JP3392249B2 - Rubber composition and method for producing the same - Google Patents

Rubber composition and method for producing the same

Info

Publication number
JP3392249B2
JP3392249B2 JP02061295A JP2061295A JP3392249B2 JP 3392249 B2 JP3392249 B2 JP 3392249B2 JP 02061295 A JP02061295 A JP 02061295A JP 2061295 A JP2061295 A JP 2061295A JP 3392249 B2 JP3392249 B2 JP 3392249B2
Authority
JP
Japan
Prior art keywords
rubber
weight
raw
content
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02061295A
Other languages
Japanese (ja)
Other versions
JPH08231766A (en
Inventor
哲司 川面
博幸 海藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP02061295A priority Critical patent/JP3392249B2/en
Priority to DE69510756T priority patent/DE69510756T2/en
Priority to EP95119866A priority patent/EP0717075B1/en
Publication of JPH08231766A publication Critical patent/JPH08231766A/en
Priority to US08/932,302 priority patent/US5834552A/en
Application granted granted Critical
Publication of JP3392249B2 publication Critical patent/JP3392249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両用タイヤトレッドに
用いられるゴム組成物の製造方法に関し、更に詳しく
は、0℃と40℃の動的粘弾性のtanδの変化が小さ
い車両用タイヤトレッド用ゴム組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rubber composition used for a vehicle tire tread, and more specifically, for a vehicle tire tread having a small change in dynamic viscoelasticity tan δ at 0 ° C and 40 ° C. It relates to a rubber composition.

【0002】[0002]

【従来の技術】車両走行の安全性向上のため路面のグリ
ップ力が高いタイヤが要求されている。タイヤのグリッ
プ力は動的粘弾性のtanδと密接に関連しており、例
えば、「自動車技術」43巻,No.3,8頁(198
9年)に記載されているように、湿潤路面のグリップ力
は0℃前後のtanδと相関するとされている。グリッ
プ力が相関するとされる。しかしこれは水温が室温近辺
の場合であり、例えば水温が60℃の場合は約40℃の
tanδと相関する。また乾いた路面のグリップ力は0
℃から60℃のtanδが平均的に相関するとされる。
このように環境の変化に対して安定したグリップ力をタ
イヤが示すためには、広い温度範囲のtanδが高い値
で安定することが求められる。即ち、tanδの温度勾
配を小さくすることが望ましい。一般にカーボンブラッ
クやホワイトカーボン等の補強剤の添加量を多くする
と、このtanδの温度勾配が小さくなるが、未加硫ゴ
ムの粘度上昇を起こし加工性が低下したり、加硫ゴムの
破断伸度が低下し、欠けやすくなるなどの欠点が生じ、
タイヤトレッド用ゴムとしては好ましくない。
2. Description of the Related Art In order to improve the safety of vehicle running, a tire having a high road surface grip is required. The grip force of a tire is closely related to tan δ of dynamic viscoelasticity. For example, see “Automobile Technology”, Vol. Pages 3, 8 (198
As described in (9 years), the grip force on a wet road surface is said to be correlated with tan δ around 0 ° C. It is said that grip strength is correlated. However, this is when the water temperature is near room temperature, and for example, when the water temperature is 60 ° C., it correlates with tan δ of about 40 ° C. Also, the grip on dry road surface is 0
It is said that tan δ from 0 ° C to 60 ° C correlates on average.
In order for the tire to exhibit a stable gripping force against changes in the environment as described above, it is required that tan δ in a wide temperature range be stable at a high value. That is, it is desirable to reduce the temperature gradient of tan δ. Generally, when the amount of addition of a reinforcing agent such as carbon black or white carbon is increased, the temperature gradient of tan δ becomes smaller, but the viscosity of unvulcanized rubber increases and the workability decreases, and the elongation at break of vulcanized rubber decreases. Is reduced, and defects such as easy chipping occur,
Not preferable as rubber for tire tread.

【0003】Rubber Chem.Techno
l.誌の47巻,48頁(1974)、同誌50巻,3
01頁(1977)、同誌61巻,609頁(198
8)及び同誌66巻,276頁(1993)には、あら
かじめ原料ゴムとカーボンブラックを混合したマスター
バッチと別な原料ゴムを混合する組み合わせによって反
発弾性率が変化することが報告されている。しかしなが
ら、これらの研究においてはtanδの温度勾配に及ぼ
す影響について何が関与しているのか全く解明されてい
ない。
Rubber Chem. Techno
l. 47, 48 (1974), 50, 3
01 (1977), 61, 609 (198).
8) and Vol. 66, p. 276 (1993), it is reported that the impact resilience is changed by the combination of mixing a raw material rubber and carbon black in advance with another raw material rubber. However, what is involved in the effect of tan δ on the temperature gradient has not been elucidated at all in these studies.

【0004】[0004]

【発明が解決しようとする課題】前述の如く、ゴム組成
物の混合方法を変えることにより加硫ゴムのtanδが
変化することは知られているが、従来はtanδの低減
やその温度依存性の増大にその効果を応用する研究が主
に成されており、tanδの温度依存性の低減への応用
は試みられていなかった。
As described above, it is known that the tan δ of the vulcanized rubber changes by changing the mixing method of the rubber composition, but conventionally, the reduction of tan δ and its temperature dependence have been known. Studies have been mainly conducted to apply the effect to the increase, and no attempt has been made to apply it to the reduction of the temperature dependence of tan δ.

【0005】従って、本発明は、前記した従来技術の問
題を排除して、破断強度を損なうことなく、tanδの
温度依存性が小さいタイヤトレッド用のゴム組成物の製
造方法及びそれによって得られたゴム組成物を提供する
ことを目的とする。
Therefore, the present invention eliminates the above-mentioned problems of the prior art, and a method for producing a rubber composition for a tire tread having a small temperature dependency of tan δ without impairing the breaking strength, and a method for obtaining the same. An object is to provide a rubber composition.

【0006】[0006]

【課題を解決するための手段】本発明に従えば、(A)
ガラス転移温度(Tg)が−40〜10℃の原料ゴム3
0〜90重量部並びに(B)粘弾性的に原料ゴム(A)
と非相溶性でかつ原料ゴム(A)のTgより20℃以上
低いTgを有する原料ゴム10〜40重量部を含んで成
る原料ゴム(A)及び(B)の合計100重量部並びに
補強剤60〜100重量部を含むゴム組成物を製造する
にあたり、原料ゴム(A)と、総量の80重量%以上の
補強剤とを密閉型ミキサー中で130〜200℃にて1
0秒以上混合した後、原料ゴム(B)と残りの補強剤と
を添加混合することを特徴とするゴム組成物の製法及び
それによって得られるゴム組成物が提供される。
According to the present invention, (A)
Raw rubber 3 having a glass transition temperature (Tg) of -40 to 10 ° C
0 to 90 parts by weight and (B) viscoelastic material rubber (A)
100 parts by weight of the raw material rubbers (A) and (B) and a reinforcing agent 60 which are incompatible with and which contain 10 to 40 parts by weight of the raw material rubber having a Tg lower than the Tg of the raw material rubber (A) by 20 ° C. or more. In producing a rubber composition containing 100 parts by weight to 100 parts by weight, the raw rubber (A) and 80% by weight or more of the total amount of the reinforcing agent are mixed in an internal mixer at 130 to 200 ° C. for 1%.
Provided is a method for producing a rubber composition, which comprises mixing the raw rubber (B) and the remaining reinforcing agent after mixing for 0 seconds or more, and a rubber composition obtained thereby.

【0007】また、本発明に従えば、(A)ガラス転移
温度(Tg)が−40℃〜10℃の原料ゴム30〜90
重量部、(B)粘弾性的に原料ゴム(A)と非相溶性で
かつ原料ゴム(A)のTgより20℃以上低いTgを有
する原料ゴム10〜40重量部並びに、任意的な成分と
して、(C)原料ゴム(A)のTgと等しいか又はそれ
以下のTgを有する原料ゴム0〜30重量部(原料ゴム
(C)を含む場合の好ましい配合量は0〜15重量部で
ある)を含んで成る原料ゴム(A),(B)及び(C)の
合計100重量部並びに補強剤60〜100重量部を含
むゴム組成物を製造するにあたり、原料ゴム(A)及び
(C)と、総量の80重量%以上の補強剤とを密閉型ミ
キサー中で130〜200℃にて10秒以上混合した
後、原料ゴム(B)と残りの補強剤とを添加混合するこ
とからなるゴム組成物の製法並びにそれによって得られ
るゴム組成物が提供される。
Further, according to the present invention, (A) a raw material rubber having a glass transition temperature (Tg) of −40 ° C. to 10 ° C. 30 to 90
10 parts by weight of (B) viscoelastically incompatible with the raw material rubber (A) and having a Tg of 20 ° C. or more lower than the Tg of the raw material rubber (A), and as an optional component. , (C) a raw rubber having a Tg equal to or lower than the Tg of the raw rubber (A) (0 to 30 parts by weight when the raw rubber (C) is contained). In producing a rubber composition containing a total of 100 parts by weight of the raw rubbers (A), (B) and (C) and 60 to 100 parts by weight of the reinforcing agent, the raw rubbers (A) and (C) A rubber composition which comprises mixing 80% by weight or more of the total amount of a reinforcing agent in an internal mixer at 130 to 200 ° C. for 10 seconds or more, and then adding and mixing the raw rubber (B) and the remaining reinforcing agent. Provided is a method for producing a product and a rubber composition obtained thereby. It is.

【0008】前記した通り、ゴム組成物の混合方法を変
えることにより加硫ゴムのtanδが変化することは知
られてはいるが、本発明者らは原料の選択と混合方法の
効果について鋭意検討した結果、特定のTgと相溶性を
持つ2群の原料ゴム(A)及び(B)と、補強剤とを特
定の手順で混合することにより、破断強度を保持しつつ
tanδの温度依存性を小さくできることを見出した。
またこの方法によると混合中のマスターバッチの粘度上
昇も少ないという利点もある。以下にその詳細を説明す
る。
As described above, it is known that the tan δ of the vulcanized rubber is changed by changing the mixing method of the rubber composition, but the present inventors diligently studied the effects of the selection of raw materials and the mixing method. As a result, by mixing the two groups of raw material rubbers (A) and (B) having compatibility with a specific Tg and the reinforcing agent in a specific procedure, the temperature dependence of tan δ was maintained while maintaining the breaking strength. I found that it can be made smaller.
This method also has the advantage that the viscosity of the masterbatch during mixing is small. The details will be described below.

【0009】原料ゴムの一部とカーボンブラックをあら
かじめ混合しておき、次いで残りの原料ゴムを加えて混
合する場合、はじめの原料ゴムにカーボンブラックの偏
在が起こりやすくtanδが変化することは知られてい
る。先に引用したRubber Chem.Techn
ol.誌の61巻,276頁(1993)に多数のブレ
ンドでの反発弾性率への混合手法の効果が記載されてい
る。この文献にはブレンドゴムのTgとの関連について
何ら記載されていないが、本発明者らは独自にそれに着
目し、記載された反発弾性をtanδに換算し整理する
と高Tgと低Tgの原料ゴムに均等にカーボンブラック
を分配することにより高Tgの原料ゴムに偏在させた方
がtanδが大きくなることを見出した。しかしなが
ら、カーボンブラックの一部が混合過程でブレンド相間
を移動することや原料ゴムの組み合わせにより効果の大
小があり、0℃と40℃の温度勾配の様子は統一的な解
釈がなされるに至らなかった。
It is known that when a part of the raw material rubber and carbon black are mixed in advance, and then the remaining raw material rubber is added and mixed, the carbon black is likely to be unevenly distributed in the first raw material rubber and tan δ changes. ing. The previously cited Rubber Chem. Techn
ol. Vol. 61, p. 276 (1993), describes the effect of the mixing technique on the impact resilience in multiple blends. Although nothing is described in this document regarding the relationship with the Tg of the blended rubber, the present inventors focused their attention on it and converted the described rebound resilience into tan δ, and arranging it into a raw material rubber having a high Tg and a low Tg. It was found that tan δ becomes larger when the carbon black is distributed evenly in the raw rubber having a high Tg. However, some of the carbon black moves between the blend phases during the mixing process and the combination of the raw rubbers has different effects, and the temperature gradient between 0 ° C and 40 ° C cannot be interpreted in a unified manner. It was

【0010】そこで多くの原料ゴムの組み合わせで高T
gゴム成分にカーボンブラックを偏在させた系におい
て、両者のTgと粘弾性的な相溶性を測定し検討した結
果、一定のカーボンブラックの偏在度におけるtanδ
の温度勾配は、2種の原料ゴムが粘弾性的に非相溶性で
かつ両者のTgが離れていることに加えて高Tg成分の
Tgが−20℃付近に近づく程小さくなることを見出し
た。従って非相溶性の2種の原料ゴムのTgはできるだ
け離れている方が効果が大きく、その差が少なくとも2
0℃、好ましくは35℃以上であることが必要である。
Therefore, a high T can be obtained by combining many raw rubbers.
In a system in which carbon black was unevenly distributed in the rubber component, the Tg and viscoelastic compatibility of the two were measured and examined. As a result, tan δ at a certain degree of uneven distribution of carbon black
It was found that in addition to the two raw rubbers being viscoelastically immiscible and the Tgs of the two being apart, the Tg of the high Tg component became smaller as the Tg of the high Tg component approaches -20 ° C. . Therefore, the Tg of two incompatible raw material rubbers is more effective if they are separated as much as possible, and the difference is at least 2
It is necessary to be 0 ° C, preferably 35 ° C or higher.

【0011】ここで述べた粘弾性的に非相溶性とは、加
硫ゴムの粘弾性の温度依存性を測定したとき両原料ゴム
が示すtanδピークが分離して観測されることを意味
し、ゴム組成物中で原料ゴムが完全に混じり合わず数十
ナノメータ以上の大きさの層もしくは島状に分離しかつ
Tgが離れている場合に起こると考えられている。具体
的には図1のように、温度軸に対し対数目盛りでtan
δ測定値を表示し、接線を共有する2点がある場合は粘
弾性的に非相溶性であることがわかる。
The term "viscoelastically incompatible" as used herein means that the tan δ peaks of both raw rubbers are observed separately when the temperature dependence of the viscoelasticity of the vulcanized rubber is measured. It is considered that this occurs when the raw material rubbers are not completely mixed in the rubber composition and are separated into layers or islands having a size of several tens of nanometers or more and Tg is separated. Specifically, as shown in FIG. 1, tan is plotted on a logarithmic scale with respect to the temperature axis.
The δ measurement value is displayed, and it can be seen that viscoelasticity is incompatible when there are two points sharing a tangent line.

【0012】本発明者らは、0℃と40℃の粘弾性を測
定し、またRubber Chem.Technol.
誌の61巻,609頁(1988)に記載されている未
加硫ゴムのバウンドラバー(カーボンゲル)中の原料ゴ
ム組成を定量する方法により求めたカーボンブラックの
偏在の測定を行い、両者の関係を詳細に検討した。その
結果、(tanδの温度勾配の変化)÷(カーボンブラ
ック偏在の変化)で表したtanδの温度勾配の改良効
果を見ると、高Tg成分の原料ゴムのTgが−40℃以
下ではカーボンブラックを偏在させてもtanδの温度
勾配はほとんど改良されず、−40℃以上で徐々に、−
30℃以上で急激に小さくなり、−10℃付近で最良と
なるが、それ以上では再び小さくなることがわかった。
tanδの温度勾配の改良効果が高Tg成分の原料ゴム
のTgが−20℃付近で最良となる理由は明確でない
が、一般に原料ゴムのTgの10〜20℃高温側にta
nδ曲線の最大点があるので、このtanδの最大点が
測定点である0℃付近にある場合に改良効果が最大とな
るものと考えられる。
The present inventors have measured the viscoelasticity at 0 ° C. and 40 ° C., and also reported in Ruber Chem. Technol.
The uneven distribution of carbon black obtained by the method for quantifying the raw rubber composition in the bound rubber (carbon gel) of unvulcanized rubber described in Vol. 61, p. 609 (1988) was carried out, and the relationship between the two was measured. Was examined in detail. As a result, looking at the effect of improving the temperature gradient of tan δ expressed by (change in temperature gradient of tan δ) ÷ (change in uneven distribution of carbon black), when the Tg of the raw rubber of the high Tg component is −40 ° C. or lower, carbon black is Even if unevenly distributed, the temperature gradient of tan δ is hardly improved, and gradually increases at −40 ° C. or higher, −
It was found that the temperature sharply decreased at 30 ° C or higher, became the best at around -10 ° C, and decreased again at higher temperatures.
Although it is not clear why the effect of improving the temperature gradient of tan δ is the best when the Tg of the raw rubber having a high Tg component is around -20 ° C, it is generally 10 to 20 ° C higher than the Tg of the raw rubber.
Since there is a maximum point on the nδ curve, it is considered that the improvement effect is maximized when the maximum point on tan δ is in the vicinity of the measurement point of 0 ° C.

【0013】しかしカーボンブラックを偏在させること
により、tanδの温度依存性を改良しようとする場合
に、機械的にTgに差がある2種の原料ゴムを選び、最
初の混合工程で低Tgの原料ゴムとカーボンブラックを
あらかじめ混合しておき、その後の工程で高Tgの原料
ゴムを添加したのみでは、以下に述べるように、工業的
には種々の問題があるため、それだけではタイヤトレッ
ドに適したゴム組成物は得られない。
However, in order to improve the temperature dependence of tan δ by unevenly distributing carbon black, two types of raw material rubbers having mechanically different Tg are selected, and a raw material having a low Tg is selected in the first mixing step. If rubber and carbon black are mixed in advance and raw material rubber having a high Tg is added in the subsequent steps, there are various industrial problems as described below. Therefore, it is suitable for a tire tread. No rubber composition is obtained.

【0014】一つの問題点は、如何なる原料ゴムを選べ
ばtanδの温度依存性の改良と原料ゴム(A)及び
(B)両群の原料ゴムの非相溶性とを両立できるのかは
多分に経験的である。理論式による2種の高分子の相溶
性の研究は、例えばMacromolecule誌、2
4巻、4839頁(1991)に記載のようにある程度
可能であるが充分でなく、また本発明のように広範囲の
原料ゴムが用いられる場合に相溶性を保持するか否かの
予測は全く困難である。
One problem is that it is empirically argued that which raw material rubber can be selected to improve both the temperature dependence of tan δ and the incompatibility of the raw material rubbers of both groups (A) and (B). Target. Studies on the compatibility of two kinds of polymers by theoretical formulas are described in, for example, Macromolecule, 2
Volume 4, page 4839 (1991) is possible to some extent but not sufficient, and it is quite difficult to predict whether or not compatibility will be maintained when a wide range of raw rubber is used as in the present invention. Is.

【0015】本発明者らはTgの異なる多数の原料ゴム
を混合してそれらの粘弾性を測定し、その組み合わせが
粘弾性的に相溶性か否かを検討した結果、二つの混合工
程に投入する原料ゴムが以下の5つの組合せから選ばれ
ることによって本発明の目的を達成するのに好ましいこ
とを見出した。
The inventors of the present invention mixed a large number of raw rubbers having different Tg's, measured their viscoelasticity, and examined whether or not the combination was viscoelastically compatible. It was found that the raw material rubber to be used is preferably selected from the following five combinations to achieve the object of the present invention.

【0016】1)原料ゴム(A):ブタジエン部分中の
1,2結合ブタジエン含量が65重量%以上、好ましく
は65〜85重量%のポリブタジエン(BR) 原料ゴム(B):シス−1,4結合ブタジエン含量が9
5重量%以上、好ましくは97〜99重量%のBR
1) Raw material rubber (A): Polybutadiene (BR) having a 1,2-bonded butadiene content in the butadiene portion of 65% by weight or more, preferably 65 to 85% by weight. Raw material rubber (B): cis-1,4. Bound butadiene content is 9
BR of 5% by weight or more, preferably 97 to 99% by weight

【0017】2)原料ゴム(A):1,2結合ブタジエ
ン含量65重量%以上、好ましくは65〜85重量%の
BR及び/又はスチレン含量が30〜50重量%、好ま
しくは35〜45重量%の乳化重合SBR 原料ゴム(B):1,2結合ブタジエン含量が10〜5
0重量%、好ましくは12〜20重量%のBR
2) Raw rubber (A): 1,2-bond butadiene content of 65% by weight or more, preferably 65 to 85% by weight of BR and / or styrene content of 30 to 50% by weight, preferably 35 to 45% by weight. Emulsion-polymerized SBR Raw material rubber (B): 1,5-bonded butadiene content 10-5
0% by weight, preferably 12-20% by weight BR

【0018】3)原料ゴム(A):スチレン含量が30
〜50重量%、好ましくは35〜45重量%の乳化重合
SBR 原料ゴム(B):天然ゴム(NR)及び/又はポリイソ
プレンゴム(IR)
3) Raw rubber (A): Styrene content of 30
To 50% by weight, preferably 35 to 45% by weight, emulsion-polymerized SBR material rubber (B): natural rubber (NR) and / or polyisoprene rubber (IR)

【0019】4)原料ゴム(A):1,2結合ブタジエ
ン含量が70重量%以上、好ましくは70〜85重量%
でかつスチレン含量が30重量%以下、好ましくは10
〜20重量%の溶液重合SBR 原料ゴム(B):1,2結合ブタジエン含量が40重量
%以下、好ましくは5〜20重量%でかつスチレン含量
が下式(1)で示される値の溶液重合SBR、スチレン
含量が35重量%以下、好ましくは20〜35重量%の
乳化重合SBR、シス−1,4結合量が95重量%以
上、好ましくは97〜99重量%のBR、及び/又は
1,2結合ブタジエン含量が10〜50重量%、好まし
くは12〜20重量%のBR スチレン含量 < 40−(1,2結合ブタジエン含量)÷3 ---(1)
4) Raw material rubber (A): 1,2-bond butadiene content of 70% by weight or more, preferably 70 to 85% by weight
And a styrene content of 30% by weight or less, preferably 10
˜20 wt% solution polymerization SBR raw rubber (B): 1,2-bond butadiene content is 40 wt% or less, preferably 5 to 20 wt% and styrene content is solution polymerization having a value represented by the following formula (1). SBR, styrene content of 35 wt% or less, preferably 20-35 wt% emulsion-polymerized SBR, cis-1,4 bond content of 95 wt% or more, preferably 97-99 wt% BR, and / or 1, BR styrene content of 2-bond butadiene content of 10 to 50% by weight, preferably 12 to 20% by weight <40- (1,2-bond butadiene content) / 3 --- (1)

【0020】5)原料ゴム(A):1,2結合ブタジエ
ン含量が70重量%以下、好ましくは10〜70重量%
でかつスチレン含量が下式(2)で示される値の溶液重
合SBR 原料ゴム(B):1,2結合ブタジエン含量が40重量
%以下、好ましくは5〜20重量%でかつスチレン含量
が下式(1)で示される値の溶液重合SBR、シス−
1,4結合ブタジエン含量が95重量%以上、好ましく
は97〜99重量%のBR、1,2結合ブタジエン含量
が10〜50重量%、好ましくは12〜20重量%のB
R、NR及び/又はIR スチレン含量 < 40−(1,2結合ブタジエン含量)÷3 --- (1) スチレン含量 > 40−(1,2結合ブタジエン含量)÷3 --- (2)
5) Raw material rubber (A): 1,2-bond butadiene content is 70% by weight or less, preferably 10 to 70% by weight
And the styrene content is a value represented by the following formula (2): SBR raw material rubber (B): 1,2-bond butadiene content is 40% by weight or less, preferably 5 to 20% by weight, and styrene content is Solution polymerized SBR having the value shown in (1), cis-
BR having a 1,4-bonded butadiene content of 95% by weight or more, preferably 97-99% by weight, and B having a 1,4-bonded butadiene content of 10-50% by weight, preferably 12-20% by weight.
R, NR and / or IR Styrene content <40- (1,2-bond butadiene content) / 3 --- (1) Styrene content> 40- (1,2-bond butadiene content) / 3 --- (2)

【0021】これらの5つの好ましい組み合わせのすべ
てにおいて、以下のことが不可欠である。即ち原料ゴム
(A)は、Tgが−40℃〜10℃でかつその量は30
〜90重量部、好ましくは50〜75重量部であること
が必要である。Tgが−40℃未満ではtanδの温度
勾配の改良効果が少なく、10℃を超えるとゴム硬度が
高くなり、タイヤトレッドとして実用的でない。配合量
が90重量部を超えると、tanδの温度勾配の改良効
果に劣り、30重量部未満ではマスターバッチの粘度が
高くなり加工性に劣る。
In all of these five preferred combinations, the following are essential: That is, the raw rubber (A) had a Tg of -40 to 10 ° C and an amount of 30.
˜90 parts by weight, preferably 50 to 75 parts by weight. If Tg is less than -40 ° C, the effect of improving the temperature gradient of tan δ is small, and if it exceeds 10 ° C, the rubber hardness becomes high, which is not practical as a tire tread. If the amount is more than 90 parts by weight, the effect of improving the temperature gradient of tan δ is poor, and if it is less than 30 parts by weight, the viscosity of the masterbatch is high and the workability is poor.

【0022】原料ゴム(B)は、粘弾性的に原料ゴム
(A)と非相溶性でかつ原料ゴム(A)のTgより20
℃以上、好ましくは35〜60℃、低いTgのゴム10
〜40重量部、好ましくは15〜30重量部であること
が必要である。原料ゴム(A)と相溶性であれば補強剤
の偏在が起こらず、Tgの温度差が20℃より小さけれ
ばtanδの温度依存性の改良効果が期待できない。1
0重量部未満では温度依存性の改良効果に劣り、40重
量部を超えると加工性に劣る。
The raw rubber (B) is viscoelastically incompatible with the raw rubber (A) and has a Tg of 20 from the Tg of the raw rubber (A).
Rubber 10 having a low Tg of not less than ℃, preferably 35 to 60 ℃
It is necessary to be -40 parts by weight, preferably 15-30 parts by weight. If it is compatible with the raw rubber (A), uneven distribution of the reinforcing agent does not occur, and if the temperature difference of Tg is less than 20 ° C., the effect of improving the temperature dependence of tan δ cannot be expected. 1
If it is less than 0 part by weight, the effect of improving the temperature dependence is poor, and if it exceeds 40 parts by weight, the workability is poor.

【0023】原料ゴム(C)は、tanδの温度勾配の
改良に悪影響があるためその量が少ない程(0重量部)
好ましく、加工性や物性の調整のために必要最小限用い
るべきである。原料ゴム(C)は原料ゴム(A)のTg
等しいかもしくはそれ以下のTgの原料ゴム0〜30
重量部であることが要求され、粘弾性的相溶性には特に
制限がなくNR、IR、SBR、BR、イソプレン−イ
ソブチレン共重合ゴム、エチレン−プロピレン−ジエン
共重合ゴム等の汎用ゴムから選ばれる。TgがA群より
高い場合や30重量部以上ではtanδの温度勾配の改
良効果が低減する。
Since the raw material rubber (C) has a bad influence on the improvement of the temperature gradient of tan δ, the smaller the amount is (0 part by weight).
It should preferably be used in the minimum amount necessary for adjusting workability and physical properties. Raw rubber (C) is Tg of raw rubber (A)
Raw rubber having Tg equal to or less than
It is required to be parts by weight, and the viscoelastic compatibility is not particularly limited, and is selected from general-purpose rubbers such as NR, IR, SBR, BR, isoprene-isobutylene copolymer rubber, ethylene-propylene-diene copolymer rubber and the like. . When Tg is higher than that of Group A or when the content is 30 parts by weight or more, the effect of improving the temperature gradient of tan δ is reduced.

【0024】低Tgの原料ゴム(B)とカーボンブラッ
クを予め混合した後、高Tgの原料ゴムを混合した場合
のもう一つの問題点は、混合中に後から添加する高Tg
成分である原料ゴム(A)にカーボンブラックが部分的
に移行するため偏在が充分起こらない場合があり、この
時tanδの温度勾配の改良効果は低減する。その原因
は最初の混合工程でカーボンブラックと原料ゴム分子と
の間の結合が充分できていない場合と、後から添加する
原料ゴムの方がカーボンブラックとの親和性が高い場合
である。
Another problem in the case where the raw rubber (B) having a low Tg and the carbon black are mixed in advance and then the raw rubber having a high Tg is mixed is that the high Tg added later during the mixing.
Since carbon black partially migrates to the raw material rubber (A) as a component, uneven distribution may not occur sufficiently. At this time, the effect of improving the tan δ temperature gradient is reduced. The cause is that the bond between the carbon black and the raw rubber molecule is not sufficiently formed in the first mixing step, and the raw rubber added later has a higher affinity with the carbon black.

【0025】バウンドラバー生成量で確認されるよう
に、カーボンブラックと原料ゴム分子の結合は混合中の
熱により強固になるため高温で混合するのが好ましい。
本発明の効果を出すためには130〜200℃、好まし
くは150〜190℃の温度で10秒以上、好ましくは
10〜60秒混合する。混合温度が130℃未満では結
合が不充分であり、200℃を超えると熱による劣化の
ため加硫ゴムの強度の低下が著しくなる。密閉型ミキサ
ーによる混合では混合時間と共に温度が上昇して混合温
度は一定でないが、所定の温度に到達すると10秒程度
の短時間で原料ゴムとカーボンブラック結合が完了す
る。即ち最初の混合工程として原料ゴム(A)と、任意
的な成分である原料ゴム(C)と補強剤とが密閉型ミキ
サー内で必要温度範囲に10秒以上保たれておれば良
い。その後原料ゴム(B)と残りの補強剤の混合は、最
初の混合工程に引き続いてミキサー内に追加投入して行
っても良いし、最初の混合物をミキサーから放出冷却し
たマスターバッチを用い密閉型ミキサーやオープンロー
ルで行っても良い。
As confirmed by the amount of bound rubber produced, it is preferable to mix at a high temperature because the bond between the carbon black and the raw rubber molecules becomes strong by the heat during mixing.
In order to obtain the effects of the present invention, the mixture is mixed at a temperature of 130 to 200 ° C., preferably 150 to 190 ° C. for 10 seconds or more, preferably 10 to 60 seconds. If the mixing temperature is lower than 130 ° C, the bonding is insufficient, and if it exceeds 200 ° C, the strength of the vulcanized rubber is remarkably lowered due to deterioration due to heat. In mixing with an internal mixer, the temperature rises with mixing time and the mixing temperature is not constant, but when it reaches a predetermined temperature, the raw material rubber and carbon black bonding are completed in a short time of about 10 seconds. That is, in the first mixing step, the raw rubber (A), the raw rubber (C) which is an optional component, and the reinforcing agent may be kept in the required temperature range for 10 seconds or more in the closed mixer. After that, the raw material rubber (B) and the remaining reinforcing agent may be mixed by additionally charging the mixture into the mixer subsequent to the first mixing step, or by using a masterbatch in which the first mixture is discharged and cooled from the mixer. You may go with a mixer or open roll.

【0026】原料ゴムと補強剤の親和性は原料ゴムの種
類により異なり、例えばNR、IR、BRはSBRに比
べて分子中の二重結合量が多いため補強剤との親和性が
高い。最も効果があるのは末端変成と称されている官能
基の導入である。末端変成とは例えば特開昭64−60
604号公報に記載のように、原料ゴム分子の合成末端
のアルカリ金属又はアルカリ土類金属を分子中にN−メ
チル−2−ピロリドンのような−CO−N<もしくは−
CS−N<結合を有する化合物と反応させる操作であ
る。合成末端の変成率が高い程効果があり、通常20%
以上の変成率のものが使用される。末端変成された原料
ゴムは混合中にカーボンブラック表面に優先的に結合す
ると考えられている。従って原料ゴム(A)が補強剤と
の親和性が高い場合は追加する原料ゴム(B)に補強剤
が移行する恐れは少ないが、逆の場合は最初の混合工程
の温度を上げてバウンドラバーを充分発達させないと本
発明の効果が充分発揮されない場合がある。このように
原料ゴム(A)として末端変成したゴムを使用すること
により本発明はより効果的となる。
The affinity between the raw material rubber and the reinforcing agent differs depending on the type of the raw material rubber. For example, NR, IR and BR have a large amount of double bonds in the molecule as compared with SBR and thus have a high affinity with the reinforcing agent. Most effective is the introduction of a functional group called terminal modification. Terminal modification is, for example, JP-A-64-60.
As described in JP-A No. 604, an alkali metal or alkaline earth metal at the synthetic end of a raw rubber molecule is incorporated into the molecule, such as N-methyl-2-pyrrolidone such as -CO-N <or-.
It is an operation of reacting with a compound having CS-N <bond. The higher the rate of modification of the synthetic end, the more effective it is.
The above metamorphic rate is used. It is believed that the end-modified raw rubber preferentially bonds to the carbon black surface during mixing. Therefore, when the raw material rubber (A) has a high affinity with the reinforcing agent, there is little risk of the reinforcing agent migrating to the additional raw material rubber (B), but in the opposite case, the temperature of the first mixing step is increased and the bound rubber is increased. The effect of the present invention may not be sufficiently exerted unless it is sufficiently developed. As described above, the present invention becomes more effective by using the rubber whose end is modified as the raw material rubber (A).

【0027】補強剤としては一般にはカーボンブラック
であるが、ホワイトカーボンの場合でもカーボンブラッ
クと同様の原料ゴム選択と混合方法を行えば良いが、ホ
ワイトカーボン(シリカ)の場合には一般にはシランカ
ップリング剤を併用するが、かかる配合では分散性や耐
摩耗性向上のため最初の混合工程でホワイトカーボンと
共に混合する必要がある。補強剤の配合量は60〜10
0重量部が好ましく、この配合量が60重量部未満では
tanδの温度依存性が劣り、逆に100重量部を超え
ると加工性や破断強度が低下する。また原料ゴム(A)
及び(C)を混合するときに、補強剤総量の80%以上
を混合することが必要であり、原料ゴム(B)と混合す
る残りの補強剤が多くなるに従いtanδの温度勾配の
改良効果は低下する。
Carbon black is generally used as the reinforcing agent, but in the case of white carbon, the same raw rubber selection and mixing method as for carbon black may be used, but in the case of white carbon (silica), it is generally a silane cup. A ring agent is used in combination, but in such a formulation, it is necessary to mix it with white carbon in the first mixing step in order to improve dispersibility and abrasion resistance. The amount of the reinforcing agent is 60 to 10
0 parts by weight is preferable, and when the content is less than 60 parts by weight, the temperature dependence of tan δ is poor, and conversely, when it exceeds 100 parts by weight, workability and breaking strength are lowered. Raw rubber (A)
When mixing (C) and (C), it is necessary to mix 80% or more of the total amount of the reinforcing agent, and as the amount of the remaining reinforcing agent mixed with the raw material rubber (B) increases, the effect of improving the temperature gradient of tan δ is descend.

【0028】本発明のゴム組成物には前記した成分
(A)及び(B)並びに任意的な成分(C)の原料ゴ
ム、並びに補強剤の必須成分に加えて、硫黄、加硫促進
剤、老化防止剤、充填剤、軟化剤、可塑剤などのタイヤ
用などのゴム組成物に一般に配合されている各種添加剤
を配合することができ、かかる添加剤の配合量や配合方
法には特に限定はなく、一般的な量及び方法とすること
ができる。
The rubber composition of the present invention contains sulfur, a vulcanization accelerator, in addition to the above-mentioned raw rubbers of the components (A) and (B) and the optional component (C) and the essential components of the reinforcing agent. Various additives that are generally compounded in rubber compositions for tires such as anti-aging agents, fillers, softeners, plasticizers, etc. can be compounded, and the compounding amount and compounding method of such additives are particularly limited. Rather, it can be a conventional amount and method.

【0029】[0029]

【実施例】以下、実施例によって本発明を更に説明する
が、本発明の範囲をこれらに限定するものではない。
The present invention will be further described below with reference to examples, but the scope of the present invention is not limited thereto.

【0030】例1〜12 1)原料 以下の例において使用した原料は以下に示す市販品を使
用した。 (1)溶液重合BR : 日本ゼオン ニポールBR12
20、Tg=−102℃、シス−1,4結合ブタジエン
含量=98% (2)溶液重合BR : 旭化成 ジエンNF35R、T
g=−90℃、1,2結合ブタジエン含量=13% (3)天然ゴム : TSR20、Tg=−73℃ (4)溶液重合SBR : 旭化成 タフデン1000
R、Tg=−72℃、スチレン含量=18%、1,2結
合ブタジエン含量=9% (5)溶液重合SBR : 日本エラストマー ソルプレ
ン303、Tg=−33℃、スチレン含量=47%、
1,2結合ブタジエン含量=29% (6)乳化重合SBR : 日本ゼオン ニポール952
0、Tg=−32℃、スチレン含量=38%、1,2結
合ブタジエン含量=14%、原料ゴム100重量部に対
しアロマ系プロセスオイル37.5重量部添加の油展品 (7)末端変成した溶液重合SBR : 日本ゼオン ニ
ポールNS116、Tg=−30℃、スチレン含量=2
1%、1,2結合ブタジエン含量=67% (8)溶液重合BR : 日本ゼオン ニポールBR12
40、Tg=−30℃、1,2結合ブタジエン含量=7
0% (9)末端変成した溶液重合SBR : 日本ゼオン ニ
ポールNS110、Tg=−25℃、スチレン含量=1
4%、1,2結合ブタジエン含量=77% (10)カーボンブラック、HAF (11)亜鉛華3号 (12)工業用ステアリン酸 (13)N−フェニル−N′−(1,3−ジメチルブチ
ル)−p−フェニレンジアミン (14)ミクロクリスタリン ワックス (15)アロマ系プロセスオイル (16)5%油処理の粉末硫黄 (17)ジフェニルグアニジン (18)N−シクロヘキシル−2−ベンゾチアジルスル
フェンアミド なお表I〜II中の原料の配合量は重量部で表示した。
Examples 1 to 12 1) Raw materials The raw materials used in the following examples were the commercially available products shown below. (1) Solution polymerization BR: ZEON Nipol BR12
20, Tg = -102 ° C, cis-1,4 bond butadiene content = 98% (2) Solution polymerization BR: Asahi Kasei Diene NF35R, T
g = -90 ° C., 1,2-bond butadiene content = 13% (3) Natural rubber: TSR20, Tg = -73 ° C. (4) Solution polymerization SBR: Asahi Kasei Tuffden 1000
R, Tg = -72 ° C, styrene content = 18%, 1,2-bond butadiene content = 9% (5) Solution polymerization SBR: Nippon Elastomer Sorprene 303, Tg = -33 ° C, styrene content = 47%,
1,2-bond butadiene content = 29% (6) Emulsion polymerization SBR: Nippon Zeon Nipol 952
0, Tg = -32 ° C., styrene content = 38%, 1,2-bond butadiene content = 14%, and oil-extended product (7) end-modified with addition of 37.5 parts by weight of aromatic process oil to 100 parts by weight of raw rubber. Solution polymerization SBR: Nippon Zeon Nipol NS116, Tg = -30 ° C, styrene content = 2
1%, 1,2-bond butadiene content = 67% (8) Solution polymerization BR: Nippon Zeon Nipol BR12
40, Tg = −30 ° C., 1,2-bond butadiene content = 7
0% (9) Solution-modified SBR with terminal modification: Nippon Zeon Nipol NS110, Tg = -25 ° C, styrene content = 1
4%, 1,2-bond butadiene content = 77% (10) Carbon black, HAF (11) Zinc Hua No. 3 (12) Industrial stearic acid (13) N-phenyl-N '-(1,3-dimethylbutyl) ) -P-Phenylenediamine (14) Microcrystalline wax (15) Aromatic process oil (16) 5% oil-treated powder sulfur (17) Diphenylguanidine (18) N-cyclohexyl-2-benzothiazylsulfenamide The blending amounts of the raw materials in Tables I to II are shown in parts by weight.

【0031】2)ゴム組成物の調製 最初の混合工程(第一工程)は、原料ゴム(A)及び任
意的な成分である原料ゴム(C)、カーボンブラック、
酸化亜鉛、ステアリン酸、老化防止剤、ワックス、プロ
セスオイルを1.8リットルの密閉型ミキサーで3〜5
分間混合した。室温の原料を密閉型ミキサー中に投入
し、混合発熱により所定の温度に到達したとき放出し、
8インチのオープンロールでシート状のマスターバッチ
にした。放出温度は165℃に制御した。
2) Preparation of rubber composition In the first mixing step (first step), the raw material rubber (A) and optional raw material rubber (C), carbon black,
Zinc oxide, stearic acid, antioxidant, wax, process oil in a 1.8 liter closed mixer for 3-5
Mix for minutes. Put the room temperature raw material into a closed mixer, and release when a predetermined temperature is reached by mixing heat generation,
An 8-inch open roll was used to form a sheet-shaped master batch. The release temperature was controlled at 165 ° C.

【0032】追加の混合工程(第二工程)は、マスター
バッチと原料ゴム(B)を1.8リットルの密閉型ミキ
サーに投入し2分間混合したのち放出し、8インチのオ
ープンロールで硫黄、加硫促進剤を加え混練しゴム組成
物とした。放出温度は115〜125℃であった。
In the additional mixing step (second step), the masterbatch and the raw material rubber (B) were charged into a 1.8 liter closed mixer, mixed for 2 minutes, and then discharged, and sulfur was discharged with an 8-inch open roll. A vulcanization accelerator was added and kneaded to obtain a rubber composition. The release temperature was 115-125 ° C.

【0033】3)加硫ゴムの物性測定 得られたゴム組成物は15×15×0.2cmの金型中で
160℃で20分間加圧加硫しゴムシートを作成した。
破断強度はJIS K6251に基づきダンベル状3号
形にて測定し、値は MPaで表示した。0℃と40℃のt
anδは短冊状のサンプルを用い、20Hz、10±2%
の伸長変形モードで測定した。
3) Measurement of physical properties of vulcanized rubber The obtained rubber composition was vulcanized under pressure at 160 ° C. for 20 minutes in a mold of 15 × 15 × 0.2 cm to prepare a rubber sheet.
The breaking strength was measured with dumbbell-shaped No. 3 based on JIS K6251 and the value was expressed in MPa. 0 ℃ and 40 ℃ t
For an δ, use a strip-shaped sample, 20 Hz, 10 ± 2%
Was measured in the stretch deformation mode.

【0034】表Iの例1(標準例)と例2(実施例)は
原料ゴムに(3)NR、(7)SBRを使用した結果で
あり、(3)NRと(7)SBRは非相溶性である。例
2(実施例)では原料ゴム(A)が(7)SBR、原料
ゴム(B)が(3)NRに相当する。例1、例2共に第
1工程と第2工程の混合量は同一であり、例2では第1
工程で高Tgの原料ゴムが混合され第2工程で低Tgの
原料ゴムが追加される。例1と例2にて得られたゴム組
成物の最終組成は同一であるにもかかわらず、例1のt
anδの温度勾配は2.72であり、低Tgの(3)N
Rを第2工程で追加投入した例2の温度勾配は2.62
となった。本発明のゴム組成物は温度勾配が改良され、
タイヤトレッドとして好ましい特性を備えていることが
わかる。
Example 1 (standard example) and Example 2 (example) in Table I are the results of using (3) NR and (7) SBR as raw material rubbers, and (3) NR and (7) SBR are not It is compatible. In Example 2 (Example), the raw rubber (A) corresponds to (7) SBR and the raw rubber (B) corresponds to (3) NR. In both Example 1 and Example 2, the mixing amounts of the first step and the second step are the same, and in Example 2, the first step
A raw rubber having a high Tg is mixed in the step, and a raw rubber having a low Tg is added in the second step. Although the final compositions of the rubber compositions obtained in Examples 1 and 2 are the same,
The temperature gradient of an δ is 2.72, and the low Tg of (3) N
The temperature gradient of Example 2 in which R was additionally charged in the second step was 2.62.
Became. The rubber composition of the present invention has an improved temperature gradient,
It can be seen that the tire tread has preferable characteristics.

【0035】例3(標準例)と例4(実施例)は原料ゴ
ムに(1)BRと(5)SBRを使用した例であり、
(1)BRと(5)SBRは非相溶である。実施例4で
は原料ゴム(A)が(5)SBR、原料ゴム(B)が
(1)BR、C群が(1)BRに相当する。第2工程で
高Tgの(5)SBRを25重量部投入した例3のta
nδの温度勾配が2.72であるのに対して、同じ25
重量部の追加投入を低Tgの(1)BRとした実施例5
の温度勾配は2.62と改良されている。
Example 3 (standard example) and Example 4 (example) are examples in which (1) BR and (5) SBR were used as raw rubbers.
(1) BR and (5) SBR are incompatible. In Example 4, the raw rubber (A) corresponds to (5) SBR, the raw rubber (B) corresponds to (1) BR, and the group C corresponds to (1) BR. Ta of Example 3 in which 25 parts by weight of (5) SBR having a high Tg was added in the second step
The temperature gradient of nδ is 2.72, while the same 25
Example 5: (1) BR with low Tg was added as an additional charge of parts by weight.
The temperature gradient of is improved to 2.62.

【0036】例5(標準例)と例6(実施例)原料ゴム
に(4)SBRと(9)SBRを使用した例であり、
(4)SBRと(9)SBRは非相溶である。例6では
原料ゴム(A)が(9)SBR、原料ゴム(B)が
(4)SBRに相当する。第1工程ですべてのゴムを投
入した例5に比べ(4)SBRを第2工程で投入した例
6のtanδの温度依存性は小さくなり改良されてい
る。
Example 5 (standard example) and Example 6 (example) are examples in which (4) SBR and (9) SBR were used as raw material rubbers,
(4) SBR and (9) SBR are incompatible. In Example 6, the raw rubber (A) corresponds to (9) SBR and the raw rubber (B) corresponds to (4) SBR. The temperature dependence of tan δ of Example 6 in which (4) SBR was added in the second step was reduced and improved compared to Example 5 in which all the rubber was added in the first step.

【0037】[0037]

【表1】 [Table 1]

【0038】表IIは別な原料ゴムで本発明を確認したも
のであり、例7(標準例)と例8(実施例)はゴム組成
物の最終組成は同一であり、同様に例9(標準例)と例
10(実施例)、また例11(標準例)と例12(実施
例)も同一組成である。例8ではA群が(8)BR、B
群が(1)BRに相当し、実施例10ではA群が(6)
SBR、B群が(2)BRに相当し、実施例12ではA
群が(6)SBR、B群が(3)NRに相当する。本発
明の実施例である例8、例10及び例12はそれぞれの
標準例に対してtanδの温度勾配が改良されているこ
とがわかる。
Table II confirms the present invention with another raw rubber, and Example 7 (standard example) and Example 8 (Example) have the same final rubber composition, and similarly Example 9 ( The standard example) and Example 10 (example), and the example 11 (standard example) and the example 12 (example) have the same composition. In Example 8, the A group is (8) BR, B
The group corresponds to (1) BR, and in Example 10, the group A is (6)
The SBR and B groups correspond to (2) BR, and in Example 12, A
The group corresponds to (6) SBR, and the group B corresponds to (3) NR. It can be seen that the temperature gradient of tan δ is improved in Examples 8, 10 and 12 which are the examples of the present invention with respect to the respective standard examples.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】表I及びIIの結果から明らかなように、
本発明の製造方法によるゴム組成物はtanδが大きく
かつ0℃と40℃の温度依存性が小さい特徴があり、タ
イヤトレッドに用いることにより環境温度が変化しても
路面とのグリップ力が高レベルで安定した特性が得られ
る。
As is clear from the results of Tables I and II,
The rubber composition produced by the production method of the present invention is characterized in that it has a large tan δ and a small temperature dependency between 0 ° C. and 40 ° C., and when it is used for a tire tread, it has a high level of grip with the road surface even if the environmental temperature changes The stable characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】粘弾性的に非相溶性の状態の場合の2種の原料
ゴムからなるゴム組成物の温度とtanδの対数値との
関係を示すグラフ図である。
FIG. 1 is a graph showing a relationship between a temperature and a logarithmic value of tan δ of a rubber composition composed of two kinds of raw rubbers in a viscoelastically incompatible state.

フロントページの続き (56)参考文献 特開 平8−217917(JP,A) 特開 昭50−112445(JP,A) 特開 昭59−27932(JP,A) 特開 昭55−104343(JP,A) 特開 平6−145428(JP,A) 特開 平6−200083(JP,A) 特開 平5−112676(JP,A) 特開 平6−32941(JP,A) 特開 昭62−260843(JP,A) 特開 平5−295174(JP,A) 特開 昭56−110753(JP,A) 特開 昭57−70134(JP,A) 特開 平6−299002(JP,A) 特開 平2−300245(JP,A) 国際公開94/22951(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C08L 9/00 B29B 7/38 C08J 3/20 Continuation of front page (56) Reference JP-A-8-217917 (JP, A) JP-A-50-112445 (JP, A) JP-A-59-27932 (JP, A) JP-A-55-104343 (JP , A) JP-A-6-145428 (JP, A) JP-A-6-200083 (JP, A) JP-A-5-112676 (JP, A) JP-A-6-32941 (JP, A) JP-A-6-32941 (JP, A) 62-260843 (JP, A) JP-A-5-295174 (JP, A) JP-A-56-110753 (JP, A) JP-A-57-70134 (JP, A) JP-A-6-299002 (JP, A) JP-A-2-300245 (JP, A) International Publication 94/22951 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) C08L 9/00 B29B 7/38 C08J 3 / 20

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)ガラス転移温度(Tg)が−40
〜10℃の原料ゴム30〜90重量部並びに(B)粘弾
性的に原料ゴム(A)と非相溶性でかつ原料ゴム(A)
のTgより20℃以上低いTgを有する原料ゴム10〜
40重量部を含んで成る原料ゴム(A)及び(B)の合
計100重量部並びに補強剤60〜100重量部を含む
ゴム組成物を製造するにあたり、原料ゴム(A)と、総
量の80重量%以上の補強剤とを密閉型ミキサー中で1
30〜200℃にて10秒以上混合した後、原料ゴム
(B)と残りの補強剤とを添加混合することを特徴とす
るゴム組成物の製法。
1. A glass transition temperature (Tg) of (A) is -40.
30 to 90 parts by weight of raw material rubber at -10 ° C and (B) raw material rubber (A) which is viscoelastically incompatible with the raw material rubber (A)
Raw rubber 10 having a Tg lower than the Tg of
In producing a rubber composition containing a total of 100 parts by weight of the raw rubbers (A) and (B) containing 40 parts by weight and 60 to 100 parts by weight of the reinforcing agent, the raw rubber (A) and the total amount of 80 parts by weight. % Or more of reinforcing agent in an internal mixer 1
A method for producing a rubber composition, which comprises mixing the raw rubber (B) and the remaining reinforcing agent after mixing for 10 seconds or more at 30 to 200 ° C.
【請求項2】 (C)原料ゴム(A)のTgと等しいか
又はそれ以下のTgを有する原料ゴムを原料ゴム(A),
(B)及び(C)の合計量100重量部当り30重量部
以下を更に原料ゴムとして含む請求項1に記載のゴム組
成物の製法。
2. A raw material rubber having a Tg equal to or lower than the Tg of the raw material rubber (A) (C) is used as the raw material rubber (A),
The method for producing a rubber composition according to claim 1, further comprising 30 parts by weight or less per 100 parts by weight of the total amount of (B) and (C) as a raw rubber.
【請求項3】 原料ゴム(A)が1,2結合ブタジエン
含量が65重量%以上のポリブタジエン(BR)から選
ばれた少なくとも1種のゴムであり、原料ゴム(B)が
シス−1,4結合ブタジエン含量が95重量%以上のB
Rから選ばれた少なくとも1種のゴムである請求項1又
は2に記載のゴム組成物の製法
3. The raw rubber (A) is at least one rubber selected from polybutadiene (BR) having a 1,2-bond butadiene content of 65% by weight or more, and the raw rubber (B) is cis-1,4. B having a bound butadiene content of 95% by weight or more
The method for producing a rubber composition according to claim 1 or 2 , which is at least one rubber selected from R.
【請求項4】 原料ゴム(A)が1,2結合ブタジエン
含量65重量%以上のBR並びにスチレン含量が30〜
50重量%の乳化重合スチレン−ブタジエン共重合体ゴ
ム(SBR)から選ばれた少なくとも1種のゴムであ
り、原料ゴム(B)が1,2結合ブタジエン含量が10
〜50重量%のBRから選ばれた少なくとも1種のゴム
である請求項1又は2に記載のゴム組成物の製法
4. A raw rubber (A) having a 1,2-bond butadiene content of 65% by weight or more and a styrene content of 30 to 30.
It is at least one rubber selected from 50% by weight of emulsion-polymerized styrene-butadiene copolymer rubber (SBR), and the raw rubber (B) has a 1,2-bond butadiene content of 10.
The method for producing a rubber composition according to claim 1 or 2 , wherein the rubber composition is at least one rubber selected from BR of 50 to 50% by weight.
【請求項5】 原料ゴム(A)がスチレン含量が30〜
50重量%の乳化重合SBRから選ばれた少なくとも1
種のゴムであり、原料ゴム(B)が天然ゴム(NR)及
びポリイソプレンゴム(IR)から選ばれた少なくとも
1種のゴムである請求項1又は2に記載のゴム組成物の
製法
5. The raw rubber (A) has a styrene content of 30-.
At least 1 selected from 50% by weight of emulsion-polymerized SBR
The rubber composition according to claim 1 or 2, wherein the raw material rubber (B) is at least one rubber selected from natural rubber (NR) and polyisoprene rubber (IR) .
Manufacturing method .
【請求項6】 原料ゴム(A)が1,2結合ブタジエン
含量が70重量%以上でかつスチレン含量が30重量%
以下の溶液重合SBRから選ばれた少なくとも1種のゴ
ムであり、原料ゴム(B)が1,2結合ブタジエン含量
が40重量%以下でかつスチレン含量が下式(1)で示
される値の溶液重合SBR、スチレン含量が35重量%
以下の乳化重合SBR、シス−1,4結合ブタジエン含
量が95重量%以上のBR及び1,2結合ブタジエン含
量が10〜50重量%のBRから選ばれた少なくとも1
種のゴムである請求項1又は2に記載のゴム組成物の製
。 スチレン含量 < 40−(1,2結合ブタジエン含量)÷3 ---(1)
6. The raw rubber (A) has a 1,2-bond butadiene content of 70% by weight or more and a styrene content of 30% by weight.
A solution having at least one rubber selected from the following solution-polymerized SBR, wherein the raw rubber (B) has a 1,2-bond butadiene content of 40% by weight or less and a styrene content of a value represented by the following formula (1): Polymerized SBR, styrene content 35% by weight
At least one selected from the following emulsion-polymerized SBR, BR having a cis-1,4 bond butadiene content of 95% by weight or more and BR having a 1,2 bond butadiene content of 10 to 50% by weight.
The rubber composition according to claim 1 or 2 , which is a kind of rubber .
Law . Styrene content <40- (1,2 bond butadiene content) / 3 --- (1)
【請求項7】 原料ゴム(A)が1,2結合ブタジエン
含量が70重量%以下でかつスチレン含量が下式(2)
で示される値の溶液重合SBRから選ばれた少なくとも
1種のゴムで、原料ゴム(B)が1,2結合ブタジエン
含量が40重量%以下でかつスチレン含量が下式(1)
で示される値の溶液重合SBR、シス−1,4結合ブタ
ジエン含量が95重量%以上のBR、1,2結合ブタジ
エン含量が10〜50重量%のBR、NR及びIRから
選ばれた少なくとも1種のゴムである請求項1又は2
記載のゴム組成物の製法。 スチレン含量 < 40−(1,2結合ブタジエン含量)÷3 ---(1) スチレン含量 > 40−(1,2結合ブタジエン含量)÷3 ---(2)
7. The raw rubber (A) has a 1,2-bonded butadiene content of 70% by weight or less and a styrene content of the following formula (2).
At least one kind of rubber selected from solution-polymerized SBR having a value represented by the following formula, wherein the raw rubber (B) has a 1,2-bond butadiene content of 40% by weight or less and a styrene content of the following formula (1):
At least one selected from the group consisting of solution-polymerized SBR having a value represented by: BR having a cis-1,4 bond butadiene content of 95% by weight or more, BR having a 1,2 bond butadiene content of 10 to 50% by weight, NR and IR. The rubber of claim 1 or 2 .
A method for producing the rubber composition described . Styrene content <40- (1,2-bond butadiene content) / 3 --- (1) Styrene content> 40- (1,2-bond butadiene content) / 3 --- (2)
【請求項8】 20重量%以上のゴム分子の合成末端の
アルカリ金属又はアルカリ土類金属を分子中に−CO−
N<もしくは−CS−N<結合を有する末端変性化合物
と反応させた溶液重合ゴムから選ばれた少なくとも1種
のゴムを原料ゴム(A)の少なくとも一部に用いる請求
項1〜4及び6〜7のいずれか1項に記載の製法により
製造されたゴム組成物
8. An alkali metal or alkaline earth metal at the synthetic end of 20% by weight or more of a rubber molecule is used in the molecule of --CO--.
At least one rubber selected from a solution-polymerized rubber reacted with an end-modified compound having an N <or -CS-N <bond is used as at least a part of the raw rubber (A). By the manufacturing method according to any one of 7
The manufactured rubber composition .
JP02061295A 1994-12-16 1995-02-08 Rubber composition and method for producing the same Expired - Fee Related JP3392249B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP02061295A JP3392249B2 (en) 1994-12-28 1995-02-08 Rubber composition and method for producing the same
DE69510756T DE69510756T2 (en) 1994-12-16 1995-12-15 Rubber mixture, process for its production and use
EP95119866A EP0717075B1 (en) 1994-12-16 1995-12-15 Rubber composition, process for producing thereof and use thereof
US08/932,302 US5834552A (en) 1994-12-16 1997-09-17 Rubber composition and process for producing thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-328868 1994-12-28
JP32886894 1994-12-28
JP02061295A JP3392249B2 (en) 1994-12-28 1995-02-08 Rubber composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08231766A JPH08231766A (en) 1996-09-10
JP3392249B2 true JP3392249B2 (en) 2003-03-31

Family

ID=26357582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02061295A Expired - Fee Related JP3392249B2 (en) 1994-12-16 1995-02-08 Rubber composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP3392249B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369547B2 (en) * 1999-02-02 2009-11-25 株式会社ブリヂストン Heavy duty pneumatic tire
JP4435335B2 (en) * 1999-07-26 2010-03-17 住友ゴム工業株式会社 Rubber composition for tire tread
JP4606549B2 (en) * 2000-06-01 2011-01-05 住友ゴム工業株式会社 Kneading method
JP4721900B2 (en) * 2003-10-29 2011-07-13 旭化成ケミカルズ株式会社 Rubber composition for footwear
JP4595424B2 (en) * 2004-07-27 2010-12-08 横浜ゴム株式会社 Rubber composition for tire and method for producing the same
JP5073189B2 (en) * 2005-09-20 2012-11-14 住友ゴム工業株式会社 Method for producing rubber composition and rubber composition obtained thereby
JP5095093B2 (en) * 2005-09-20 2012-12-12 住友ゴム工業株式会社 Method for producing rubber composition and rubber composition obtained thereby
JP2009079079A (en) * 2007-09-25 2009-04-16 Toyo Tire & Rubber Co Ltd Rubber composition for highly damping rubber and highly damping rubber
RU2603370C2 (en) 2011-08-03 2016-11-27 Сумитомо Раббер Индастриз, Лтд. Rubber mixture and pneumatic tyre
KR20140097219A (en) 2011-11-24 2014-08-06 스미토모 고무 고교 가부시키가이샤 Rubber composition, and pneumatic tire
WO2013077015A1 (en) 2011-11-24 2013-05-30 住友ゴム工業株式会社 Rubber composition and pneumatic tire
KR20140097220A (en) 2011-11-24 2014-08-06 스미토모 고무 고교 가부시키가이샤 Rubber composition, and pneumatic tire
CN103917588B (en) 2011-11-24 2016-02-17 住友橡胶工业株式会社 Rubber combination and pneumatic tyre
WO2013099324A1 (en) * 2011-12-26 2013-07-04 住友ゴム工業株式会社 Rubber composition and pneumatic tire
WO2013099325A1 (en) * 2011-12-26 2013-07-04 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP6470015B2 (en) * 2014-11-05 2019-02-13 住友ゴム工業株式会社 Method for producing rubber composition and masterbatch
JP6724558B2 (en) * 2016-05-30 2020-07-15 住友ゴム工業株式会社 Method for producing rubber composition for tire
JP6434585B1 (en) * 2017-08-22 2018-12-05 住友ゴム工業株式会社 Pneumatic tire
JP2019089911A (en) * 2017-11-13 2019-06-13 株式会社ブリヂストン Rubber composition for tire and tire

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645936B2 (en) * 1974-02-18 1981-10-29
JPS592694B2 (en) * 1979-02-05 1984-01-20 日本ゼオン株式会社 Method for producing rubber composition for tire tread
JPS56110753A (en) * 1980-02-08 1981-09-02 Bridgestone Corp Rubber composition for tire
JPS5770134A (en) * 1980-10-17 1982-04-30 Asahi Chem Ind Co Ltd Raw material composition for rubber
JPS5927932A (en) * 1982-08-06 1984-02-14 Bridgestone Corp Production of tire-tread rubber composition
JPS62260843A (en) * 1986-05-07 1987-11-13 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2731863B2 (en) * 1989-05-15 1998-03-25 日本ゼオン株式会社 Rubber composition
JP3189127B2 (en) * 1991-10-23 2001-07-16 横浜ゴム株式会社 Pneumatic tire and manufacturing method thereof
JP3220507B2 (en) * 1992-04-23 2001-10-22 旭化成株式会社 Rubber-like polymer composition
JP3211982B2 (en) * 1992-07-20 2001-09-25 ジェイエスアール株式会社 Method for producing rubber composition
JPH06145428A (en) * 1992-11-10 1994-05-24 Yokohama Rubber Co Ltd:The Pneumatic tire and its production
JPH06200083A (en) * 1992-12-28 1994-07-19 Yokohama Rubber Co Ltd:The Rubber composition for tire tread and its production
WO1994022951A1 (en) * 1993-03-30 1994-10-13 Nippon Zeon Co., Ltd. Rubber composition
JP3392456B2 (en) * 1993-04-14 2003-03-31 横浜ゴム株式会社 Rubber composition for tire tread
JP2933500B2 (en) * 1994-12-16 1999-08-16 横浜ゴム株式会社 Rubber composition and method for producing the same

Also Published As

Publication number Publication date
JPH08231766A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
JP3392249B2 (en) Rubber composition and method for producing the same
JP6228157B2 (en) Rubber composition and pneumatic tire
JP5559234B2 (en) Rubber composition for tire and pneumatic tire
JP5767753B2 (en) Rubber composition for tire and pneumatic tire
JP3989372B2 (en) Rubber composition
JP4372171B2 (en) Rubber composition for tire tread
JP6091511B2 (en) Modified rubber masterbatch, rubber composition, vulcanized rubber produced using the same, and method for preparing the same
EP1277797B1 (en) Process for production of rubber composition
JP2012111795A (en) Rubber composition for base tread, and pneumatic tire
JP2004091505A (en) Rubber composition for tire tread and tire using the same
US5834552A (en) Rubber composition and process for producing thereof
JP3992523B2 (en) Rubber composition
JP2933500B2 (en) Rubber composition and method for producing the same
WO2007088771A1 (en) Oil-extended natural rubber, method for producing same, rubber composition using same and tire
US8772374B2 (en) Preparation of silica reinforced rubber composition and tire with component thereof
JPWO2003060004A1 (en) Rubber composition
JP2019151743A (en) Rubber composition for tire
JP3996777B2 (en) Tread rubber for tires
JPH0967469A (en) Production of rubber composition
JPH11209519A (en) Rubber composition for tire tread
JP4067151B2 (en) Rubber composition for tire
US20040082702A1 (en) Rubber with polyethylene and phenylene bismaleimide and tire with component thereof
JP3228913B2 (en) Method for producing rubber composition
JP3392246B2 (en) Rubber composition and method for producing the same
JP4540198B2 (en) Rubber composition for tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees