最小絞り
部よりも下流側にある必要がある。本発明では角<T2
1Q=5〜15°に選定する。したがって実用的な弁
体曲面11の占める角度(θ1)は40〜60°が適当
である。
In this case, the position of the tip Q of the protrusion 17 needs to be on the downstream side of the minimum throttle portion in order to smoothly diffuse the flow to the downstream side. In the present invention, the angle <T 2
Select O 1 Q = 5 to 15 °. Therefore, the angle (θ 1 ) occupied by the practical valve body curved surface 11 is suitably 40 to 60 °.

【0028】突起17の角度は次のように決められる。
まず角度θ2は曲率中心O1とQを結ぶ線に直交するQR
線と突起の内側面QS線とのなす角と定義する。この突
起の角度(θ2)は重要な意味を持つ。
The angle of the protrusion 17 is determined as follows.
First, the angle θ 2 is QR which is orthogonal to the line connecting the centers of curvature O 1 and Q.
The angle between the line and the QS line on the inner surface of the protrusion is defined. The angle (θ 2 ) of this protrusion has an important meaning.

【0029】弁体曲率、弁座曲率および弁リフト量によ
って最小絞り部の流速ベクトルの大きさ、向きは違って
くるが、弁突起先存端付近の主流速度ベクトルと循環流
の速度ベクトルのなす角,すなわち両流体速度の交差角
はθ2に大きく依存することになる。この交差角は主流
と循環流との衝突による損失を最小にし、循環流側では
主流速度によってその速度が誘引、加速されるように角
度が選定される。この突起角度(θ2)の最適化には、
流体の合流損失の実験的解析が役に立つ。
Although the magnitude and direction of the flow velocity vector at the minimum throttle portion differ depending on the valve body curvature, the valve seat curvature, and the valve lift amount, the main flow velocity vector near the valve projection pre-existing end and the circulation flow velocity vector form The angle, that is, the intersection angle of both fluid velocities, depends greatly on θ 2 . This intersection angle is selected so that the loss due to the collision between the mainstream and the circulating flow is minimized, and that the velocity is induced and accelerated by the mainstream velocity on the circulating flow side. To optimize this protrusion angle (θ 2 ),
Experimental analysis of fluid confluence losses is helpful.

【0030】図5には交差角(φ)をもった2方向の管
内流れが合流する場合の合流角度と損失係数(ζ1-3)
の関係が示されている。これより合流角が55°付近か
ら上では損失は急激に増加することが分かる。当然のこ
とながら合流角が大きければ主流との衝突、干渉の割合
が増加し乱流渦の発生、流れの飛躍、剥離などによるエ
ネルギー損失が増加することになる。以上の結果を基に
本発明では突起の角度が55°以下に選定される。
In FIG. 5, the confluence angle and the loss coefficient (ζ1-3) when the pipe flows in two directions having the crossing angle (φ) merge
The relationship is shown. From this, it can be seen that the loss sharply increases from the confluence angle around 55 ° to above. As a matter of course, if the confluence angle is large, the rate of collision and interference with the main flow increases, and the energy loss due to turbulent vortex generation, flow jump, separation, etc. increases. Based on the above results, in the present invention, the angle of the protrusion is selected to be 55 ° or less.

【0031】突起17の先端付近での循環流と主流との
交差角を突起角度に近い角度にするために凹み部は深い
方がよく、したがって突起17の高さは弁体曲面11の
高さH0(図1)の1/4〜1/3程度にするのが適当
である。循環流が突起内側面(QN)に沿って流れ易く
するにはその上流側の弁体底部形状は図に示すようにあ
る角度θ3をもって突起根本部(N)につなげるように
形成するのが効果的である。さらにスムーズな循環流を
得るためには弁体底面を中央部が凹みとなる傾斜面であ
りながら、曲面に形成するとさらにその効果を向上させ
ることが可能であろう。
In order to make the angle of intersection between the circulation flow and the main flow near the tip of the protrusion 17 close to the protrusion angle, it is preferable that the recess be deep, so that the height of the protrusion 17 is the height of the valve body curved surface 11. It is suitable to make it about 1/4 to 1/3 of H 0 (FIG. 1). In order to facilitate the circulation flow along the inner surface (QN) of the protrusion, the shape of the valve body bottom portion on the upstream side is formed so as to connect to the root portion (N) of the protrusion at an angle θ 3 as shown in the figure. It is effective. In order to obtain a smoother circulating flow, it is possible to further improve the effect by forming the bottom surface of the valve body into a curved surface while having an inclined surface in which the central portion is recessed.

【0032】主流との合流付近、所謂、干渉領域に於
て、循環流の速度が加速され、安定、かつ大きな循環流
を形成することが本発明の要点である。この考えに対し
て従来形の弁では子弁からの蒸気バイパス流20は、循
環流の速度の向きと対向するため循環流の形成に対して
マイナス効果として働いていた。
The point of the present invention is that the velocity of the circulating flow is accelerated in the vicinity of the confluence with the main flow, that is, in the so-called interference region, and a stable and large circulating flow is formed. In contrast to this idea, in the conventional valve, the steam bypass flow 20 from the sub-valve has a negative effect on the formation of the circulation flow because it opposes the direction of the circulation flow velocity.

【0033】本発明では子弁からの蒸気バイパス流20
の循環流への影響を軽減するため、または逆に循環流の
形成にプラス側に作用するようにするため蒸気流出孔1
2の形状と配置を変更している。すなわち、 (1)蒸気流出孔12の径を小さくし、弁体中心軸付近
に限定する。
In the present invention, the steam bypass flow 20 from the sub-valve is used.
Steam outlet hole 1 so that acting on the plus side in the formation to reduce the impact on the circulation flow, or reverse the circulation flow of
The shape and arrangement of 2 have been changed. That is, (1) The diameter of the vapor outflow hole 12 is reduced and limited to the vicinity of the central axis of the valve body.

【0034】(2)弁体中心軸付近に配置される従来の
蒸気流出孔12をなくし、代わりに複数の蒸気流出孔を
弁体突起17の内側面付近にその出口を設けるように配
置し、循環流の速度の向きと一致するように蒸気を流出
させ、循環流の流速を加速するように働かせる。
(2) The conventional steam outflow hole 12 disposed near the central axis of the valve body is eliminated, and instead, a plurality of steam outflow holes are disposed near the inner surface of the valve body projection 17 so that its outlet is provided. The steam is made to flow out so as to match the direction of the velocity of the circulation flow, and it is made to work to accelerate the flow velocity of the circulation flow.

【0035】図6には上述した構成を蒸気タービン等で
使用されるダブルリフト型の蒸気加減弁に採用した場合
の例が示されている。弁2は弁箱1と弁座8、8で囲ま
れた蒸気室に置かれ弁の上下運動によって弁座との間隙
を変え蒸気流量を制御する。弁2は弁棒3、弁棒スリー
ブ6、子弁4、親弁(弁体)5、弁体スリーブ7から構
成され、先に述べたようにタービンの起動時にまず弁棒
3が引き上げられると、子弁4が開き、次いで親弁5が
開く機構になっている。このように子弁によって、蒸気
をバイパスさせることによって、親弁にかかる衝撃的な
蒸気力を緩和している。
FIG. 6 shows an example in which the above-mentioned structure is applied to a double lift type steam control valve used in a steam turbine or the like. The valve 2 is placed in the steam chamber surrounded by the valve box 1 and the valve seats 8 and 8 to change the gap between the valve seat and the valve seat by vertical movement of the valve to control the steam flow rate. The valve 2 is composed of a valve stem 3, a valve stem sleeve 6, a child valve 4, a parent valve (valve body) 5, and a valve body sleeve 7, and as described above, when the valve stem 3 is first pulled up when the turbine is started. The child valve 4 is opened, and then the parent valve 5 is opened. By thus bypassing the steam by the child valve, the shocking steam force applied to the parent valve is mitigated.

【0036】本実施例は子弁4からの蒸気流出孔12の
形状を従来形状とほぼ同一に維持し、子弁からの蒸気バ
イパス流20の循環流18に与える影響は従来並とした
場合の例である。弁体底部の形状は先に述べたように、
突起17の角度(θ2)は55°以下にし、その高さは
弁体曲面11の高さH0の1/4〜1/3の範囲とす
る。循環流18の弁体底面での抵抗を少なくし、安定な
卵形循環流を得るため、弁体底面19は突起17の内面
根本部N点より水平面に対して大きな傾斜角度をとるの
が流体抵抗軽減の観点から有利となるが、前述したよう
に、子弁の機能を保持し、弁体の強度などを考慮する
と、弁体底面19の傾斜角(θ3)の上限値は約32度
となり、従来型(θ3=0度)に対して、壁面に沿う循
環流の流体抵抗を半分以下にするには、θ3は約22〜
32度の範囲に設定するのが良好である。
In this embodiment, the shape of the steam outlet hole 12 from the sub-valve 4 is maintained substantially the same as the conventional shape, and the effect of the steam bypass flow 20 from the sub-valve on the circulation flow 18 is the same as in the conventional case. Here is an example. The shape of the bottom of the valve body is, as described above,
The angle (θ 2 ) of the protrusion 17 is set to 55 ° or less, and the height thereof is set in the range of ¼ to ⅓ of the height H 0 of the valve body curved surface 11. In order to reduce the resistance of the circulation flow 18 at the bottom surface of the valve body and obtain a stable oval circulation flow, it is a fluid that the valve body bottom surface 19 has a larger inclination angle with respect to the horizontal plane than the inner surface root portion N point of the protrusion 17. Although it is advantageous from the viewpoint of resistance reduction, as described above, the upper limit of the inclination angle (θ 3 ) of the valve body bottom surface 19 is about 32 degrees in consideration of the function of the child valve and the strength of the valve body. Therefore, in order to reduce the fluid resistance of the circulating flow along the wall surface to less than half that of the conventional type (θ 3 = 0 degree), θ 3 is about 22 to
It is preferable to set it in the range of 32 degrees.

【0037】図7に示されている実施例は図6と弁体の
突起17、弁体曲面11、蒸気流出孔21の位置、孔径
などは同じ形状である。唯一の変更は弁体底面を曲面2
2で形成している点である。曲面22は図6の実施例で
述べたθ3=22〜32度の傾斜線上にあり、かつ蒸気
流出孔21面上の点であるM点弁体突起17の内面部根
元N点を通る半径R3の円弧とし、線分NQはこの円弧
に内接するように円弧中心点を定める。このように弁体
底面を円弧面にすることにより、安定な卵形の循環流2
3、23の形成を容易にし、循環流の最外周の流速を増
す効果を生む。
The embodiment shown in FIG. 7 is the same as that of FIG. 6 in terms of the positions of the valve body protrusion 17, the valve body curved surface 11, the steam outlet hole 21, and the hole diameter. The only change is that the bottom of the valve body is curved 2.
It is a point formed by 2. The curved surface 22 is on the inclined line of θ 3 = 22 to 32 degrees described in the embodiment of FIG. 6, and is a radius passing through the inner surface root N point of the M point valve body projection 17 which is a point on the surface of the steam outlet hole 21. An arc of R 3 is defined, and the arc segment center point is set so that the line segment NQ is inscribed in this arc. By making the bottom surface of the valve body into an arc surface in this way, a stable oval circulation flow 2
3 and 23 are easily formed, and the effect of increasing the flow velocity at the outermost periphery of the circulation flow is produced.

【0038】図8の実施例は図6実施例の変形例であ
る。従来形では弁体中心軸上に配置された蒸気流出孔1
2の孔径が大きいため、循環流と逆向きに流れる子弁4
からの蒸気バイパス流20のために循環流の発達を阻害
するように作用していた。この例では弁体底面19に沿
って形成される循環流24への蒸気バイパス流21の影
響を少なくするため、蒸気流出孔25の孔径を小さく
し、バイパス流26の及ぶ範囲を弁の中心軸付近に限定
した。
The embodiment shown in FIG. 8 is a modification of the embodiment shown in FIG. In the conventional type, the steam outflow hole 1 arranged on the central axis of the valve body
Since the hole diameter of 2 is large, the child valve 4 that flows in the opposite direction to the circulating flow
Due to the steam bypass stream 20 from the. In this example, in order to reduce the influence of the steam bypass flow 21 on the circulation flow 24 formed along the valve body bottom surface 19, the diameter of the steam outflow hole 25 is reduced and the range of the bypass flow 26 is set to the central axis of the valve. Limited to the vicinity.

【0039】図9および図10の実施例は子弁4から蒸
気バイパス流を循環流形成に有効に利用する方法であ
る。すなわち、従来弁体中心に配置されていた蒸気流出
孔21をなくすことにより、弁体底面27を弁突起17
の内面根本N点から水平面に対してθ3の傾をもって弁
体の中心軸点のM点まで引き伸ばすことができる。弁体
底面の形状は図7で述べたように曲面にすると安定した
循環流の形成にさらに有利である。
The embodiment shown in FIGS. 9 and 10 is a method for effectively utilizing the steam bypass flow from the child valve 4 to form a circulation flow. That is, by eliminating the steam outflow hole 21 which has been conventionally arranged in the center of the valve body, the valve body bottom surface 27 can be removed from the valve projection 17.
It is possible to extend from the point N at the inner surface root to the point M at the central axis of the valve element with an inclination of θ 3 with respect to the horizontal plane. If the shape of the bottom surface of the valve body is a curved surface as described with reference to FIG. 7, it is further advantageous to form a stable circulating flow.

【0040】子弁4からの蒸気バイパス流は循環流2
8、28の向きと同じ向きとして流すために、子弁4の
下流側に箱状の蒸気溜め29を設け、その蒸気溜めの垂
直壁面30から弁体突起17の内壁側に蒸気を流すため
の弁体底面27に貫通する複数の蒸気通路31が周方向
に設けられている。
The steam bypass flow from the child valve 4 is the circulating flow 2
A box-shaped vapor reservoir 29 is provided on the downstream side of the sub-valve 4 in order to allow the vapor to flow in the same direction as 8 and 28, and the vapor is allowed to flow from the vertical wall surface 30 of the vapor reservoir to the inner wall side of the valve body projection 17. A plurality of steam passages 31 that penetrate the valve body bottom surface 27 are provided in the circumferential direction.

【0041】このように子弁4からの蒸気バイパス流れ
を変更することにより、騒音発生源となる干渉領域の循
環流の速度を加速させることができ、主流と循環流との
間の急激な速度勾配をなくし、かつ循環流を安定、固定
化できる。
By changing the steam bypass flow from the sub-valve 4 in this way, the velocity of the circulating flow in the interference region, which is the noise source, can be accelerated, and the rapid velocity between the main flow and the circulating flow can be increased. The gradient can be eliminated and the circulating flow can be stabilized and fixed.

【0042】次に本発明と従来形弁における循環流と主
流との干渉状況の結果について説明する。図3はその循
環流と主流との干渉状況を示しており、また図2は干渉
領域を含む断面の速度勾配を示している。まず従来形の
循環流パターンについて述べる。
Next, the result of the state of interference between the circulating flow and the main flow in the present invention and the conventional valve will be described. FIG. 3 shows the state of interference between the circulating flow and the main flow, and FIG. 2 shows the velocity gradient of the cross section including the interference region. First, the conventional circulating flow pattern will be described.

【0043】弁体底面10と低い高さの突起9に沿って
流れる循環流15の一部は干渉領域16で主流13と衝
突、合流、混合を行う。数値解析と可視化実験によれば
弁体底部の凹みに深みがないと、弁体底面10と突起9
に沿って流れる循環流の速度ベクトルと主流の速度ベク
トルはほぼ直交に近い角度で合流することになり、循環
流は部分的に主流によりブロックされる。このため干渉
領域での弁半径方向の速度勾配が大きくなる。また、循
環流内の速度は主流によって加速されないため循環流の
発達領域が縮小し、その循環流の強度も低下する。
A part of the circulation flow 15 flowing along the bottom surface 10 of the valve body and the projection 9 having a low height collides with, joins and mixes with the main flow 13 in the interference region 16. According to the numerical analysis and the visualization experiment, if the recess at the bottom of the valve body has no depth, the bottom surface 10 of the valve body and the protrusion 9
The velocity vector of the circulation flow and the velocity vector of the main flow that flow along the line merge with each other at an angle nearly orthogonal to each other, and the circulation flow is partially blocked by the main flow. Therefore, the velocity gradient in the valve radial direction in the interference region becomes large. Further, since the velocity in the circulation flow is not accelerated by the main flow, the development region of the circulation flow is reduced and the strength of the circulation flow is also reduced.

【0044】これに対して本発明では弁体底部の凹み部
を深くとるために突起17の高さを高くし、かつ、突起
の角度(後述)は循環流と主流の速度ベクトルの交差角
が小さくなるようにし、主流によって循環流の速度が加
速されるように突起17の角度が選定されている。また
安定した卵形の循環流18を形成させるために弁体底面
19を水平面に対して傾けた平面ないし曲面で形成され
ている。さらに子弁4からのバイパス流れ20が循環流
18を阻害しないようにその流路が配置されている。
On the other hand, in the present invention, the height of the protrusion 17 is increased in order to make the recessed portion at the bottom of the valve body deep, and the angle of the protrusion (described later) is such that the intersection angle between the velocity vector of the circulation flow and the velocity vector of the main flow. The angle of the protrusion 17 is selected so that the velocity of the circulating flow is accelerated by the main flow. Further, in order to form a stable oval circulation flow 18, the valve body bottom surface 19 is formed by a flat surface or a curved surface inclined with respect to the horizontal surface. Further, the flow path is arranged so that the bypass flow 20 from the child valve 4 does not hinder the circulation flow 18.

【0045】図2は騒音源となる噴流剪断層(剪断応
力)の大きさを評価するための弁半径方向の速度勾配の
比較を示したもので、干渉領域16では本発明の方が従
来形に比べ速度勾配が小さくなり騒音低減に有効である
ことが分かる。
FIG. 2 shows a comparison of velocity gradients in the radial direction of the valve for evaluating the magnitude of the jet shear layer (shear stress) which is a noise source. In the interference region 16, the present invention is more conventional. It can be seen that the velocity gradient is smaller than that of, which is effective for noise reduction.

【0046】以上説明してきたようにこのように形成さ
れた蒸気加減弁であると、弁体底部下流側で騒音発生源
となる主流と循環流の干渉領域での流体の合流、混合損
失を少なくすることにより主流から循環流への速度勾配
が小さくなり、剪断渦の発生が抑制されることにより、
低騒音化が実現できる。また、循環流を安定、固定化で
きるので主流側で発生可能な流体の不安定現象を抑制さ
せる働きもある。さらに、安定な循環流は弁体に作用す
る蒸気流体力の変動を小さくできるので、弁体さらには
弁棒に作用する振動応力が低下し、弁装置の破損事故に
対して十分な信頼性が確保できる。
As described above, in the steam control valve formed in this way, fluid merging and mixing loss in the interference region of the main flow and the circulating flow, which are noise generation sources on the downstream side of the bottom of the valve body, are reduced. By doing so, the velocity gradient from the main flow to the circulation flow becomes smaller, and the generation of shear vortices is suppressed,
Low noise can be realized. Further, since the circulation flow can be stabilized and fixed, it also has a function of suppressing the fluid instability phenomenon that may occur on the main flow side. Furthermore, the stable circulating flow can reduce fluctuations in the vapor fluid force acting on the valve body, so that the vibration stress acting on the valve body and the valve rod is reduced, and there is sufficient reliability against a valve device breakage accident. Can be secured.

【0047】なお以上の説明では、蒸気タービンで用い
られるダブルリフト弁を対象として説明してきたが、他
の弁方式のものにも適用できることは言うまでもない。
In the above description, the double lift valve used in the steam turbine has been described, but it goes without saying that it can be applied to other valve systems.

【0048】[0048]

【発明の効果】以上説明してきたように本発明によれ
ば、弁体底部に発生する循環流と主流の噴流との衝突、
混合、あるいは干渉により発生する流体騒音を低減する
ことが可能な蒸気加減弁を得ることができる。
As described above, according to the present invention, the collision between the circulating flow generated at the bottom of the valve body and the jet of the main flow,
It is possible to obtain a steam control valve capable of reducing fluid noise generated by mixing or interference.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蒸気加減弁の一実施例の要部を示す縦
断側面図である。
FIG. 1 is a vertical sectional side view showing a main part of an embodiment of a steam control valve of the present invention.

【図2】弁体下流部の循環流と主流の干渉領域付近の蒸
気速度分布を示す図である。
FIG. 2 is a diagram showing a vapor velocity distribution in the vicinity of an interference region between a circulation flow and a main flow at a downstream portion of a valve body.

【図3】弁体下流の速度パターンを示す図である。FIG. 3 is a diagram showing a velocity pattern downstream of the valve body.

【図4】従来形の蒸気加減弁を示す縦断側面図である。FIG. 4 is a vertical cross-sectional side view showing a conventional steam control valve.

【図5】流れの合流損失を示す図である。FIG. 5 is a diagram showing a merge loss of flows.

【図6】本発明の実施例の基本となる形状を示す縦断側
面図である。
FIG. 6 is a vertical cross-sectional side view showing a basic shape of the embodiment of the present invention.

【図7】本発明の蒸気加減弁の他の実施例を示す縦断側
面図である。
FIG. 7 is a vertical sectional side view showing another embodiment of the steam control valve of the present invention.

【図8】本発明の蒸気加減弁の他の実施例を示す縦断側
面図である。
FIG. 8 is a vertical sectional side view showing another embodiment of the steam control valve of the present invention.

【図9】本発明の蒸気加減弁の他の実施例を示す縦断側
面図である。
FIG. 9 is a vertical sectional side view showing another embodiment of the steam control valve of the present invention.

【図10】本発明の蒸気加減弁の弁体部を示す斜視図で
ある。
FIG. 10 is a perspective view showing a valve body portion of the steam control valve of the present invention.

【符号の説明】[Explanation of symbols]

1…弁箱、2…弁、3…弁棒、4…子弁、5…親弁(弁
体)、6…弁棒スリーブ、7…弁体スリーブ、8…弁
座、9…突起、10…弁体底面、11…弁体曲面、12
…蒸気流出孔、13…主流、14…弁座付着流、15…
循環流、16…干渉領域、18…循環流、19…弁体底
面、20…バイパス流、21…蒸気流出孔、22…曲
面、23…循環流、24…循環流、25…蒸気流出孔、
26…バイパス流、27…弁体底面、28…循環流、2
9…蒸気溜め、30…垂直壁面、31…蒸気通路。
DESCRIPTION OF SYMBOLS 1 ... Valve box, 2 ... Valve, 3 ... Valve rod, 4 ... Child valve, 5 ... Parent valve (valve body), 6 ... Valve stem sleeve, 7 ... Valve body sleeve, 8 ... Valve seat, 9 ... Protrusion, 10 … Valve bottom, 11… Valve curved surface, 12
... Steam outflow holes, 13 ... Mainstream, 14 ... Valve seat adhering flow, 15 ...
Circulation flow, 16 ... Interference region, 18 ... Circulation flow, 19 ... Valve bottom surface, 20 ... Bypass flow, 21 ... Steam outflow hole, 22 ... Curved surface, 23 ... Circulation flow, 24 ... Circulation flow, 25 ... Steam outflow hole,
26 ... Bypass flow, 27 ... Valve bottom face, 28 ... Circulating flow, 2
9 ... Steam reservoir, 30 ... Vertical wall surface, 31 ... Steam passage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坪井 信義 茨城県日立市大みか町七丁目2番1号 株式会社日立製作所 電力・電機開発本 部内 (72)発明者 横田 修 茨城県日立市大みか町七丁目2番1号 株式会社日立製作所 電力・電機開発本 部内 (72)発明者 室星 孝徳 茨城県日立市幸町三丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 山中 和典 茨城県日立市幸町三丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 昭56−18167(JP,A) 特開 昭54−67236(JP,A) 特開 昭62−209275(JP,A) 特開 昭54−54333(JP,A) 実開 平2−107701(JP,U) 実開 昭60−114380(JP,U) 特公 平3−70087(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F16K 1/36 F16K 1/44 F16K 47/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyoshi Tsuboi 7-2 Omika-cho, Hitachi City, Hitachi, Ibaraki Hitachi, Ltd. Power & Electric Development Division (72) Osamu Yokota Inventor, Omika-machi, Hitachi, Ibaraki Prefecture 2-2-1 Hitachi Ltd. Electricity & Electric Power Development Division (72) Inventor Takanori Muroboshi 3-1-1 1-1 Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Factory (72) Inventor Kazunori Yamanaka Ibaraki 3-1, 1-1 Sachimachi, Hitachi, Ltd. Hitachi factory, Hitachi Ltd. (56) Reference JP 56-18167 (JP, A) JP 54-67236 (JP, A) JP 62- 209275 (JP, A) JP 54-54333 (JP, A) Actually open 2-107701 (JP, U) Actually open 60-114380 (JP, U) JP-B-3-70087 (JP, B2) (58) Investigate Field (Int.Cl. 7, DB name) F16K 1/36 F16K 1/44 F16K 47/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁箱および弁座を備えた蒸気室に弁体を上
下に移動させ、弁体と弁座との間の絞りによって蒸気量
を制御するように形成されている蒸気加減弁において、 前記弁体の底部の円周外縁部に、弁体の移動方向に突出
した環状の突起を設けるとともに、この突起に続く内面
側の弁体底部を、中心側が凹部となる傾斜面に形成し 前記突起形状が、突起先端から突起に内接する円の接線
方向とこの突起の内面側壁面方向のなす角度が55°以
下で、かつこの突起の高さが弁体外側の曲面(円弧面)
の高さの1/4から1/3の範囲に形成されている こと
を特徴とする蒸気加減弁。
1. A steam control valve configured to move a valve body up and down in a steam chamber having a valve box and a valve seat, and to control the amount of steam by a throttle between the valve body and the valve seat. The outer peripheral edge portion of the bottom of the valve body is provided with an annular projection protruding in the moving direction of the valve body, and the valve body bottom portion on the inner surface side following the projection is formed on an inclined surface having a concave portion on the center side. , The tangent line of the circle where the shape of the protrusion is inscribed from the tip of the protrusion to the protrusion
Angle between this direction and the direction of the inner wall surface of this protrusion is 55 ° or less.
Underneath, and the height of this protrusion is the curved surface (arc surface) outside the valve body
It is formed in the range of 1/4 to 1/3 of the height of the steam control valve.
【請求項2】弁箱と弁座からなる蒸気室に弁体を上下に
移動させ、弁体と弁座との間の絞りによって蒸気量を制
御するようにした蒸気加減弁において、 前記加減弁の弁体の底部の円周外縁部に、弁体の移動方
向に突出した環状の突起を設けるとともに、この突起に
続く内面側の弁体底面を、水平面に対して中央側が凹部
となる平坦な傾斜面に形成し 前記突起形状が、突起先端から突起に内接する円の接線
方向とこの突起の内面側壁面方向のなす角度が55°以
下で、かつこの突起の高さが弁体外側の曲面(円弧面)
の高さの1/4から1/3の範囲に形成されている こと
を特徴とする蒸気加減弁。
2. A steam control valve in which a valve body is moved up and down in a steam chamber composed of a valve box and a valve seat, and the amount of steam is controlled by a throttle between the valve body and the valve seat. An annular projection protruding in the moving direction of the valve body is provided on the outer circumferential edge of the bottom of the valve body, and the bottom surface of the valve body on the inner surface side following the projection is flat with a recess on the center side with respect to the horizontal plane. A tangent line of a circle formed on an inclined surface and in which the shape of the protrusion is inscribed from the tip of the protrusion
Angle between this direction and the direction of the inner wall surface of this protrusion is 55 ° or less.
Underneath, and the height of this protrusion is the curved surface (arc surface) outside the valve body
It is formed in the range of 1/4 to 1/3 of the height of the steam control valve.
【請求項3】弁箱と弁座からなる蒸気室に弁体を上下に
移動させ、弁体と弁座との間の絞りによって蒸気量を制
御するようにした蒸気加減弁において、 前記加減弁の弁体の底部の円周外縁部に、弁体の移動方
向に突出した環状の突起を設けるとともに、この突起に
続く内面側の弁体底面を、水平面に対して中央側が凹部
となるように傾斜させ、かつその傾斜面を凹曲面状に形
成し 前記突起形状が、突起先端から突起に内接する円の接線
方向とこの突起の内面側壁面方向のなす角度が55°以
下で、かつこの突起の高さが弁体外側の曲面( 円弧面)
の高さの1/4から1/3の範囲に形成されている こと
を特徴とする蒸気加減弁。
3. A steam control valve, wherein a valve body is moved up and down in a steam chamber composed of a valve box and a valve seat, and the amount of steam is controlled by a throttle between the valve body and the valve seat. A circular protrusion protruding in the moving direction of the valve body is provided on the outer circumferential edge of the bottom of the valve body, and the valve body bottom surface on the inner surface side following this protrusion is formed so that the center side is a recess with respect to the horizontal plane. A tangent line of a circle that is inclined and the inclined surface is formed into a concave curved surface, and the projection shape is inscribed from the projection tip to the projection.
Angle between this direction and the direction of the inner wall surface of this protrusion is 55 ° or less.
Underneath, and the height of this protrusion is the curved surface ( arc surface) outside the valve body
It is formed in the range of 1/4 to 1/3 of the height of the steam control valve.
JP24744196A 1996-09-19 1996-09-19 Steam control valve Expired - Lifetime JP3394661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24744196A JP3394661B2 (en) 1996-09-19 1996-09-19 Steam control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24744196A JP3394661B2 (en) 1996-09-19 1996-09-19 Steam control valve

Publications (2)

Publication Number Publication Date
JPH1089494A JPH1089494A (en) 1998-04-07
JP3394661B2 true JP3394661B2 (en) 2003-04-07

Family

ID=17163496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24744196A Expired - Lifetime JP3394661B2 (en) 1996-09-19 1996-09-19 Steam control valve

Country Status (1)

Country Link
JP (1) JP3394661B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027598B4 (en) * 2000-06-02 2004-03-25 Pister Kugelhähne GmbH Valve
US7293691B2 (en) * 2003-01-17 2007-11-13 Speedline Technologies, Inc. Electronic substrate printing
JP3808071B2 (en) * 2003-12-01 2006-08-09 シーケーディ株式会社 Chemical control valve
JP4185029B2 (en) 2004-08-30 2008-11-19 株式会社東芝 Steam valve device
JP5535770B2 (en) * 2010-06-02 2014-07-02 三菱重工業株式会社 Steam valve
JP5411087B2 (en) * 2010-08-12 2014-02-12 株式会社日立製作所 Steam turbine valve device and operation method thereof
JP7337666B2 (en) * 2019-11-07 2023-09-04 愛三工業株式会社 valve device
CN114646020B (en) * 2022-03-31 2024-05-31 华能营口热电有限责任公司 Power grid steam temperature and pressure reducing device, thermoelectric peak regulating system and pressure reducing and regulating method

Also Published As

Publication number Publication date
JPH1089494A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US7013918B2 (en) Fluid pressure reduction device
US7976213B2 (en) Arrangement for controlling fluid jets injected into a fluid stream
EP1334300B1 (en) High-stability valve arrangement for a governor valve
CA1249762A (en) Flow stabilizing valve, method and pressure reducer
JP3394661B2 (en) Steam control valve
JP2008523973A (en) Apparatus for injecting fluid into a rotating fluidized bed
JP2005030404A (en) Injection noise reducing device of turbine engine
JP7209966B2 (en) butterfly valve for water
JP2008064094A (en) Fuel injection valve
CN103781996A (en) Diffuser with backward facing step having varying step height
JPH10299910A (en) Steam governing valve
JPS61248968A (en) Valve used for steam turbine and manufacture thereof
JP2017061869A (en) Fuel injection valve
CA2567608A1 (en) Control valve with vortex chambers
JP2002054504A (en) Method and device for promoting mixture of fuel for scram-jet engine
JP2008516135A (en) Fuel injection valve
JP4166792B2 (en) Fuel injection device
JP2506334B2 (en) Valve damping device
CN102032351A (en) Lift valve with flow gathering and shunt passage and method for reducing total pressure loss
JPS6048669B2 (en) low noise valve
JP3007486U (en) Butterfly valve
JPH09210244A (en) Steam governing valve
JPS6245903A (en) Stationary blade structure for partial injection stage in turbine
JP2813505B2 (en) Inlet pressure control valve
JPH02118288A (en) Butterfly valve

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term