JP3394153B2 - Rudder with high lift profile - Google Patents

Rudder with high lift profile

Info

Publication number
JP3394153B2
JP3394153B2 JP10996497A JP10996497A JP3394153B2 JP 3394153 B2 JP3394153 B2 JP 3394153B2 JP 10996497 A JP10996497 A JP 10996497A JP 10996497 A JP10996497 A JP 10996497A JP 3394153 B2 JP3394153 B2 JP 3394153B2
Authority
JP
Japan
Prior art keywords
rudder
angle
lift
cross
high lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10996497A
Other languages
Japanese (ja)
Other versions
JPH10297593A (en
Inventor
ピーター・ビンガム
健治郎 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Hamworthy and Co Ltd
Original Assignee
Japan Hamworthy and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Hamworthy and Co Ltd filed Critical Japan Hamworthy and Co Ltd
Priority to JP10996497A priority Critical patent/JP3394153B2/en
Publication of JPH10297593A publication Critical patent/JPH10297593A/en
Application granted granted Critical
Publication of JP3394153B2 publication Critical patent/JP3394153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高揚力断面輪郭
を有する舵に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rudder having a high lift profile.

【0002】[0002]

【従来の技術】水平断面が高揚力断面輪郭を有する舵が
近年広く実用に供されている。これは図14〜図16に
示すように、舵本体1の水平断面輪郭が図16に示すよ
うに魚を横から見たような形状をなし、魚体部に相当す
る断面流線型をなす前方部1Aと魚尾部に相当する後方
部1Bとその間の薄板1Cからなり、上部と下部とにそ
れぞれ、水平の端板2、3を付け、かつ底端板3の両端
3A、3Aを30°の角度で下方へ曲折したものである。
2. Description of the Related Art A rudder whose horizontal section has a high lift section profile has been widely put into practical use in recent years. As shown in FIGS. 14 to 16, the rudder main body 1 has a horizontal cross-sectional contour as seen from the side of the fish as shown in FIG. 16, and a front portion 1A having a streamlined cross section corresponding to the fish body portion. And a rear part 1B corresponding to the fish tail part and a thin plate 1C in between, and horizontal end plates 2 and 3 are attached to the upper and lower parts respectively, and both ends 3A and 3A of the bottom end plate 3 are at an angle of 30 °. It has been bent downwards.

【0003】各部の形状、寸法、角度は図14〜図16
の符号を参照して、船首尾線に沿った舵の長さC=0.7
〜0.85D(Dはプロペラ直径)、α(スロープ角)=15
°、β(テール角)=10°、前方部1Aの長さC1 =0.
42〜0.51D、後方部の長さC 2 =0.14〜0.17D、中間部
の長さC3 =0.14〜0.17Dとされ、この舵1は各舷に最
大70°まで転舵できるようにして使用されている。
The shape, size, and angle of each part are shown in FIGS.
The length of the rudder along the bow and tail line C = 0.7
~ 0.85D (D is the propeller diameter), α (slope angle) = 15
°, β (tail angle) = 10 °, length C of front part 1A1= 0.
42-0.51D, rear length C 2= 0.14-0.17D, middle part
Length C3= 0.14 to 0.17D, this rudder 1 is the most suitable for each port.
It is used so that it can be steered up to 70 °.

【0004】この舵に角度が与えられた状態では、推進
プロペラの後流が舵に当たって舵面に沿って流れる際、
後方部1Bのテールひれにおいて水流が偏流させられ、
その効果により舵に大きな揚力が発生する。
With the rudder angled, when the wake of the propeller propeller strikes the rudder and flows along the rudder surface,
The water flow is diverted at the tail fin of the rear part 1B,
Due to the effect, a large lift is generated in the rudder.

【0005】従って、この高揚力舵は、普通の流線型舵
に比べて、船の針路安定性が良く、大舵角の旋回では早
く旋回運動に入り、旋回半径も小さく、転舵の発令から
船が90°回頭するまでの前進距離(アドバンス)が短い
という特長を有する。
Therefore, this high lift rudder has a better course stability of the ship than a normal streamlined rudder, enters a turning motion quickly when turning at a large rudder angle, and has a small turning radius. It has the feature that the advance distance (advance) before turning 90 ° is short.

【0006】また、この舵を最大70°に転舵した状態で
は、推進プロペラの発生する前方向の推力は舵によって
極端に減小させられ、代りに横方向の推力が非常に大き
くなる。
Further, when the rudder is steered to a maximum of 70 °, the forward thrust generated by the propeller propeller is extremely reduced by the rudder, and instead the lateral thrust becomes extremely large.

【0007】従って、スターンスラスター(船尾船体の
水中部分を横方向に貫通するトンネルを設け、その中に
モーターによって駆動されるプロペラを設け、左右いず
れにも推力を出せるようにしたもの)を設けなくても、
舵の作動によって船尾を左右に振ることができるという
特徴を有する。
Therefore, it is not necessary to provide a stern thruster (a tunnel that laterally penetrates the underwater portion of the stern hull, in which a propeller driven by a motor is provided so that thrust can be exerted on either side). Even
It has the feature that the stern can be swung left and right by the operation of the rudder.

【0008】これらの特徴により、船舶の操船、操縦中
に相手船や障害物を回避するのが容易で安全であること
から、出入港や離着岸の多い内航船(日本国内の沿岸や
内海を航海する船)にこの高揚力舵が好んで使用されて
いる。
[0008] Due to these characteristics, it is easy and safe to avoid the opponent ship and obstacles while maneuvering and maneuvering the ship. This high lift rudder is favorably used for ships that sail.

【0009】[0009]

【発明が解決しようとする課題】この高揚力断面輪郭を
有する舵は、舵が中立位置、すなわち舵の水平断面の長
手方向中心線が船体の長手方向中心線と平行であるよう
な舵位置にあるとき、舵表面に沿って流れる推進プロペ
ラの後流がテールひれによって偏流させられることによ
り、推進抵抗が従来の普通流線型舵に比べて若干大きい
という問題があった。
A rudder having this high lift profile has a neutral position, that is, a rudder position in which the longitudinal centerline of the horizontal cross section of the rudder is parallel to the longitudinal centerline of the hull. At one time, there was a problem in that the wake of the propeller propeller flowing along the rudder surface was diverted by the tail fins, so that the propulsion resistance was slightly larger than that of the conventional ordinary streamlined rudder.

【0010】もっとも、船が直進中、舵が常に中立位置
にあるということはなく、波浪、風象等により船体が針
路から外れようとするのを絶えず当て舵(船をいつも所
定の針路に合わせるようにするために、舵を左右に細か
く転舵する動作)によって、所定の針路に戻すように制
御しているが、この高揚力舵の場合、普通一般の流線型
舵に比べて、僅かの当て舵量でも直ちに揚力が発生して
船を所定の針路に復させるから船のジグザグ進行が少く
なる。
However, the rudder is not always in the neutral position while the ship is traveling straight, and the rudder is constantly kept in contact with the hull from trying to deviate from the course due to waves, wind conditions, etc. In order to do so, the rudder is finely steered to the left and right) so that it is returned to the specified course.However, in the case of this high lift rudder, a slight amount of contact is required compared to a normal streamlined rudder. Lifting force is immediately generated even with the rudder amount to restore the boat to a predetermined course, so that the zigzag movement of the boat is reduced.

【0011】従って、推進馬力の損失が少ないことにな
り、実際問題としては、この高揚力舵と普通一般の流線
型舵との比較において舵の中立位置における抵抗の差が
そのまま燃料消費量の差となることはない。
Therefore, the loss of propulsive horsepower is small, and as a practical matter, the difference in resistance at the neutral position of the rudder is the same as the difference in fuel consumption in comparison between this high lift rudder and a general streamlined rudder. It never happens.

【0012】しかし、特に大型外洋航行船では、船の操
縦性能に重きを置く内航船と違って、舵をほとんどとる
必要のない大洋航行の時間が圧倒的に多いことから、舵
中立位置における水流抵抗を極小にすることがむしろ最
重要視される。
However, especially in a large ocean-going vessel, unlike a domestic vessel, which emphasizes the maneuverability of the vessel, the time for ocean navigation that requires almost no rudder is overwhelmingly large. It is rather important to minimize the resistance.

【0013】また、大型外洋航行船の場合、出入港・離
着岸時に自力により操船することは稀で、大抵の場合曳
船の助けによって行われることから、内航船の場合のよ
うな船の小回りのきく、高い操縦性能が要求されること
はないので、普通の流線型舵の性能でも支障はない。
Further, in the case of a large oceangoing vessel, it is rare that the vessel operates by itself at the time of entry / departure / arrival / berthing, and in most cases it is carried out with the help of a tugboat. However, since high maneuverability is not required, the performance of an ordinary streamlined rudder does not matter.

【0014】しかし、大型外洋航行船に対して、従来の
舵と同等以上の舵性能を維持しつつ舵の面積を極力小さ
くすることは、コスト、重量低減の目的で、また、舵取
機の容量、コストを低減させる目的から望ましい事項と
なる。
However, for a large oceangoing ship, it is necessary to reduce the rudder area as much as possible while maintaining the rudder performance equal to or higher than that of a conventional rudder, for the purpose of cost and weight reduction, and for steering gears. This is a desirable item for the purpose of reducing capacity and cost.

【0015】本発明は、上記のような従来の技術の問題
点を解決し、あるいは、ニーズに応えるためになされた
ものであり、高揚力断面輪郭を有する舵において、この
舵の特徴である固有の高揚力特性を損うことなくして、
舵中立位置における抵抗損失が少く、かつ、従来、大型
外洋航行船に一般に用いられているマリナー型の舵に比
べて、寸法が小さくて済み、従って舵の軽量化とコスト
低減が達成でき、また、それに伴い、舵取機の容量、従
って、コストを節減できるような構成と諸元をもった高
揚力断面輪郭を有する舵を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the conventional technique or to meet the needs. In a rudder having a high lift cross section profile, the characteristic feature of this rudder is inherent. Without sacrificing the high lift characteristics of
The resistance loss in the rudder neutral position is small, and the size is smaller than the marine-type rudder that has been generally used for large ocean-going vessels in the past. Therefore, the weight and cost of the rudder can be reduced. In accordance therewith, it is an object of the present invention to provide a rudder having a high lift cross section profile having a configuration and specifications that can reduce the capacity of the steering gear, and thus the cost.

【0016】[0016]

【課題を解決するための手段】請求項1の高揚力断面輪
郭を有する舵は、プロペラ直径をDとおいた時、舵本体
の船首尾方向の全長Cが0.60〜0.62Dとされた舵であっ
て、該舵本体の水平断面輪郭が魚を横から見たような形
状をなし、魚体部に相当する断面流線型をなす前方部
の、後方部との境界より広がるスロープ角が側角10〜12
°、魚尾部に相当する同後方部の、前方部との境界より
広がるテール角が側角4〜6°とされ、前記舵本体の頂端
面に巾が0.4Cの水平端面板をなす頂端板が取り付けら
れ、底端面に両側縁のみが15°の角度で下方へ折り曲げ
られてなる水平端面板をなす底端板が取り付けられてい
ことを特徴とするものである。
A rudder having a high lift cross-section profile according to claim 1 is a rudder in which the total length C of the rudder body in the fore-aft direction is 0.60 to 0.62D when the propeller diameter is D. The horizontal cross-sectional contour of the rudder body has a shape as seen from the side of the fish, and the slope angle that spreads from the boundary with the rear part of the front part that has a streamlined cross section corresponding to the fish body is a side angle 10-12.
°, the tail angle of the rear part corresponding to the fish tail part that spreads from the boundary with the front part is a side angle of 4 to 6 °, and the top end of the rudder body is
If a top end plate that is a horizontal end plate with a width of 0.4C is attached to the surface,
And only the both edges are bent downward at an angle of 15 ° on the bottom end face.
The bottom end plate, which is a horizontal end plate, is attached.
It is characterized in that that.

【0017】請求項2の高揚力断面輪郭を有する舵は、
請求項1における高揚力断面輪郭を有する舵において、
魚体部に相当する断面流線型をなす前方部の長さが0.8
C、魚尾部に相当する後方部の長さが0.2 Cとされたこ
とを特徴とするものである。
A rudder having a high lift section profile according to claim 2 is
In a rudder having a high lift cross section profile according to claim 1,
The length of the front part of the streamlined section corresponding to the fish body is 0.8
C, the length of the rear part corresponding to the fish tail is 0.2 C.

【0018】[0018]

【作用】舵を中立位置に置いた状態では、推進プロペラ
の後流は、舵の前縁端から両側面に分れ、それぞれ表面
輪郭に沿って後方に流れる。
When the rudder is placed in the neutral position, the wake of the propeller propeller splits from the front edge of the rudder into both side surfaces and flows rearward along the respective surface contours.

【0019】この際、舵本体の前縁は流れに対して抵抗
の少ない流線型であるため、抵抗は極小であり、そし
て、流線型部の後半のスロープ部は、背面渦を生じない
最大角度となっているため、流線型部の長さが最小であ
るにもかかわらず、抵抗は極小である。
At this time, since the front edge of the rudder main body is a streamlined type having less resistance to flow, the resistance is minimal, and the slope portion in the latter half of the streamlined section has a maximum angle that does not generate a back vortex. Therefore, the resistance is minimal despite the minimum length of the streamlined portion.

【0020】水流は、更にテールひれ部に沿って流れる
に当たり、4〜6°だけ偏流させられるが、そのことに
よる抵抗(抗力)は、従来の高揚力断面輪郭を有する舵
の場合に比べて極めて小さい。(なお、この偏流による
揚力は、舵の両面において発生するから互いに釣合い、
横推力とはならない。) 舵に角度を与えた状態では、推進プロペラの後流は、舵
の片側の面に、頂端板と底端板との間に封じ込められる
ようにして流入する。
As the water flow further flows along the tail fin portion, the water flow is diverted by 4 to 6 °, but the resistance (drag) due to this is extremely larger than that in the case of a rudder having a conventional high lift profile. small. (Note that the lift due to this uneven flow is generated on both sides of the rudder, so they balance each other,
It does not become lateral thrust. ) When the rudder is angled, the wake of the propulsion propeller flows into one surface of the rudder so as to be contained between the top and bottom end plates.

【0021】そして、水流が舵の前部の流線型部の流線
輪郭に沿って流れるに際して揚力を発生し、さらに、テ
ールひれ部において流れの方向が偏向させられることに
より、その反力で舵の高い揚力が発生する。
Then, when the water flow flows along the streamline contour of the streamlined portion at the front of the rudder, a lift is generated, and the direction of the flow is deflected at the tail fin portion, so that the reaction force of the rudder causes the lift. High lift is generated.

【0022】従来の高揚力断面輪郭をもつ舵の場合に比
べて、発生する揚力は、舵角が若干相違するだけで、大
きさはほぼ同じであるから、従来とほぼ同等の高い操船
・操縦性を与えることができる。
Compared with a conventional rudder having a high lift profile, the generated lift is substantially the same in magnitude but with a slight difference in the rudder angle. Can give sex.

【0023】舵を最大75°に転舵した状態では、舵面に
当たった推進プロペラの後流は、頂端板と底端板との間
に封じ込められるようにして舵面の輪郭に沿って流れ、
舵面を離れる時点では、船体前後方向中心線に対してほ
ぼ直角の方向に偏向させられることになり、船の前後方
向の推力は小さく横方向の推力が大きくなる。
When the rudder is turned to a maximum of 75 °, the wake of the propeller propeller hitting the rudder surface flows along the contour of the rudder surface so as to be contained between the top end plate and the bottom end plate. ,
At the time of leaving the control surface, it is deflected in a direction substantially perpendicular to the center line in the longitudinal direction of the hull, and the thrust in the longitudinal direction of the ship is small and the thrust in the lateral direction is large.

【0024】従って、船は前後に移動することは少なく
船尾を横に振る動作を行える。これは、従来の高揚力断
面輪郭を有する舵において、舵を最大75°に転舵したと
きの性能と同等である。
Therefore, the ship does not move back and forth and the stern can be swung. This is equivalent to the performance of a conventional rudder having a high lift profile when the rudder is steered up to 75 °.

【0025】[0025]

【実施例】次に、この発明の実施の形態を説明する。図
1はこの発明の一実施の形態の側面図、図2は図1のX
−X線矢視断面図、図3は背面図である。
Embodiments of the present invention will be described below. FIG. 1 is a side view of an embodiment of the present invention, and FIG.
-A cross-sectional view taken along the line X, and Fig. 3 is a rear view.

【0026】従来の高揚力断面を有する舵の揚力を低下
させることなく前進抵抗を減ずる課題を解決するため、
舵模型系列A,B,C,D,Eの5種と、比較例のため
に大型船で普通に使用されるマリナー型の舵模型Mとの
計6種製作した。 [A舵模型]A舵模型は、図1〜3に示すように、この
発明の舵の形状と諸寸法とした。
In order to solve the problem of reducing the forward resistance without lowering the lift of a conventional rudder having a high lift cross section,
Five types of rudder model series A, B, C, D, and E, and a marine type rudder model M, which is commonly used in large ships for comparison, were manufactured. [A Rudder Model] The A rudder model has the shape and various dimensions of the rudder of the present invention, as shown in FIGS.

【0027】即ち、後述の試験用プロペラ4の直径D
(=18.5cm) に対し舵の船首尾線方向に沿った上下方向
中央位置の長さ(以下単に「長さ」と言う)Cが 0.6D
(=11.1cm) 、可動部の舵面積206.3cm2とされ,該舵本
体1の水平断面輪郭が図示のように魚を横から見たよう
な形状をなし、魚体部に相当する断面流線型をなす前方
部1Aの、後方部1Bとの境界1Cより広がるスロープ
角αが側角12°、同長さC1 = 0.8C、魚尾部に相当す
る同後方部1Bの、前方部1Aとの境界1Cより広がる
テール角βが側角5°、長さC2 =0.2 Cの形状とし
た。
That is, the diameter D of the test propeller 4 described later.
(= 18.5 cm), the length of the vertical center position of the rudder along the bow-caudal direction (hereinafter simply referred to as "length") C is 0.6D.
(= 11.1 cm), the rudder area of the movable part is 206.3 cm 2, and the horizontal cross-sectional contour of the rudder main body 1 has a shape as seen from the side of the fish as shown in the figure, and has a streamlined cross section corresponding to the fish body part. The front part 1A has a slope angle α wider than the boundary 1C with the rear part 1B and has a side angle of 12 °, the same length C 1 = 0.8C, and the rear part 1B corresponding to the fish tail part has a boundary with the front part 1A. The tail angle β that spreads from 1 C is a side angle of 5 ° and the length C 2 = 0.2 C.

【0028】また、頂端板2の巾は0.24D、底端板3に
ついては、さらに両端を15°の角度で下方へ曲折した。 [B舵模型]A舵模型に対しテール角βを側角10°とし
た他はA舵模型と同じ形状と諸寸法とした。 [C舵模型]舵長さCのみを増加させることにより可動
部の舵面積245.7cm2とした他は,A舵模型と同じスロー
プ角α、テール角βとした。 [D舵模型]可動部の舵面積245.7cm2、テール角βを側
角10°とした他はC舵模型と同じスロープ角αとした。 [E舵模型]可動部の舵面積245.7cm2、スロープ角αを
側角15°とした他はC舵模型と同じとした。 [M舵模型]比較対象となるマリナー舵で、図4〜図6
に示すように舵1Mの上下方向中央部の長さC=0.68
D、舵面積260.0cm2とした。
Further, the width of the top end plate 2 is 0.24D, and both ends of the bottom end plate 3 are further bent downward at an angle of 15 °. [B rudder model] The same shape and various dimensions as the A rudder model except that the tail angle β is set to 10 ° for the A rudder model. [C rudder model] The rudder area of the movable part was 245.7 cm 2 by increasing only the rudder length C, and the same slope angle α and tail angle β as in the A rudder model were used. [D rudder model] The same rudder area as the C rudder model except that the rudder area of the movable part was 245.7 cm 2 and the side angle of the tail angle β was 10 °. [E rudder model] Same as the C rudder model except that the rudder area of the movable part was 245.7 cm 2 and the slope angle α was 15 °. [M rudder model] FIGS.
As shown in, the length C = 0.68 of the central portion of the rudder 1M in the vertical direction.
D, rudder area was 260.0 cm 2 .

【0029】上記A〜E及びMの舵模型の諸元(α、
β、舵長さ)及びM舵模型の舵面積を1とした時の面積
比を表1に一覧表として示す。
Specifications of the rudder model of A to E and M (α,
β, rudder length) and the area ratio when the rudder area of the M rudder model is 1 are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】次に、上記舵模型について、日立造船株式
会社、技術研究所の回流試験水槽で試験を行い、別紙の
「シリング舵性能試験報告書」の通り、各々の舵の流体
力学的特性を求めた。
Next, the rudder model was tested in a circulation test water tank of Hitachi Zosen Co., Ltd. and Technical Research Laboratory, and the hydrodynamic characteristics of each rudder were measured as shown in the attached "Schilling Rudder Performance Test Report". I asked.

【0032】図7〜図8に上記各舵模型の試験要領及び
装置を示す。まず、実際の船に舵が装備されているよう
にプロペラ4を駆動する。そして後方に舵模型1を固定
し、その上方には舵に作用する力やモーメントを計測す
るための検力計5に連結する。
7 to 8 show the test procedure and apparatus of each of the above rudder models. First, the propeller 4 is driven so that the actual ship is equipped with a rudder. Then, the rudder model 1 is fixed to the rear, and above the rudder model 1 is connected to a dynamometer 5 for measuring the force and moment acting on the rudder.

【0033】水面には波が立たないよう、波押さえ板6
を固定する。この板6と舵1の間にはスケグ1Dと呼ば
れる、水平断面が翼型をしたカバーを置く。実際の船で
はこのスケグ1Dは船体側に固着されるので、船が直進
している状態に相当する舵中央(舵角0°)の時には波
押さえ板6ではなく、舵1側に固定してこのスケグ1D
と舵1の抵抗を合わせて計測する。
The wave restraint plate 6 so that waves do not stand on the water surface
To fix. Between the plate 6 and the rudder 1, a cover called a skeg 1D having a wing-shaped horizontal section is placed. In an actual ship, this skeg 1D is fixed to the hull side, so at the rudder center (rudder angle 0 °), which corresponds to a state where the ship is moving straight, fix it on the rudder 1 side instead of the wave retainer plate 6. This skeg 1D
And the resistance of rudder 1 are also measured.

【0034】この際、水は図に向かって右から左の方へ
流れており、その流速を記号Uで表している。計測する
のは舵1に作用する揚力、抗力並びにプロペラ推力であ
るが、舵軸7に作用する舵軸を回そうとするモーメント
(舵トルクと呼ばれる)等も計測した。計測量を表現す
る場合、図8の平面図に示した矢印L、Dの向きの力や
舵角γを正としている。
At this time, water is flowing from right to left as viewed in the figure, and its flow velocity is represented by the symbol U. The lift, the drag, and the propeller thrust that act on the rudder 1 are measured, but the moment (called the rudder torque) that acts on the rudder shaft 7 to turn the rudder shaft is also measured. When expressing the measurement amount, the force in the directions of arrows L and D and the steering angle γ shown in the plan view of FIG. 8 are positive.

【0035】なお、模型プロペラは翼数5枚、プロペラ
直径D=185.0mm 、ピッチ=129.5mm で、流速Uは、U
=0.5 、0.7 及び0.9 m/sの3種に選んだ。 [舵中央における抵抗測定の結果]舵中央における舵本
体並びにホーンやスケグの抵抗を測定した結果を表2に
示す。
The model propeller has 5 blades, propeller diameter D = 185.0 mm, pitch = 129.5 mm, and flow velocity U is U.
= 0.5, 0.7 and 0.9 m / s. [Results of Resistance Measurement at Rudder Center] Table 2 shows the results of measuring the resistance of the rudder main body and the horn and skeg at the rudder center.

【0036】[0036]

【表2】 [Table 2]

【0037】流速0.7m/sにおいて各舵角ごとにスケグを
も含めた合計抵抗値を整理すると表3のようになる。
Table 3 shows the total resistance value including the skeg for each steering angle at a flow velocity of 0.7 m / s.

【0038】[0038]

【表3】 [Table 3]

【0039】表3の結果より推進抵抗について次の事が
わかる(各項目末尾の「%」は推進馬力に対するもので
ある)。 (1) テール角5°と同10°のA舵とB舵との比較及びC
舵とD舵との比較より、テール角5°の方が同10°のも
のより0.4 〜1%位良い。 (2) スロープ角12°と同15°のC舵とE舵との比較よ
り、前部スロープ角12°の方が同15°のものより約1%
良い。 (3) 舵巾0.6 Dのものが0.7 Dのものに比べ1〜2%良
い。 (4) この発明のA舵模型(0.6 D、テール角5°、スロ
ープ角12°)は、マリナー舵を模したM舵模型に比べ約
1.5%良い。 [舵の揚力]次に、データより得られた、流速0.7 m/s
におけるこの発明のA舵の舵角70°、45°における揚
力、マリナー舵(M舵)の35°における揚力の比較を表
4に示す。
From the results of Table 3, the following can be seen regarding propulsion resistance ("%" at the end of each item is for propulsion horsepower). (1) Comparison of A rudder and B rudder with a tail angle of 5 ° and 10 °, and C
Compared with the rudder and D rudder, the tail angle of 5 ° is 0.4 to 1% better than that of 10 °. (2) Compared to the C and E rudders with slope angles of 12 ° and 15 °, the front slope angle of 12 ° is about 1% more than that of 15 °.
good. (3) The one with a rudder width of 0.6 D is better than the one with 0.7 D by 1-2%. (4) The A-rudder model (0.6 D, tail angle 5 °, slope angle 12 °) of this invention is approximately the same as the M-rudder model imitating the Mariner rudder.
1.5% good. [Rudder lift] Next, the flow velocity obtained from the data is 0.7 m / s
Table 4 shows a comparison of the lifts of the rudder A of the present invention at 70 ° and 45 °, and the lift of the mariner rudder (M rudder) at 35 °.

【0040】[0040]

【表4】 [Table 4]

【0041】表4の結果より揚力について次の事がわか
る。なお、プロペラ回転方向の影響で、右左で若干の差
が出ているが、平均値により比較する。 (1) A舵とC舵、B舵とD舵の比較より舵面積に比例し
て揚力は大きくなっている。 (2) この発明のA舵45°の揚力と、マリナ舵M舵35°の
揚力とを比べると、A舵は面積が約20%以上小さいにも
かかわらず、最大揚力はA舵の方が大きい。
From the results shown in Table 4, the following can be seen regarding the lift. It should be noted that there is a slight difference between the left and right due to the influence of the propeller rotation direction, but the average value is used for comparison. (1) The lift is larger in proportion to the rudder area than the comparison between A rudder and C rudder, and B rudder and D rudder. (2) Comparing the lift of the A rudder 45 ° of the present invention with the lift of the marina rudder M rudder 35 °, the maximum lift of the A rudder is larger than that of the A rudder even though the area of the A rudder is smaller by about 20% or more. large.

【0042】同一面積で比較すれば、A舵は30%大きい
揚力が得られる、言い換えれば普通舵に比べ約30%小さ
い舵とすることができる。 (3) テール角の影響、スロープ角の影響も出ているが差
は僅かである。 [揚力係数CL と抗力係数CD について]試験結果より
A舵、B舵、E舵、M舵の揚力係数と抗力係数を計算し
た結果を図9、図10に示す。
When compared in the same area, the rudder A can obtain a lift of 30% larger, in other words, the rudder can be made about 30% smaller than the normal rudder. (3) The effect of the tail angle and the effect of the slope angle also appear, but the difference is slight. [Lift coefficient C L and drag coefficient C D ] The results of calculating the lift coefficient and drag coefficient of A rudder, B rudder, E rudder, and M rudder from the test results are shown in FIGS. 9 and 10.

【0043】図9には横軸に舵角を、縦軸に揚力係数C
L を示している。同じ舵角でCL が大きいほど舵の発生
する揚力が大きく、揚力係数の最大値でA舵はM舵の約
1.4倍となる。
In FIG. 9, the horizontal axis represents the steering angle and the vertical axis represents the lift coefficient C.
L is shown. C L is enough occurrence to lift the rudder is large large in the same steering angle, A rudder about the M rudder at the maximum value of the lift coefficient
It will be 1.4 times.

【0044】一方の抗力係数CD も先のCL と同様で、
図10に見られるように、A舵72°はM舵35°の約2.5
倍である。 [まとめ]以上より、この発明の高揚力断面輪郭を有す
る舵は下記のことが言える。 (1) この発明の高揚力断面輪郭を有する舵において、舵
の平均長さCを0.60〜0.62Dの範囲におさえ、テール角
βを5°スロープ角αを12°にすれば、マリナ舵に勝る
とも劣らぬ推進性能が実現出来る。即ち、この舵のスケ
グを含めた推進抵抗は舵模型の中で従来の高揚力断面輪
郭を有する舵に最も近い条件を有するE舵の推進抵抗の
約51%に過ぎないまでに減少したばかりでなく、マリナ
舵Mに比べても、この発明の舵の推進抵抗はマリナ舵M
のそれよりも約63%と小さくなった。 (2) 舵の揚力についてはテール角βを5°スロープ角α
を12°舵の平均長さCを0.60Dとしたこの発明の舵は、
舵角を45°にとることで約30%面積の大きいマリナ舵の
舵角35°における揚力とほぼ同等の揚力が得られる。 (3) 個々の要素については、次のことが言える。 i 舵中央、直進時の抵抗減少のため、テール角βを5
°とすることは、明らかに有効である。 ii スロープ角αを12°とすることも直進時の抵抗減少
のために明らかに有効である。 iii この発明の高揚力断面輪郭を有する舵の揚力係数
は、マリナ舵のそれと比べ30%以上大きく、言い換えれ
ば、この発明の舵はマリナ舵より30%小さい面積でも、
マリナ舵と同等の揚力を発揮できる。 (4) 以上総合すればこの発明の高揚力断面輪郭を有する
舵は、推進効率、揚力ともにマリナ舵を上回る舵といえ
る。
One of the drag coefficients C D is the same as the above C L ,
As can be seen in FIG. 10, the A rudder 72 ° is about 2.5 of the M rudder 35 °.
Double. [Summary] From the above, the following can be said for the rudder having the high lift cross section contour of the present invention. (1) In the rudder having the high lift cross section profile of the present invention, if the average length C of the rudder is kept within the range of 0.60 to 0.62D and the tail angle β is 5 ° and the slope angle α is 12 °, a marina rudder is obtained. Even if you win, you can achieve propulsive performance. In other words, the propulsion resistance including the skeg of the rudder has just decreased to about 51% of the propulsion resistance of the E rudder, which has the closest condition to the conventional rudder having a high lift profile in the rudder model. In comparison with the marina rudder M, the propulsion resistance of the rudder of the present invention is
It was about 63% smaller than that. (2) For the lift of the rudder, set the tail angle β to 5 ° and the slope angle α
And the average length C of the rudder is 0.60D
By setting the rudder angle to 45 °, a lift almost equal to the lift at a rudder angle of 35 ° of a Marina rudder with a large area of about 30% can be obtained. (3) The following can be said about each element. i The tail angle β is set to 5 because the resistance at the center of the rudder and straight ahead decreases.
Setting to ° is obviously effective. ii Setting the slope angle α to 12 ° is obviously effective for reducing the resistance when going straight. iii The lift coefficient of the rudder having the high lift profile of the present invention is 30% or more larger than that of the marina rudder, in other words, the rudder of the present invention has an area 30% smaller than the marina rudder,
It can exert the same lift as a marina rudder. (4) In summary, it can be said that the rudder having the high lift cross-section profile of the present invention is superior to the marina rudder in both propulsion efficiency and lift.

【0045】なお、上記高揚力断面輪郭を有する舵のス
ロープ角αが12°、テール角βが5°のものが優れた効
果を発揮する試験結果が得られたが、流体の力学的不確
定性よりスロープ角αを10°〜12°、テール角βを4°
〜6°としても実用上全く問題はなく、同等の効果が得
られる。
Although the rudder having the above-mentioned high lift profile has a slope angle α of 12 ° and a tail angle β of 5 °, the test results showing the excellent effect were obtained, but the uncertainties of the fluid dynamics were obtained. Slope angle α is 10 ° to 12 °, tail angle β is 4 °
Even if it is set to -6 °, there is no problem in practical use, and the same effect can be obtained.

【0046】また、上記高揚力断面輪郭を有する舵は比
較試験のためマリナー舵に類似した梯形の輪郭形状とし
たが、図11〜図13に示すように上下で長さが等しい
矩形の場合でも同様な結果が得られる。
Further, although the rudder having the above-mentioned high lift cross-section profile has a trapezoidal profile shape similar to the marine rudder for comparison test, even in the case of a rectangular shape having the same vertical length as shown in FIGS. 11 to 13. Similar results are obtained.

【0047】[0047]

【発明の効果】以上述べたように、この発明の高揚力断
面輪郭を有する舵は、高揚力特性を維持しながら、舵の
中立位置における水流抵抗損失を極小にすることがで
き、かつ、特に大型外洋航行船の舵としては一般に用い
られているマリナー型の舵に比べて舵の寸法を小さくで
きるから、舵重量及びコストを低減することができ、ま
たそれに伴い舵取機の容量、従ってコストを低減させる
ことができる等、卓越した効果を発揮する。
As described above, the rudder having a high lift profile according to the present invention can minimize water flow resistance loss at the neutral position of the rudder while maintaining high lift characteristics, and As the rudder of large ocean-going vessels, the rudder size and cost can be reduced because the rudder size can be made smaller than the marine-type rudder that is generally used. It has excellent effects such as reduction of

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態を示す側面図である。FIG. 1 is a side view showing an embodiment of the present invention.

【図2】図1のX−X線矢視断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】この発明の実施の形態を示す背面図である。FIG. 3 is a rear view showing the embodiment of the present invention.

【図4】マリナー舵の側面図である。FIG. 4 is a side view of a Mariner rudder.

【図5】マリナー舵の平面図である。FIG. 5 is a plan view of a mariner rudder.

【図6】マリナー舵の底面図である。FIG. 6 is a bottom view of the mariner rudder.

【図7】試験装置の側面図である。FIG. 7 is a side view of the test apparatus.

【図8】試験装置の平面図である。FIG. 8 is a plan view of the test apparatus.

【図9】舵角と揚力係数の関係を示すグラフである。FIG. 9 is a graph showing a relationship between a steering angle and a lift coefficient.

【図10】舵角と抗力との関係を示すグラフである。FIG. 10 is a graph showing the relationship between steering angle and drag.

【図11】この発明の他の実施の形態を示す水平断面図
である。
FIG. 11 is a horizontal sectional view showing another embodiment of the present invention.

【図12】この発明の他の実施の形態を示す側面図であ
る。
FIG. 12 is a side view showing another embodiment of the present invention.

【図13】この発明の他の実施の形態を示す背面図であ
る。
FIG. 13 is a rear view showing another embodiment of the present invention.

【図14】従来の高揚力断面輪郭を有する舵の側面図で
ある。
FIG. 14 is a side view of a conventional rudder having a high lift profile.

【図15】従来の高揚力断面輪郭を有する舵の水平断面
図である。
FIG. 15 is a horizontal sectional view of a rudder having a conventional high-lift profile.

【図16】従来の高揚力断面輪郭を有する舵の背面図で
ある。
FIG. 16 is a rear view of a rudder having a conventional high lift cross-sectional profile.

【符号の説明】[Explanation of symbols]

1…舵本体 1A…魚体部に相当する断面流線型をなす前方部 1B…魚尾部に相当する後方部 1C…境界 2…頂端板 3…底端板 C…舵の船首尾線方向に沿った上下方向中央位置の長さ α…スロープ角 β…テール角 1 ... Rudder body 1A: a front part having a streamlined cross section corresponding to the fish body part 1B: rear part corresponding to fish tail 1C ... boundary 2 ... Top plate 3 ... Bottom end plate C: Length of the vertical center position of the rudder along the bow-tail direction α ... Slope angle β ... tail angle

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−26191(JP,A) 特開 平5−39089(JP,A) 実開 平1−73498(JP,U) (58)調査した分野(Int.Cl.7,DB名) B63H 25/38 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Unexamined Patent Publication No. 8-26191 (JP, A) Japanese Unexamined Patent Publication No. 5-39089 (JP, A) Actual Development No. 1-73498 (JP, U) (58) Field (Int.Cl. 7 , DB name) B63H 25/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 プロペラ直径をDとおいた時、舵本体の
船首尾方向の全長Cが0.60〜0.62Dとされた舵であっ
て、 該舵本体の水平断面輪郭が魚を横から見たような形状を
なし、魚体部に相当する断面流線型をなす前方部の、後
方部との境界より広がるスロープ角が側角10〜12°、魚
尾部に相当する同後方部の、前方部との境界より広がる
テール角が側角4〜6°とされ、 前記舵本体の頂端面に巾が0.4Cの水平端面板をなす頂
端板が取り付けられ、底端面に両側縁のみが15°の角度
で下方へ折り曲げられてなる底端板が取り付けられてい
ことを特徴とする高揚力断面輪郭を有する舵。
1. A rudder in which the total length C of the rudder main body in the fore-aft direction is 0.60 to 0.62 D, where the propeller diameter is D, and the horizontal cross-sectional contour of the rudder main body is such that the fish is seen from the side. The front part, which has a unique shape and has a streamlined cross section corresponding to the fish body, has a side angle of 10 to 12 °, which spreads from the boundary with the rear part, and the boundary with the front part of the rear part, which corresponds to the fish tail part. The wider tail angle is 4 to 6 degrees, and the top end face of the rudder body forms a horizontal end plate with a width of 0.4C.
End plate is attached and bottom edge is only 15 ° on both edges
The bottom end plate that is bent downward with
Rudder having a high-lift cross-sectional profile, characterized in that that.
【請求項2】 請求項1における高揚力断面輪郭を有す
る舵において、魚体部に相当する断面流線型をなす前方
部の長さが0.8 C、魚尾部に相当する後方部の長さが0.
2 Cとされたことを特徴とする高揚力断面輪郭を有する
舵。
2. A rudder having a high lift cross-section profile according to claim 1, wherein the length of the front part of the streamlined cross section corresponding to the fish body is 0.8 C and the length of the rear part corresponding to the fish tail is 0.
A rudder having a high lift cross-section profile characterized by being set to 2 C.
JP10996497A 1997-04-28 1997-04-28 Rudder with high lift profile Expired - Fee Related JP3394153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10996497A JP3394153B2 (en) 1997-04-28 1997-04-28 Rudder with high lift profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10996497A JP3394153B2 (en) 1997-04-28 1997-04-28 Rudder with high lift profile

Publications (2)

Publication Number Publication Date
JPH10297593A JPH10297593A (en) 1998-11-10
JP3394153B2 true JP3394153B2 (en) 2003-04-07

Family

ID=14523622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10996497A Expired - Fee Related JP3394153B2 (en) 1997-04-28 1997-04-28 Rudder with high lift profile

Country Status (1)

Country Link
JP (1) JP3394153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336247A (en) * 2010-07-21 2012-02-01 中国船舶重工集团公司第七○四研究所 Wing flap fishtail fin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324965B1 (en) * 2011-10-06 2013-11-05 삼성중공업 주식회사 Rudder and ship having the same
JP6570229B2 (en) * 2013-12-10 2019-09-04 ジャパン・ハムワージ株式会社 Ship rudder
CN105197220A (en) * 2015-10-09 2015-12-30 上海船舶研究设计院 Shilling rudder used for icebreaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336247A (en) * 2010-07-21 2012-02-01 中国船舶重工集团公司第七○四研究所 Wing flap fishtail fin
CN102336247B (en) * 2010-07-21 2014-07-02 中国船舶重工集团公司第七○四研究所 Wing flap fishtail fin

Also Published As

Publication number Publication date
JPH10297593A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US6886485B2 (en) Twin-rudder system for large ship
US20060124042A1 (en) Power boat with improved hull
JPH02502002A (en) planing catamaran
US5503100A (en) Hybrid water vessels
DK2029420T3 (en) Ship with a carrying wing below the waterline
JP3394153B2 (en) Rudder with high lift profile
US7617793B2 (en) Vessel provided with a foil situated below the waterline
US5832855A (en) Ship's hull
US3207118A (en) Boat propulsion system
Conolly Paper 26. Stability and Control in Waves: A Survey of the Problem
JPH0539089A (en) Marine rudder
JPH0580395B2 (en)
JP2002274490A (en) High lift rudder for ship
JP3319788B2 (en) Ship with hydrofoil
Hoppe Recent applications of hydrofoil-supported-catamarans
CN212861810U (en) Ship trident rudder fin
JPH02504379A (en) High-speed boat
JP2002293294A (en) High-lift twin rudder system for marine vessel
JPH05116687A (en) Skeg for ship rudder
JPS5943353B2 (en) Two-axle shallow water boat
US20220250717A1 (en) Pontoon boat with hull extension
EP0800989A1 (en) Hybrid high performance water vessels
JPH0319835B2 (en)
CA1188934A (en) Modification on a rudder for boats and ships
JPS5943193Y2 (en) semi-submerged catamaran

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees