JP3389353B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JP3389353B2
JP3389353B2 JP26270394A JP26270394A JP3389353B2 JP 3389353 B2 JP3389353 B2 JP 3389353B2 JP 26270394 A JP26270394 A JP 26270394A JP 26270394 A JP26270394 A JP 26270394A JP 3389353 B2 JP3389353 B2 JP 3389353B2
Authority
JP
Japan
Prior art keywords
amount
internal resistance
electric double
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26270394A
Other languages
Japanese (ja)
Other versions
JPH08124806A (en
Inventor
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP26270394A priority Critical patent/JP3389353B2/en
Publication of JPH08124806A publication Critical patent/JPH08124806A/en
Application granted granted Critical
Publication of JP3389353B2 publication Critical patent/JP3389353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: To obtain an electric double-layer capacitor having the energy density equal to a secondary battery by a method wherein, using the quantity of electrolyte of the concentration corresponding to the ion quantity same as the ion quantity of electrolyte of concentration with which internal resistance increases by the decrease in ion quantity, the quantity of filling of an electrode, corresponding to the difference of the above-mentioned two quantities, is increased. CONSTITUTION: The first quantity of the first concentration electrolyte, which gives the quantity of ion into the electrolyte with which constant internal resistance can be maintained within the range of the operating voltage, is used in the title electric double-layer capacitor. At this point, the second quantity of electrolyte of the first concentration, corresponding to the quantity of the ion quantity equal to the ion quantity of the electrolyte of the second concentration with which the internal resistance increases due to the decrease in ion quantity in the range of operating voltage, is used and the amount of electric charge of the electrode, in the quantity corresponding to the difference between the first quantity and the second quantity, is increased. To be more precise, a charging current is fed to the capacitor block 3, on which a number of capacitors are series-parallel arranged, from an AC power source 1 through a charger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層コンデンサ
に関し、とくに静電容量が大きくエネルギ密度が大きな
電力用蓄電システムを実現可能な電気二重層コンデンサ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor capable of realizing a power storage system having a large capacitance and a large energy density.

【0002】[0002]

【従来の技術】電気二重層コンデンサはICメモリのバ
ックアップ用などから実用化されたが、その応用分野は
電力用にも広がりつつある。しかし、これまでに開発さ
れた電気二重層コンデンサは体積、あるいは重量当りに
貯蔵できる電力量、つまりエネルギ密度は二次電池に及
ばず、とくに電力用としては専らその低い内部抵抗を利
用して、瞬間的に大電流を流すといった用途に利用され
ようとしている。電気二重層コンデンサの内部抵抗を、
電力用の二次電池、例えば鉛電池と同程度あるいはそれ
以下の水準に低く維持することは容易である。しかしこ
の低い内部抵抗に保ったままで、同時に静電容量を鉛電
池と同一水準のエネルギ密度に達するまで増加すること
は困難であり、このため二次電池の補強に用いることは
できても、主電池として二次電池にとって代わることは
不可能であった。
2. Description of the Related Art Electric double layer capacitors have been put to practical use for backup of IC memories and the like, but the field of application thereof is expanding to electric power. However, the electric double layer capacitors that have been developed so far do not have the electric energy that can be stored per volume or weight, that is, the energy density, does not reach that of the secondary battery, and especially for electric power, its low internal resistance is used exclusively, It is about to be used for the purpose of passing a large current instantaneously. The internal resistance of the electric double layer capacitor
It is easy to maintain the battery as low as a secondary battery for electric power, for example, a lead battery, or at a lower level. However, it is difficult to increase the electrostatic capacity at the same time while maintaining this low internal resistance until reaching the same level of energy density as that of the lead battery. Therefore, although it can be used to reinforce the secondary battery, It was impossible to replace the secondary battery as a battery.

【0003】[0003]

【発明が解決しようとする課題】本発明は、二次電池と
同等のエネルギ密度の大きな電気二重層コンデンサを得
ることを課題とするものであり、電力用システムの実現
可能な電気二重層コンデンサを得ること課題とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to obtain an electric double layer capacitor having a large energy density equivalent to that of a secondary battery. It is a task to obtain.

【0004】[0004]

【課題を解決するための手段】本発明は、電気二重層コ
ンデンサにおいて、コンデンサの動作電圧範囲内で一定
の内部抵抗を保持することが可能な電解液中のイオン量
を与える第1の濃度の電解液の第1の量を使用した電気
二重層コンデンサに対して、動作電圧範囲内においてイ
オン量の減少により内部抵抗が増加する第2の濃度の電
解液のイオン量と等しいイオン量に相当する量の第1の
濃度の電解液の第2の量を使用し、第1の量と第2の量
の差に相当する量の電極の充填量を増加させた電気二重
層コンデンサである。また、完全な放電状態での内部抵
抗に対して、充電の進行に伴い1.5倍以上内部抵抗が
増加する電気二重層コンデンサである。
SUMMARY OF THE INVENTION The present invention is directed to an electric double layer capacitor of a first concentration that provides an amount of ions in an electrolytic solution capable of maintaining a constant internal resistance within the operating voltage range of the capacitor. For an electric double layer capacitor using a first amount of electrolyte, it corresponds to an ion amount equal to the ion amount of a second concentration electrolyte solution in which the internal resistance increases due to a decrease in ion amount within the operating voltage range. An electric double layer capacitor in which a second amount of an electrolyte solution having a first concentration is used, and an electrode filling amount is increased by an amount corresponding to a difference between the first amount and the second amount. Further, it is an electric double layer capacitor in which the internal resistance increases 1.5 times or more as the charging progresses with respect to the internal resistance in a completely discharged state.

【0005】電気二重層コンデンサを、電力用蓄電装置
として二次電池と同等な使い方ができるエネルギ密度を
獲得するためには、 耐電圧と実際の使用電圧を高める 内部抵抗を高めても静電容量を大きくする 内部抵抗が高くても使える方法を作る 等の方法が考えられ、本発明者は電力用システムを実現
するために様々な提案を行ってきた。本発明の電気二重
層コンデンサは、前記のの項目に関するものである
が、コンデンサに貯えられる電気エネルギEcは、 Ec=V2C/2 で表され、充電電圧Vの二乗と静電容量Cの積に比例
し、前記の各項目は相互に関係が深いものである。
In order to obtain an energy density in which an electric double layer capacitor can be used as a power storage device in the same manner as a secondary battery, in order to obtain an energy density, the withstand voltage and the actual operating voltage should be increased, and the internal resistance should be increased. A method such as making a method that can be used even if the internal resistance is high is considered, and the present inventor has made various proposals for realizing a power system. The electric double layer capacitor of the present invention relates to the above items, and the electric energy Ec stored in the capacitor is represented by Ec = V 2 C / 2, and the square of the charging voltage V and the electrostatic capacitance C In proportion to the product, the above items are closely related to each other.

【0006】まずでは、電気二重層コンデンサの耐電
圧を高める種々の方策を用いるとともに、本発明者の発
明による特開平5−292683号に記載の方法のよう
に、必要な場合にだけ充電電圧を高める方法などにより
従来より高い電圧で使用する。 つぎに、の静電容量
の増大が本発明の関与する部分である。しかし、従来の
二次電池のような使い方をしたのでは、容量が大きくて
も内部抵抗が高いと電力を取り出す際に損失が大きく、
利用できる電力量が減少する。このため、たとえ容量を
大きくすることが可能であっても、内部抵抗の高い電池
は従来は実用価値がなかった。したがって電気二重層コ
ンデンサの場合にも、内部抵抗を高めて容量を増すとい
う技術はこれまでほとんど追求されていない。そこで本
発明ではのように、既に出願済みの内部抵抗が高くて
も使用できる回路方式(特開平5−292684号に記
載)を用いることにより、内部抵抗が大きくても静電容
量が大きな電池であるを組合わせて電気二重層コンデ
ンサの実用エネルギ密度を高めることが可能となる。
First, various measures are taken to increase the withstand voltage of the electric double layer capacitor, and the charging voltage is set only when necessary, as in the method described in Japanese Patent Laid-Open No. 5-292683 by the present inventor. It is used at a higher voltage than before by the method of increasing it. Next, the increase of the electrostatic capacitance is a part of the present invention. However, if it is used like a conventional secondary battery, even if the capacity is large, if the internal resistance is high, there is a large loss when extracting power,
The amount of power available is reduced. Therefore, even if the capacity can be increased, a battery having a high internal resistance has not been practically used in the past. Therefore, even in the case of an electric double layer capacitor, a technique of increasing the internal resistance to increase the capacitance has hardly been pursued so far. Therefore, as in the present invention, by using a circuit system (described in Japanese Patent Application Laid-Open No. 5-292688) that can be used even if the internal resistance is already applied, it is possible to use a battery having a large internal resistance even if the internal resistance is large. It is possible to increase the practical energy density of the electric double layer capacitor by combining them.

【0007】電気二重層コンデンサではその電解液中の
イオン量と内部抵抗に密接な関係があることが知られて
いる。例えば、図1は、電解質濃度をパラメータとした
場合の充電電圧と内部抵抗の関係を説明する図である
(平塚和也ほか「電気化学および工業物理化学」59
(7),p607)。この図によれば、測定に使用した
活性炭による分極性電極は、比表面積約1600m2
g のやしがら活性炭にポリテトラフルオロエチレンお
よびカーボンブラックを10%混入した電極材料を、み
かけの密度0.6g/cm3 、充填率32%(すなわち
空隙率68%)となるよう混練延伸したもので、0.8
Mの電解液を用いて得られた静電容量は約13F/cm
3 、単セルの静電容量約0.5F、内部抵抗は約20オ
ームであった。 そして、図1で示されているように、
充電電圧を0→1→2→3Vと高めていくと電解質の濃
度の低いものほど早く、顕著に内部抵抗が増加をはじめ
る。この現象は充電される電気量によって、それに見合
う電解液中のイオンが電極表面あるいはその付近に吸着
されるので、通電の経路である電解液中のイオン量が減
少し、電解液の導電性が低下するために起こる。
It is known that in an electric double layer capacitor, the amount of ions in the electrolytic solution and the internal resistance are closely related. For example, FIG. 1 is a diagram for explaining the relationship between the charging voltage and the internal resistance when the electrolyte concentration is used as a parameter (Kazuya Hiratsuka et al., "Electrochemistry and Industrial Physical Chemistry" 59 ,
(7), p607). According to this figure, the polarizable electrode made of activated carbon used for measurement has a specific surface area of about 1600 m 2 /
An electrode material prepared by mixing 10% of polytetrafluoroethylene and carbon black in 6 g of coconut shell activated carbon was kneaded and stretched to give an apparent density of 0.6 g / cm 3 and a filling rate of 32% (that is, a porosity of 68%). It ’s 0.8
The capacitance obtained using the M electrolyte is about 13 F / cm.
3. The capacitance of the single cell was about 0.5 F, and the internal resistance was about 20 ohms. And, as shown in FIG.
When the charging voltage is increased from 0 → 1 → 2 → 3V, the lower the concentration of the electrolyte is, the faster and the internal resistance starts to increase remarkably. This phenomenon is because, depending on the amount of electricity charged, the corresponding ions in the electrolyte are adsorbed on the electrode surface or in the vicinity thereof, so the amount of ions in the electrolyte, which is the path of energization, decreases, and the conductivity of the electrolyte is reduced. It happens to fall.

【0008】この現象は鉛電池などでも、放電が進んだ
状態、たとえば放電深度75%程度以上から発生し、内
部抵抗が上昇して出力密度が低下する問題点として知ら
れている。しかし電気二重層コンデンサではこの現象
が、エネルギ密度が高く貯蔵したクーロン量の大きなコ
ンデンサほど、しかも充電が進むほど顕著に起こるとい
う、鉛電池とは逆の性状を呈する。
It is known that this phenomenon occurs even in a lead battery or the like when the discharge progresses, for example, when the discharge depth is about 75% or more, the internal resistance increases, and the output density decreases. However, in an electric double layer capacitor, this phenomenon occurs more remarkably in a capacitor having a high energy density and a larger amount of stored Coulomb, and moreover, as the charging progresses, which is the reverse property of a lead battery.

【0009】この問題を解決するため、これまでの電気
二重層コンデンサでは、電解液の濃度を高めるか、イオ
ンの存在する体積を保つために分極性電極の空隙を確保
し、電極の充填率を制限する方向で製作し、動作電圧範
囲における内部抵抗を実質的に一定に保持することが行
われていた。しかし電解液の濃度には限界があり、充填
率を制限した結果、容量が大きくできないというのが従
来の課題であった。
In order to solve this problem, in the conventional electric double layer capacitors, the concentration of the electrolytic solution is increased or the voids of the polarizable electrodes are secured to maintain the volume in which the ions are present, and the filling rate of the electrodes is increased. It was manufactured in a limiting direction to keep the internal resistance substantially constant in the operating voltage range. However, there is a limit to the concentration of the electrolytic solution, and as a result of limiting the filling rate, the conventional problem is that the capacity cannot be increased.

【0010】電極の充填率を高めるためには、電極を高
密度化することが考えられ、粉末状の活性炭と結着用の
合成樹脂成分を成形し熱処理した固体状の活性炭を用い
ることも行われており、単に混練した場合に比べてい電
極の充填率を高めることが知られている。
In order to increase the filling rate of the electrode, it is considered to densify the electrode, and it is also possible to use powdered activated carbon and solid activated carbon obtained by molding and heat-treating a synthetic resin component for binding. It is known that the filling rate of the electrode is increased as compared with the case of simply kneading.

【0011】これに対して、本発明の電気二重層コンデ
ンサは、電解液の量を減少させ、それによって相対的に
電極の充填量を高めるものであり、使用する電極は、粉
体状の活性炭を結着剤と混練したものであっても、粉体
状の活性炭を結着剤とともに成形し、熱処理を行ったも
のでも良い。
On the other hand, the electric double layer capacitor of the present invention reduces the amount of the electrolytic solution, thereby relatively increasing the filling amount of the electrode, and the electrode used is powdered activated carbon. It may be kneaded with a binder, or may be obtained by molding powdered activated carbon together with the binder and heat-treating it.

【0012】また、本発明において、コンデンサの動作
電圧範囲内における一定の内部抵抗を保持することは、
厳密な意味で一定である必要がなく、一般の電気二重層
コンデンサにおける内部抵抗値の変化が示すように、低
電圧と高電圧の動作電圧において50%以下の内部抵抗
の変動を示すものも、本発明において一定の内部抵抗を
保持することに含まれる。また、動作電圧範囲内におい
て内部抵抗が増加しない電解液中のイオン量に対してイ
オン量を減少させ、イオン量の減少を電解液量の減少に
よって実現し、電解液量の減少量に対応して電極の充填
量を増加させるものであるが、内部抵抗を2倍以上増加
させるイオン量の減少とそれに対応した電極の充填量の
増加を行うことが好ましい。
In the present invention, maintaining a constant internal resistance within the operating voltage range of the capacitor is
It does not have to be constant in a strict sense, and as the change of the internal resistance value in a general electric double layer capacitor shows, the one showing the fluctuation of the internal resistance of 50% or less at the operating voltage of the low voltage and the high voltage, This is included in maintaining a constant internal resistance in the present invention. In addition, the amount of ions is reduced with respect to the amount of ions in the electrolytic solution that does not increase the internal resistance within the operating voltage range, and the reduction in the amount of ions is realized by reducing the amount of electrolytic solution. Although the filling amount of the electrode is increased by increasing the filling amount of the electrode, it is preferable to decrease the amount of ions to increase the internal resistance by 2 times or more and increase the filling amount of the electrode correspondingly.

【0013】[0013]

【作用】本発明の電気二重層コンデンサは、充電に伴っ
て内部抵抗が上昇するように、内部抵抗が上昇しない電
気二重層コンデンサに比べて電解液中のイオン量を減少
させ、イオン量の減少を電解液の量の減少によって行
い、電解液の減少量に相当する量の電極の充填量を増加
させることによって電気二重層コンデンサの静電容量を
増加させたものであり、エネルギ密度の大きな電気二重
層コンデンサを実現することができる。
The electric double layer capacitor of the present invention reduces the amount of ions in the electrolytic solution as compared with the electric double layer capacitor in which the internal resistance does not increase so that the internal resistance increases as the battery is charged. Is performed by decreasing the amount of electrolytic solution, and the capacitance of the electric double layer capacitor is increased by increasing the filling amount of the electrode corresponding to the decreasing amount of electrolytic solution. A double layer capacitor can be realized.

【0014】[0014]

【実施例】以下に、本発明の電気二重層コンデンサの設
計方法を示し、本発明を説明する。 図1にその特性を
示した電気二重層コンデンサでは、一般には、内部抵抗
が充電電圧によって変化しない0.8Mの電解液を使用
して作製される。この電気二重層コンデンサにおいて、
電解液中のイオン量を5/8に減少させるために電解液
の量を5/8に減少させ、電解液の減少分に対応して電
極の充填量を増加させると、電気二重層コンデンサの内
部抵抗の特性は、0.5Mの電解液を使用した場合と同
様の挙動を示す。
The present invention will be described below by showing a method for designing an electric double layer capacitor of the present invention. The electric double layer capacitor whose characteristics are shown in FIG. 1 is generally produced by using an electrolytic solution of 0.8M whose internal resistance does not change with charging voltage. In this electric double layer capacitor,
In order to reduce the amount of ions in the electrolytic solution to 5/8, the amount of the electrolytic solution is reduced to 5/8, and the filling amount of the electrodes is increased in accordance with the decreased amount of the electrolytic solution. The characteristics of the internal resistance show the same behavior as when the 0.5 M electrolytic solution is used.

【0015】一方、単位容積における電極の充填量は上
昇するので、電気抵抗は大きくなるものの電気二重層コ
ンデンサの静電容量は増加することとなる。これを具体
的に示すと、0.8Mの電解液を用いた場合の電極の空
隙率が0.68であったので、電解液の減少によって空
隙率は、 0.68*0.5/0.8=0.42 電極の充填率が上昇するので、充填率は、 1−
0.42=0.58 その結果、静電容量は 0.58/
0.32=1.81となり、当初の容量の1.81倍と
なる。これを表にすると、
On the other hand, since the filling amount of the electrode per unit volume increases, the electric resistance increases, but the electrostatic capacitance of the electric double layer capacitor increases. Specifically, since the porosity of the electrode when using the 0.8 M electrolytic solution was 0.68, the porosity was 0.68 * 0.5 / 0 due to the decrease in the electrolytic solution. .8 = 0.42 Since the filling rate of the electrode increases, the filling rate is 1-
0.42 = 0.58 As a result, the capacitance is 0.58 /
0.32 = 1.81, which is 1.81 times the original capacity. If this is made a table,

【0016】[0016]

【表1】 [Table 1]

【0017】さらに、内部抵抗が図1において、0.3
Mの場合まで上昇することを許容する場合には、0.8
Mの電解液を0.3Mの電解液と同じイオン量まで減少
させることができるので、電極の空隙率は
0.68*0.3/0.8=0.26となる。電解液の
減少分を電極の充填で埋めることによって電極の充填率
は、1−0.26=0.74とすることができ、静電容
量は 0.74/0.32=2.31とになる。以上
の関係を表に示すと、
Further, the internal resistance is 0.3 in FIG.
If allowed to rise to M, 0.8
Since the M electrolyte solution can be reduced to the same amount of ions as the 0.3 M electrolyte solution, the porosity of the electrode is
It becomes 0.68 * 0.3 / 0.8 = 0.26. By filling the reduced amount of the electrolytic solution with the filling of the electrode, the filling rate of the electrode can be set to 1-0.26 = 0.74, and the capacitance is 0.74 / 0.32 = 2.31. become. When the above relationship is shown in the table,

【0018】[0018]

【表2】 [Table 2]

【0019】本発明の電気二重層コンデンサは、充電器
によって充電をすると、充電が進みコンデンサの端子電
圧が増加すると、内部抵抗が増加することとなる。そこ
で、このような特性の電気二重層コンデンサから低損失
で電力を取り出すためには、既に特願平5−43467
号として出願済みの電流ポンプと名付けた定電流型スイ
ッチングレギュレータを用いることが必要となる。
When the electric double layer capacitor of the present invention is charged by the charger, the internal resistance increases as the charging proceeds and the terminal voltage of the capacitor increases. Therefore, in order to extract electric power with low loss from an electric double layer capacitor having such characteristics, it has already been proposed in Japanese Patent Application No. 5-43467.
It is necessary to use a constant current type switching regulator named as a current pump, which has been filed as an issue.

【0020】図2に、本発明の電気二重層コンデンサを
使用した電源装置の一例を示す。
FIG. 2 shows an example of a power supply device using the electric double layer capacitor of the present invention.

【0021】交流電源1から充電器2を介して多数のコ
ンデンサを直並列に配置したコンデンサブロック3に充
電電流を供給する。充電器2の出力は、コンデンサブロ
ック3の各単位コンデンサに設けられた並列モニタ4に
よって検出される電圧によって制御される。コンデンサ
からの出力は定電流型のスイッチングレギュレータであ
る電流ポンプ5によって負荷6に安定に供給することが
できる。効率90%の電流ポンプの出力を5V、180
mAの負荷に接続し、図1において、0.5Mの場合と
同様の内部抵抗変化を示すコンデンサ10個を直列に接
続した電源から上記の電流ポンプに電流を供給したとき
の、コンデンサ1個あたりの電圧がそれぞれ1、2およ
び3Vである状態における平均的な値が表3で示され
る。
A charging current is supplied from an AC power source 1 via a charger 2 to a capacitor block 3 in which a large number of capacitors are arranged in series and in parallel. The output of the charger 2 is controlled by the voltage detected by the parallel monitor 4 provided in each unit capacitor of the capacitor block 3. The output from the capacitor can be stably supplied to the load 6 by the current pump 5 which is a constant current type switching regulator. Output of current pump with 90% efficiency is 5V, 180
Per capacitor when connected to a load of mA and supplying current to the above current pump from a power source in which 10 capacitors showing the same internal resistance change as in the case of 0.5 M are connected in series in FIG. Table 3 shows the average values when the voltages of 1, 2, and 3 V are respectively.

【0022】[0022]

【表3】 [Table 3]

【0023】この表から明らかなように、コンデンサを
3Vまで充電した場合、内部抵抗は1Vのとき約3倍に
増加している。しかし電流ポンプに流れこむ電流が、1
Vのときの100mAに対して1/3の33mAとな
り、内部抵抗による損失がI2R で電流の二乗に比例す
るため1Vでの180mWに対して3Vでは55mWと
逆に小さくなる。また、内部抵抗が図1において0.3
Mで示される挙動を示す電気二重層コンデンサを図2で
示される装置において用いた場合の損失を表4で示す。
As is clear from this table, when the capacitor is charged to 3V, the internal resistance increases about 3 times at 1V. However, the current flowing into the current pump is 1
It becomes 33 mA, which is ⅓ of 100 mA at V, and the loss due to internal resistance is proportional to the square of the current at I 2 R, so it decreases to 180 mW at 1 V and 55 mW at 3 V. The internal resistance is 0.3 in FIG.
Table 4 shows the loss when the electric double layer capacitor having the behavior shown by M is used in the device shown in FIG.

【0024】[0024]

【表4】 [Table 4]

【0025】表4の結果でも、内部抵抗の増大した2〜
3Vにおける損失は1Vでの値よりかえって減少してい
る。最大損失が出るのはむしろ低電圧側だから、図1に
おいて、0.3Mの抵抗値の挙動よりもう少し高電圧側
で内部抵抗が増えるコンデンサであっても、損失が最も
大きくなる低電圧側で低い内部抵抗が確保できるなら、
全体として少ない損失で使用し得る。
The results shown in Table 4 also show that the internal resistance increases from 2 to 2.
The loss at 3V is reduced rather than the value at 1V. Since the maximum loss is rather on the low voltage side, in FIG. 1, even if the internal resistance increases a little on the higher voltage side than the behavior of the resistance value of 0.3 M, the loss is low on the low voltage side, which is the largest. If internal resistance can be secured,
It can be used with little loss as a whole.

【0026】[0026]

【発明の効果】活性炭電極を通常では使えないと考えら
れていた領域、電解液通路が狭く充電すると高抵抗にな
って使えないとされている状態にいたるまで、活性炭電
極密度を高めることにより、コンデンサとしての体積当
りの静電容量密度を高めることができ、こうした得られ
た高エネルギ密度のコンデンサから、その内部抵抗が充
電電圧によって変化する特性を利用し、充電電圧が高い
ときは小電流を、低くなると大電流となるようほぼ一定
な電力を充電放電して使用することによりエネルギ密度
の大きなコンデンサが得られる。
EFFECT OF THE INVENTION By increasing the density of the activated carbon electrode until the area where the activated carbon electrode is normally considered unusable, and the state where the electrolytic solution passage is narrow and the resistance becomes high when charged, Capacitance density per volume as a capacitor can be increased, and from the obtained capacitor with high energy density, the characteristic that its internal resistance changes with the charging voltage is used, and a small current is supplied when the charging voltage is high. A capacitor having a large energy density can be obtained by charging and discharging a substantially constant electric power so that a large current is obtained when the electric current becomes low.

【図面の簡単な説明】[Brief description of drawings]

【図1】電気二重層コンデンサの電圧と抵抗の関係を電
解液の濃度をパラメータとして示したものである。
FIG. 1 shows the relationship between voltage and resistance of an electric double layer capacitor, using the concentration of an electrolytic solution as a parameter.

【図2】本発明の電気二重層コンデンサを使用した電源
装置の一例を示す。
FIG. 2 shows an example of a power supply device using the electric double layer capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1…交流電源、2…充電器、3…コンデンサブロック、
4…並列モニタ、5…電流ポンプ、6…負荷
1 ... AC power supply, 2 ... Charger, 3 ... Capacitor block,
4 ... Parallel monitor, 5 ... Current pump, 6 ... Load

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 9/058 H01G 9/038 H01G 9/155 Continuation of front page (58) Fields investigated (Int.Cl. 7 , DB name) H01G 9/058 H01G 9/038 H01G 9/155

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気二重層コンデンサにおいて、コンデ
ンサの動作電圧範囲内で一定の内部抵抗を保持すること
が可能な電解液中のイオン量を与える第1の濃度の電解
液の第1の量を使用した電気二重層コンデンサに対し
て、動作電圧範囲内においてイオン量の減少により内部
抵抗が増加する第2の濃度の電解液のイオン量と等しい
イオン量に相当する量の第1の濃度の電解液の第2の量
を使用し、第1の量と第2の量の差に相当する量の電極
の充填量を増加させたことを特徴とする電気二重層コン
デンサ。
1. An electric double layer capacitor, comprising: a first amount of an electrolyte solution of a first concentration that gives an amount of ions in the electrolyte solution capable of maintaining a constant internal resistance within an operating voltage range of the capacitor. With respect to the electric double-layer capacitor used, the internal resistance increases within the operating voltage range due to the decrease in the amount of ions, and the electrolytic solution of the first concentration has the same amount as the amount of ions of the second concentration electrolyte solution. An electric double layer capacitor, characterized in that a second amount of liquid is used and the filling amount of the electrode is increased by an amount corresponding to the difference between the first amount and the second amount.
【請求項2】 完全な放電状態での内部抵抗に対して、
充電の進行に伴い1.5倍以上内部抵抗が増加すること
を特徴とする請求項1記載の電気二重層コンデンサ。
2. The internal resistance in a completely discharged state,
The electric double layer capacitor according to claim 1, wherein the internal resistance increases 1.5 times or more as the charging progresses.
JP26270394A 1994-10-26 1994-10-26 Electric double layer capacitor Expired - Fee Related JP3389353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26270394A JP3389353B2 (en) 1994-10-26 1994-10-26 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26270394A JP3389353B2 (en) 1994-10-26 1994-10-26 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH08124806A JPH08124806A (en) 1996-05-17
JP3389353B2 true JP3389353B2 (en) 2003-03-24

Family

ID=17379427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26270394A Expired - Fee Related JP3389353B2 (en) 1994-10-26 1994-10-26 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3389353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268995B2 (en) 2005-09-26 2007-09-11 Nisshinbo Industries, Inc. Electric double layer capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024611A (en) * 2004-07-06 2006-01-26 Nisshinbo Ind Inc Electric double layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268995B2 (en) 2005-09-26 2007-09-11 Nisshinbo Industries, Inc. Electric double layer capacitor

Also Published As

Publication number Publication date
JPH08124806A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
Conway et al. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices
Burke R&D considerations for the performance and application of electrochemical capacitors
Burke Ultracapacitors: why, how, and where is the technology
Pell et al. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations
Cultura et al. Modeling, evaluation and simulation of a supercapacitor module for energy storage application
Namisnyk et al. A survey of electrochemical super-capacitor technology
Diab et al. Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications
Conway et al. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices
DE69730413T2 (en) BATTERY CONTROL SYSTEM AND BATTERY SIMULATOR
US20010035739A1 (en) Method for determining the state of charge and loading capacity of an electrical storage battery
JPH0992583A (en) Electric double-layer capacitor
Fărcaş et al. Modeling and simulation of supercapacitors
Reema et al. Comparative analysis of CC-CV/CC charging and charge redistribution in supercapacitors
JP3389353B2 (en) Electric double layer capacitor
JPH11329907A (en) Electric double-layer capacitor
Soni et al. Analysis of battery-super capacitor based storage for electrical vehicle
JP3097585B2 (en) Capacitor charger
JP2001307780A (en) Equivalent circuit for secondary battery, method of detecting power accumulation amount of secondary battery using the same and hybrid power supply device consisting of secondary battery and capacitor
Krishnan et al. State of charge estimation of supercapacitors with fractional order modelling
Puşcaş et al. Thermal and voltage testing and characterization of supercapacitors and batteries
Kirtiwar Ultracapacitor charging methods
Ab Rahim et al. Classical equivalent circuit characterization for a double-layer capacitor
US4301219A (en) Electric storage cell or battery
RU2094880C1 (en) High-specific-energy capacitor
CN218629962U (en) New energy automobile fills electric pile detection circuitry

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021227

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees