JP3385925B2 - Electronic circuit manufacturing method - Google Patents

Electronic circuit manufacturing method

Info

Publication number
JP3385925B2
JP3385925B2 JP21036197A JP21036197A JP3385925B2 JP 3385925 B2 JP3385925 B2 JP 3385925B2 JP 21036197 A JP21036197 A JP 21036197A JP 21036197 A JP21036197 A JP 21036197A JP 3385925 B2 JP3385925 B2 JP 3385925B2
Authority
JP
Japan
Prior art keywords
circuit board
liquid
solder
electronic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21036197A
Other languages
Japanese (ja)
Other versions
JPH1075049A (en
Inventor
薫 片山
洋 福田
伸一 和井
敏彦 太田
泰宏 岩田
貢 白井
光範 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21036197A priority Critical patent/JP3385925B2/en
Publication of JPH1075049A publication Critical patent/JPH1075049A/en
Application granted granted Critical
Publication of JP3385925B2 publication Critical patent/JP3385925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路(LS
I)等の部品と回路基板を接続する電子回路の製造方法
に関し、特に、フラックスを使用せずにハンダ付けで接
続する電子回路の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor integrated circuit (LS).
The present invention relates to a method of manufacturing an electronic circuit for connecting a component such as I) to a circuit board, and particularly to a method of manufacturing an electronic circuit for connecting by soldering without using flux.

【0002】[0002]

【従来の技術】従来、回路基板と半導体集積回路(LS
I)等とをハンダ付けする際は、接合される対象金属の
表面は清浄に保たれ、かつ濡れ性を妨げるような物質が
存在してはならないことが要求される。また、メッキを
施す対象金属の表面にも酸化膜等が存在せず、対象金属
の表面は清浄に保たなければならない。さらに、Au線
やAuリボン等を対象金属の表面に超音波熱加圧方法に
より接合する際にも、対象金属の表面の酸化膜が問題に
なり、対象金属の表面は清浄に保たなければならない。
2. Description of the Related Art Conventionally, a circuit board and a semiconductor integrated circuit (LS)
When soldering I) and the like, it is required that the surfaces of the target metals to be joined be kept clean and that there be no substance that impedes wettability. Further, there is no oxide film on the surface of the target metal to be plated, and the surface of the target metal must be kept clean. Furthermore, when an Au wire, an Au ribbon, or the like is bonded to the surface of the target metal by the ultrasonic thermal pressing method, the oxide film on the surface of the target metal becomes a problem, and the surface of the target metal must be kept clean. I won't.

【0003】こうしたハンダの濡れ性を妨げる物質に
は、酸化物、塩化物、硫化物、炭酸塩、各種有機化合物
等がある。特に、ハンダ付け、メッキ付け、Au線やA
uリボン等の超音波熱加圧接合等の処理プロセスにおけ
る最大の障害は、ハンダ、ニッケル(Ni)、ニッケル
合金(Niと他物質との合金)等の対象金属の表面に存
在する酸化膜である。
Substances which impede the wettability of the solder include oxides, chlorides, sulfides, carbonates and various organic compounds. Especially soldering, plating, Au wire and A
The biggest obstacle in the processing process such as ultrasonic thermal pressure bonding of u ribbon is the oxide film existing on the surface of the target metal such as solder, nickel (Ni), nickel alloy (alloy of Ni and other substances). is there.

【0004】この酸化膜は、一般にフラックスによって
化学的に溶解して液体の化合物に変化させる。これによ
って、対象金属の表面とハンダの金属原子とが外殻の電
子殻を共有する金属結合状態を形成するための直接衝突
の機会が得られ、合金化が可能となる。また、メッキ付
けに対しては、酸化膜を介してはメッキ付けは不可能で
ある。代表的な例として電気メッキがあるが、酸化膜が
絶縁膜となり電気メッキに必要な電気的導通がとれない
ため、メッキ付けが不可能になる。
This oxide film is generally chemically dissolved by a flux and converted into a liquid compound. This provides an opportunity for a direct collision between the surface of the target metal and the metal atom of the solder to form a metal bond state in which the electron shell of the outer shell is shared, and alloying is possible. In addition, plating cannot be performed through an oxide film. There is electroplating as a typical example, but since the oxide film serves as an insulating film and electrical continuity necessary for electroplating cannot be obtained, plating becomes impossible.

【0005】また、置換メッキ付けに対しても、やはり
酸化膜が障害となり、対象金属の表面とメッキ液間の置
換反応が無くなり、メッキ付けが不可能となる。
Further, the oxide film also becomes an obstacle to the displacement plating, and the displacement reaction between the surface of the target metal and the plating solution disappears, making the plating impossible.

【0006】これらのメッキ付けに関しても塩酸等の液
処理による酸化膜除去では、残渣が残ってしまい、接合
の信頼性を低下させる要因となる。そこで、従来からフ
ロン等による洗浄が実施されている。
Also in these plating processes, when the oxide film is removed by a liquid treatment with hydrochloric acid or the like, a residue remains, which becomes a factor of lowering the reliability of bonding. Therefore, cleaning with chlorofluorocarbon or the like has been conventionally performed.

【0007】これに対し、最近では、フラックスとして
アビエチン酸(ロジン)とアジピン酸等を微量使用する
ことにより、フラックス残渣洗浄を不要とする技術開発
が行われているが、接合の信頼性の点で不十分である。
On the other hand, recently, a technical development has been made to eliminate the need for flux residue cleaning by using a trace amount of abietic acid (rosin), adipic acid, etc. as the flux, but the reliability of the bonding is pointed out. Is not enough.

【0008】この技術については、「アルミットテクニ
カルジャーナル19」(1992年)、および「無洗浄
化のためのフラックスの作用機構と問題点について」
((株)日本工業技術開発研究所、窪田 規)に詳しく
説明されている。
Regarding this technique, "Alumint Technical Journal 19" (1992) and "On the action mechanism and problems of the flux for non-cleaning"
(Nori Kubota, Japan Industrial Technology Development Laboratory Co., Ltd.)

【0009】一方、金属材料、鋼材、炭化物等に対し
て、レーザビームを照射することにより、超微細均一組
織あるいは非晶質構造を有し、耐食性、耐摩耗性に優れ
た材料を得るグレージング方法が提案されている。この
グレージング方法は、高温高圧下に晒される金属材料、
例えば自動車タービン用材料等を加工する場合に使用さ
れるもので、例えば「続・レーザ加工」(小林 昭 著
pp164、開発社発行)に論じられている。
On the other hand, a glazing method for obtaining a material having an ultrafine uniform structure or an amorphous structure and having excellent corrosion resistance and wear resistance by irradiating a metal material, steel material, carbide or the like with a laser beam Is proposed. This glazing method is a metal material exposed to high temperature and high pressure,
For example, it is used when processing materials for automobile turbines and the like, and is discussed in, for example, "Continued laser processing" (Kobayashi Akira, pp164, published by a development company).

【0010】また、フラックスや塩酸等を使用しない金
属表面の酸化膜除去方法として、アルゴンスパッタによ
る酸化膜除去方法がある。
Further, as a method for removing an oxide film on a metal surface without using flux, hydrochloric acid or the like, there is an oxide film removing method by argon sputtering.

【0011】この他に、特開昭63−97382号公報
に開示されているように、金属部材のブラスト加工によ
り粗面に形成された表面に、合金元素をメッキした後、
その上にレーザ光を照射してメッキ層を熔融処理するこ
とにより、ピンホールのない密着性の高いコーティング
被膜を形成する技術がある。
In addition to this, as disclosed in Japanese Patent Laid-Open No. 63-97382, after the alloy element is plated on the rough surface formed by the blasting of the metal member,
There is a technique of forming a coating film having high adhesion without pinholes by irradiating a laser beam on the layer and melting the plated layer.

【0012】さらに、特開昭62−256961号公報
に開示されているように、アルミニウムまたはその合金
から成る基材の表面に、陽極酸化被膜を形成することに
より、耐食性が良好で、ハンダ付けが容易な表面処理層
を形成する技術がある。
Further, as disclosed in JP-A-62-256961, by forming an anodized film on the surface of a base material made of aluminum or its alloy, good corrosion resistance and soldering can be achieved. There is a technique for forming an easy surface treatment layer.

【0013】[0013]

【発明が解決しようとする課題】本発明者は、前記従来
技術を検討した結果、以下の問題点を見いだした。
The present inventor has found the following problems as a result of examining the above-mentioned prior art.

【0014】(1)回路基板と集積回路等とをハンダ付
けする際に、そのハンダ付け前にフラックスによって酸
化膜を除去する方法にあっては、フラックスの残渣を洗
浄するプロセスが必ず必要になるという問題がある。ま
た、残渣として残存した酸等による腐食の原因が残ると
いう問題がある。
(1) When soldering a circuit board and an integrated circuit, etc., in the method of removing the oxide film by the flux before the soldering, a process for cleaning the flux residue is indispensable. There is a problem. Further, there is a problem that the cause of corrosion due to the acid remaining as a residue remains.

【0015】さらに、洗浄後の乾燥プロセスが必ず必要
になるという問題がある。
Further, there is a problem that a drying process after cleaning is always required.

【0016】(2)アルゴンスパッタによる酸化膜除去
方法にあっては、真空中での処理が必要になるので、設
備管理が困難なうえ、アルゴンスパッタによって電子部
品もしくは電子装置の能動素子に悪影響を与えてしまう
という問題がある。
(2) In the method of removing an oxide film by argon sputtering, it is necessary to perform the treatment in a vacuum, which makes it difficult to manage the equipment and adversely affects the active element of the electronic component or the electronic device by the argon sputtering. There is a problem of giving it.

【0017】(3)レーザビームを用いるグレージング
方法および特開昭63−97382号公報に開示された
レーザ加工処理方法にあっては、いずれも、高エネルギ
ーのレーザ光によって表面の金属組織を強制的に熔融変
化させ、金属表面の耐摩耗性や緻密性を得るものである
ため、金属表面が固化する過程で酸化膜が成長してしま
うという問題がある。
(3) In both the glazing method using a laser beam and the laser processing method disclosed in Japanese Patent Laid-Open No. 63-97382, the metal structure on the surface is forced by a high energy laser beam. Since it changes the melting point to obtain wear resistance and denseness of the metal surface, there is a problem that an oxide film grows in the process of solidifying the metal surface.

【0018】(4)特開昭62−256961号公報に
開示されている表面処理方法は、酸化膜を除去する技術
ではない。
(4) The surface treatment method disclosed in Japanese Laid-Open Patent Publication No. 62-256961 is not a technique for removing an oxide film.

【0019】本発明の目的は、複雑なプロセスを使用す
ることなく簡単に、かつ電子部品もしくは電子装置に悪
影響を及ぼすことなく金属表面の酸化膜や有機物、カー
ボン等を除去することができる金属表面処理方法を適用
して、フラックスを使用せずにハンダ接続できる電子回
路の製造方法を提供することにある。
An object of the present invention is to easily remove an oxide film, organic matter, carbon, etc. on a metal surface without using a complicated process and without adversely affecting electronic parts or electronic devices. An object of the present invention is to provide a method of manufacturing an electronic circuit which can be soldered without using a flux by applying a processing method.

【0020】[0020]

【課題を解決するための手段】本発明によれば前記目的
は、部品と回路基板をはんだ材で接続する際に、はんだ
材にレーザ光を照射してはんだ材をクリーニングし、前
記部品を前記回路基板上に位置合わせして搭載し、低酸
素濃度雰囲気中ではんだ材を加熱溶融して、部品と回路
基板を接続することにより達成される。
According to the present invention, the above object is to irradiate a laser beam onto the solder material to clean the solder material when connecting the component and the circuit board with the solder material, It is achieved by positioning and mounting on a circuit board, heating and melting a solder material in an atmosphere of low oxygen concentration, and connecting the component and the circuit board.

【0021】[0021]

【作用】前述の手段によれば、はんだ材等の金属表面に
対し、金属表面の組織を変化させるエネルギーより小さ
なエネルギーのレーザ光を照射する。
According to the above-mentioned means, the metal surface of the solder material or the like is irradiated with laser light having an energy smaller than the energy for changing the texture of the metal surface.

【0022】これにより、表面の金属組織は熔融せず、
レーザ光のエネルギーによって表面の金属原子と酸素原
子との結合のみが解かれるので、金属表面の酸化膜が除
去され、また、同時に金属表面の有機物、カーボン等が
除去される。
As a result, the metal structure on the surface does not melt,
Only the bond between the metal atom and the oxygen atom on the surface is released by the energy of the laser light, so that the oxide film on the metal surface is removed, and at the same time, the organic matter, carbon, etc. on the metal surface are removed.

【0023】前記レーザ光を照射する雰囲気は、大気
中、真空中、Heガス中のいずれであっても、問題なく
金属表面酸化膜を除去することができる。
Whether the atmosphere for irradiating the laser beam is air, vacuum or He gas, the metal surface oxide film can be removed without any problem.

【0024】次に、はんだ材で接続される部品と回路基
板を仮固定液で位置合わせした後、低酸素濃度雰囲気中
で前記酸化膜を除去したはんだ材を加熱溶融してはんだ
接続する。これにより、はんだ接続面を酸化させること
なく良好なはんだ接続を実現することができる。
Next, after the parts to be connected with the solder material and the circuit board are aligned with the temporary fixing liquid, the solder material from which the oxide film has been removed is heated and melted in a low oxygen concentration atmosphere for solder connection. Thereby, good solder connection can be realized without oxidizing the solder connection surface.

【0025】[0025]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0026】(実施例1)図1は、本発明による金属表
面処理方法の実施例1を説明するための断面図であり、
1はセラミック基板、2はメタライズ層、3aはハンダ
層、4は酸化膜、5はレーザ光、6はレンズ、7はミラ
ーである。
(Embodiment 1) FIG. 1 is a sectional view for explaining Embodiment 1 of the metal surface treatment method according to the present invention.
1 is a ceramic substrate, 2 is a metallized layer, 3a is a solder layer, 4 is an oxide film, 5 is a laser beam, 6 is a lens, and 7 is a mirror.

【0027】本実施例1の金属表面処理方法は、図1に
示すように、セラミック基板1の上層に形成したメタラ
イズ層2の表面のハンダ層3aの表面の酸化物4(また
は有機物、カーボン等の残渣)を除去する方法である。
前記メタライズ層2は、例えば、チタン(Ti)膜、ニ
ッケル(Ni)膜、ニッケル合金膜等からなる。
As shown in FIG. 1, the metal surface treatment method according to the first embodiment includes an oxide 4 (or an organic substance, carbon, etc.) on the surface of the solder layer 3a on the surface of the metallization layer 2 formed on the ceramic substrate 1. (Residue of) is removed.
The metallized layer 2 is made of, for example, a titanium (Ti) film, a nickel (Ni) film, a nickel alloy film, or the like.

【0028】前記メタライズ層2の表面のハンダ層3a
の表面の酸化物4(または有機物、カーボン等の残渣)
を除去する方法は、前記ハンダ層3aの表面に対し、レ
ンズ6およびミラー7を介してレーザ光5が照射するこ
とにより酸化物4を除去する方法である。
The solder layer 3a on the surface of the metallized layer 2
Surface oxide 4 (or residue of organic matter, carbon, etc.)
Is a method of removing the oxide 4 by irradiating the surface of the solder layer 3a with a laser beam 5 through a lens 6 and a mirror 7.

【0029】図2は、前記ハンダ層3aに代えて、半導
体集積回路(LSI)等の電子装置の製造方法における
ハンダバンプ3bの表面にレンズ6およびミラー7を介
してレーザ光5を照射する本実施例1の変形例である。
FIG. 2 shows that, in place of the solder layer 3a, the surface of the solder bump 3b in the method of manufacturing an electronic device such as a semiconductor integrated circuit (LSI) is irradiated with a laser beam 5 through a lens 6 and a mirror 7. It is a modification of Example 1.

【0030】前記本実施例1において使用されるレーザ
光5は、ハンダ層3a,3bの金属組織を変化させるエ
ネルギーより小さなエネルギーのレーザ光である。詳し
くは、ハンダ層3a,3bの表面のSn原子とO2原子
との結合エネルギーより大きく、Sn-Pb原子同士の
結合エネルギーより小さなエネルギーのレーザ光であ
る。
The laser light 5 used in the first embodiment is a laser light having an energy smaller than the energy for changing the metal structure of the solder layers 3a and 3b. More specifically, the laser light has an energy higher than the binding energy between Sn atoms and O 2 atoms on the surfaces of the solder layers 3a and 3b and lower than the binding energy between Sn-Pb atoms.

【0031】このレーザ光5をハンダ層3a,3bに照
射すると、表面のハンダ層3a,3bは熔融せず、レー
ザ光5のエネルギーによって表面のSn-Pb原子とO2
原子との結合のみが解かれることにより、ハンダ層3
a,3bの表面の酸化膜4が除去される。また、同時に
金属表面の有機物、カーボン等が除去される。
When the laser light 5 is applied to the solder layers 3a and 3b, the solder layers 3a and 3b on the surface do not melt, and the energy of the laser light 5 causes Sn-Pb atoms and O 2 on the surface.
Only the bond with the atom is released, so that the solder layer 3
The oxide film 4 on the surfaces of a and 3b is removed. At the same time, organic matter, carbon, etc. on the metal surface are removed.

【0032】この場合、表面のSn-Pb原子とO2原子
との結合を解くことがレーザ光5を照射する主目的であ
るので、レーザ光5は、例えば、パルス幅が1μs以下
のパルスレーザ光であることが好ましい。
In this case, since the main purpose of irradiating the laser beam 5 is to break the bond between the Sn—Pb atom and the O 2 atom on the surface, the laser beam 5 is, for example, a pulse laser having a pulse width of 1 μs or less. It is preferably light.

【0033】また、パルス幅が1μs以下のパルスレー
ザ光で表面のSn-Pb原子とO2原子との結合を解くこ
とになるので、レーザ光5としては、例えば、波長が短
い(光子エネルギーが高い)エキシマレーザ光が好まし
い。
Further, since the bond between the Sn—Pb atoms and the O 2 atoms on the surface is released by the pulsed laser light having a pulse width of 1 μs or less, the laser light 5 has a short wavelength (photon energy is (High) excimer laser light is preferred.

【0034】前記レーザ光5を照射する雰囲気は、大気
中、真空中、Heガス中のいずれであっても、問題なく
ハンダ層3a,3bの表面の酸化膜4を除去することが
できた。
It was possible to remove the oxide film 4 on the surfaces of the solder layers 3a and 3b without any problem whether the atmosphere for irradiating the laser beam 5 was atmospheric air, vacuum, or He gas.

【0035】図3は、レーザ光照射前のハンダ層3a,
3b表面状態を走査型電子顕微鏡によって観察した写真
であり、図4はその拡大写真である。
FIG. 3 shows the solder layer 3a before laser light irradiation,
3b is a photograph of the surface state of 3b observed by a scanning electron microscope, and FIG. 4 is an enlarged photograph thereof.

【0036】これらの写真からハンダ層3a,3bの表
面に有機物やカーボン等の黒色残渣が確認される。
From these photographs, black residues such as organic substances and carbon are confirmed on the surfaces of the solder layers 3a and 3b.

【0037】図5は、レーザ光照射後のハンダ層3a,
3bの表面状態を同様に走査型電子顕微鏡によって観察
した写真であり、図6はその拡大写真である。この写真
からその酸化膜や有機物、カーボン等の残渣が完全に除
去されていることが確認される。
FIG. 5 shows the solder layers 3a,
3b is a photograph of the surface state of 3b similarly observed by a scanning electron microscope, and FIG. 6 is an enlarged photograph thereof. From this photograph, it is confirmed that the oxide film, organic matter, and residues such as carbon are completely removed.

【0038】図7は、縦軸にSn−Pb表面の酸化膜量
(%)を、横軸に1パルスのレーザ光照射エネルギー密
度(J/cm2)をとり、両者の関係をプロットしたもの
である。この図7からレーザ光照射エネルギー密度0.
5J/cm2〜4.0J/cm2の範囲で未処理の酸化膜量よ
り少ないことが明らかとなっている。その中でも、レー
ザ光照射エネルギー密度1.5J/cm2が最も良好である
ことがわかる。
In FIG. 7, the vertical axis represents the amount of oxide film (%) on the Sn-Pb surface, and the horizontal axis represents the energy density (J / cm 2 ) of laser light irradiation for one pulse. Is. From this FIG. 7, the laser beam irradiation energy density is 0.1.
5 J / cm 2 may be fewer than the oxide film of untreated range ~4.0J / cm 2 has been revealed. Among them, the laser beam irradiation energy density of 1.5 J / cm 2 is the best.

【0039】この場合、縦軸の酸化膜量は、エネルギー
分散X線分光法(EDX)により測定した酸素濃度であ
る。
In this case, the oxide film amount on the vertical axis is the oxygen concentration measured by energy dispersive X-ray spectroscopy (EDX).

【0040】図8は、縦軸にSn−Pb表面の酸化膜量
(%)を、横軸にレーザ光照射エネルギー密度を1.5
(J/cm2)に一定値に保った時の照射回数を示したも
のである。
In FIG. 8, the vertical axis represents the amount of oxide film (%) on the Sn-Pb surface, and the horizontal axis represents the laser beam irradiation energy density of 1.5.
(J / cm 2 ) shows the number of irradiations when kept at a constant value.

【0041】この図8から明らかなように、照射回数が
8回付近で酸化膜量が最小となることがわかる。
As is clear from FIG. 8, the oxide film amount becomes the minimum when the number of irradiations is around 8.

【0042】以上のことから、Sn−Pb表面の酸化膜
量はレーザ光照射エネルギー密度1.5J/cm2で8回照
射する場合が最小になり、ハンダ3a,3bの濡れ性が
向上することがわかる。
From the above, the amount of oxide film on the Sn-Pb surface is minimized when laser light irradiation energy density of 1.5 J / cm 2 is applied eight times, and the wettability of the solders 3a and 3b is improved. I understand.

【0043】図9は、前記ハンダバンプ3bの表面の酸
化膜除去を行い、フラックスのない状態で集積回路(L
SI)8をセラミック基板1の上層に形成したメタライ
ズ層2にハンダ接合した実施例1の要部断面を示すもの
であり、図10は封止キャップ9の部分のハンダバンプ
3bの表面の酸化膜除去を行い、フラックスのない状態
でハンダ接合を実施した半導体装置の要部断面を示すも
のである。
In FIG. 9, the oxide film on the surface of the solder bump 3b is removed, and the integrated circuit (L
FIG. 10 is a cross-sectional view of an essential part of Example 1 in which SI) 8 is solder-bonded to the metallized layer 2 formed on the upper layer of the ceramic substrate 1. FIG. FIG. 3 is a cross-sectional view of a main part of a semiconductor device in which the soldering is performed in the state where no flux is applied.

【0044】(実施例2)図11は、本発明による金属
表面処理方法の実施例2を説明するための断面図であ
る。本実施例2の金属表面処理方法は、図11に示すよ
うに、セラミック基板1の上層に形成したニッケル(N
i)層(もしくはニッケル合金層)2aの表面の酸化物
4(または有機物、カーボン等の残渣)を除去する方法
である。
(Second Embodiment) FIG. 11 is a sectional view for explaining a second embodiment of the metal surface treating method according to the present invention. As shown in FIG. 11, the metal surface treatment method according to the second embodiment is performed by using nickel (N) formed on the upper layer of the ceramic substrate 1.
i) A method of removing the oxide 4 (or a residue such as an organic substance or carbon) on the surface of the layer (or nickel alloy layer) 2a.

【0045】ニッケル(Ni)層(もしくはニッケル合
金層)2aは、一般的に酸化しやすいために、ニッケル
(Ni)層もしくはニッケル合金層2aの表面に簡単に
酸化膜4が形成される。
Since the nickel (Ni) layer (or nickel alloy layer) 2a is generally easily oxidized, the oxide film 4 is easily formed on the surface of the nickel (Ni) layer or nickel alloy layer 2a.

【0046】前記ニッケル層2aの表面の酸化物4を除
去する方法は、前記実施例1と同様に、前記ニッケル層
2aの表面に対し、レンズ6およびミラー7を介してレ
ーザ光5が照射して酸化物4を除去する。
The method of removing the oxide 4 on the surface of the nickel layer 2a is the same as in the first embodiment, in that the surface of the nickel layer 2a is irradiated with the laser beam 5 through the lens 6 and the mirror 7. Oxide 4 is removed.

【0047】図12は、前記ニッケル層2aの同一部分
に対するレーザ光5の照射回数を10回一定として、縦
軸にニッケル2aに形成された酸化膜4の厚さ(単位:
nm)をとり、横軸にレーザ光照射エネルギー密度(J
/cm2)(単位面積当りのレーザ光照射エネルギー)
をとって、両者の関係をプロットした図である。図12
からわかるように、レーザ光5の照射エネルギー密度が
大きくなるにつれ、酸化膜4は除去できることが理解で
きる。
In FIG. 12, the thickness of the oxide film 4 formed on the nickel 2a is shown on the vertical axis (unit:
nm), and the laser beam irradiation energy density (J
/ Cm 2 ) (laser light irradiation energy per unit area)
It is the figure which took and plotted the relationship of both. 12
As can be seen from the above, it can be understood that the oxide film 4 can be removed as the irradiation energy density of the laser light 5 increases.

【0048】さらに、初期酸化膜の厚さが変わっても同
様に酸化膜4を除去することができる。
Further, even if the thickness of the initial oxide film changes, the oxide film 4 can be similarly removed.

【0049】図13は、前記レーザ光5の照射エネルギ
ー密度を0.75(J/cm2)一定として、縦軸にニッ
ケル層2aの表面に形成される酸化膜4の厚さ(単位:
nm)をとり、前記ニッケル層2aの同一部分に対する
レーザの照射回数をとって、両者の関係をプロットした
図である。図13からわかるように、照射回数が多くな
る程、酸化膜の厚さも減少する。
In FIG. 13, the irradiation energy density of the laser beam 5 is constant at 0.75 (J / cm 2 ), and the vertical axis indicates the thickness of the oxide film 4 formed on the surface of the nickel layer 2a (unit:
nm), the number of times of laser irradiation to the same portion of the nickel layer 2a is taken, and the relationship between the two is plotted. As can be seen from FIG. 13, as the number of irradiations increases, the thickness of the oxide film also decreases.

【0050】(実施例3)図14は、本発明による半導
体集積回路(LSI)等の電子装置の製造方法の実施例
3を説明するための断面図である。
(Embodiment 3) FIG. 14 is a sectional view for explaining Embodiment 3 of the method for manufacturing an electronic device such as a semiconductor integrated circuit (LSI) according to the present invention.

【0051】本実施例3の電子装置の製造方法は、図1
4に示すように、セラミック基板1の上層に形成したニ
ッケル(Ni)層(もしくはニッケル合金層)2aの表
面の酸化物(または有機物、カーボン等の残渣)を、前
記実施例1,2の酸化物を除去する方法で除去した後、
メッキ層10を施すものである。前記メッキ付けは、電
気メッキ、無電界メッキ、置換メッキのどれを用いても
よいが、メッキ材は一般に金(Au)を用いて再酸化を
防ぐ。このようにすることにより、メタライズ層のニッ
ケル(Ni)層もしくはニッケル合金層2a上の酸化膜
を除去し、その上層にメッキ層10を施すことによりそ
の再酸化を防止することができる。
The method of manufacturing the electronic device according to the third embodiment is as shown in FIG.
As shown in FIG. 4, the surface oxide of the nickel (Ni) layer (or nickel alloy layer) 2a formed on the upper surface of the ceramic substrate 1 (or the residue such as an organic substance or carbon) is oxidized by the oxidation of the first and second embodiments. After removing by the method of removing things,
The plating layer 10 is applied. For the plating, any of electroplating, electroless plating and displacement plating may be used, but gold (Au) is generally used as a plating material to prevent reoxidation. By doing so, the oxide film on the nickel (Ni) layer or the nickel alloy layer 2a of the metallized layer is removed, and the plating layer 10 is applied on the oxide film, thereby preventing the reoxidation thereof.

【0052】前記本実施例3の再酸化防止手段を具体的
に適用した電子装置の構成断面図を図15に示す。この
具体例の半導体集積回路(LSI)等の電子装置の製造
方法は、図15に示すように、セラミック基板1にメタ
ライズ層のニッケル(Ni)層(もしくはニッケル合金
層)2aを形成し、その上に有機系絶縁層15を形成
し、この有機系絶縁層15に穴をあけて前記ニッケル
(Ni)層2aを露出させ、その露出したニッケル(N
i)層2aの表面の酸化物を、前記実施例1,2の酸化
物を除去する方法で除去した後、再酸化防止用のメッキ
層10を施し、ロウ材(もしくはハンダ材)11で電子
装置の入出力(I/O)ピン12を取り付けるものであ
る。
FIG. 15 is a sectional view showing the configuration of an electronic device to which the reoxidation preventing means of the third embodiment is applied. As shown in FIG. 15, a method for manufacturing an electronic device such as a semiconductor integrated circuit (LSI) of this specific example is such that a nickel (Ni) layer (or a nickel alloy layer) 2a of a metallized layer is formed on a ceramic substrate 1 and the An organic insulating layer 15 is formed on the organic insulating layer 15, and a hole is formed in the organic insulating layer 15 to expose the nickel (Ni) layer 2a.
i) After removing the oxide on the surface of the layer 2a by the method of removing the oxides of the above-described Examples 1 and 2, a plating layer 10 for preventing reoxidation is applied, and a brazing material (or a solder material) 11 is used to remove electrons. The input / output (I / O) pins 12 of the device are attached.

【0053】前記ニッケル合金層2aの表面の酸化物を
除去した後、再酸化防止用のメッキ層10を施すことに
より、半導体集積回路(LSI)等の電子装置の入出力
(I/O)ピン12とセラミック基板1との電気的接続
を良好にすることができる。なお、前記レーザ光5によ
り酸化膜4を除去した後は、約1週間程度なら再酸化防
止用のメッキ(Auメッキ)層10を施さなくてもロウ
材(もしくはハンダ材)11により電子装置の入出力
(I/O)ピン12とセラミック基板1上のニッケル
(Ni)層2aとを電気的に接続することができる。
After removing the oxide on the surface of the nickel alloy layer 2a, a plating layer 10 for preventing reoxidation is applied to the input / output (I / O) pins of an electronic device such as a semiconductor integrated circuit (LSI). The electrical connection between 12 and the ceramic substrate 1 can be improved. After the oxide film 4 is removed by the laser light 5, the brazing material (or solder material) 11 may be used for about 1 week without applying the reoxidation preventing plating (Au plating) layer 10. The input / output (I / O) pin 12 and the nickel (Ni) layer 2a on the ceramic substrate 1 can be electrically connected.

【0054】図16は、前記図15に示す入出力(I/
O)ピン12を用いないで電子装置と直接のロウ材(も
しくはハンダ材)11によりセラミック基板1上のニッ
ケル(Ni)層2aとを電気的接続した場合を示してい
る。従来は必ずフラックス等を用いて接合しているが、
前記本実施例の方法ではフラックス等は不要である。 (実施例4)図17は、本発明による半導体集積回路等
の電子装置の製造方法の実施例4を説明するための図で
あり、(a)図は平面図、(b)図は(a)図のA−A
線で切った断面図である。
FIG. 16 shows the input / output (I / I) shown in FIG.
O) Pin 12 is not used, and an electronic device is directly connected to the nickel (Ni) layer 2a on the ceramic substrate 1 by the brazing material (or solder material) 11 directly. In the past, flux was always used for joining, but
No flux or the like is required in the method of this embodiment. (Embodiment 4) FIGS. 17A and 17B are views for explaining Embodiment 4 of the method for manufacturing an electronic device such as a semiconductor integrated circuit according to the present invention. FIG. 17A is a plan view and FIG. ) AA in the figure
It is sectional drawing cut | disconnected by the line.

【0055】本実施例4の電子装置の製造方法は、図1
7(a),(b)に示すように、有機系絶縁層15の上
層に該有機系絶縁層15と密着性のよい金属膜13(例
えば、クローム(Cr),チタン(Ti)を用いる)を
形成し、その上層に形成したニッケル(Ni)層(もし
くはニッケル合金層)2aの表面の酸化物(または有機
物、カーボン等の残渣)を、前記実施例1,2の酸化物
を除去する方法で除去した後、超音波加熱圧方式を用い
て金(Au)リボンや金(Au)ワイヤ14を接合した
ものである。
The method of manufacturing the electronic device according to the fourth embodiment is shown in FIG.
7 (a) and 7 (b), a metal film 13 (for example, chrome (Cr) or titanium (Ti)) having good adhesion to the organic insulating layer 15 is formed on the upper layer of the organic insulating layer 15. To remove the oxide (or the residue of organic matter, carbon, etc.) on the surface of the nickel (Ni) layer (or nickel alloy layer) 2a formed thereon. Then, the gold (Au) ribbon and the gold (Au) wire 14 are joined by using an ultrasonic heating pressure method.

【0056】通常、ニッケル(Ni)層もしくはニッケ
ル合金層2aでは酸化膜のためこのような接合は困難で
あるが、前記実施例1,2の方法で酸化物を除去するこ
とにより、良好に接合することができる。
Normally, the nickel (Ni) layer or the nickel alloy layer 2a is an oxide film, which makes it difficult to perform such joining. However, by removing the oxide by the methods of the first and second embodiments, good joining is achieved. can do.

【0057】なお、前記実施例においては、表面処理対
象の金属をニッケル(Ni)層2a、ハンダ層3aとし
たが、本発明はこれに限定されるものではなく、酸化膜
や有機物等を除去する必要のある各種の金属に適用する
ことができる。この場合、金属の材質によってレーザ光
のエネルギーを適宜に調節することは言うまでもない。
In the above embodiment, the metal to be surface treated was the nickel (Ni) layer 2a and the solder layer 3a, but the present invention is not limited to this, and oxide films, organic substances, etc. are removed. It can be applied to various metals that need to be processed. In this case, it goes without saying that the energy of the laser light is appropriately adjusted depending on the metal material.

【0058】また、パルスレーザ光を例に挙げたが、金
属組織自体を熔融しないようにする制御手段を付加すれ
ば、CO2レーザ等の波長の長いレーザ光を連続照射す
ることによっても同様の効果が達成できる。
Although pulsed laser light has been taken as an example, if control means for preventing the metal structure itself from being melted is added, the same effect can be obtained by continuously irradiating laser light having a long wavelength such as CO 2 laser. The effect can be achieved.

【0059】なお、レーザ照射によって表面の金属組織
が熔融してしまうことがあり得るが、短時間であれば支
障はない。
It should be noted that the metal structure on the surface may be melted by the laser irradiation, but this is not a problem for a short time.

【0060】(実施例5)図18は本発明の一実施例の
製造装置によりはんだ接続を行う電子部品を仮固定した
回路基板の構成を示す断面図、図19は本発明の一実施
例による電子回路基板の製造装置の構成を示す斜視図、
図20は処理容器の内部構造を示す断面図、図21は電
子部品の仮固定用に使用する液体の例を説明する図であ
る。図18〜図20において、21は電子部品、22は
電子部品21を仮固定する液体、23は接続面、24は
回路基板、25ははんだ材、26は処理容器、27は圧
力制御部、28は酸素濃度モニター部、29は温度制御
部、30は電子回路基板搬送部、31は制御部、32は
被処理電子回路基板、33はカーボンヒータ、34は冷
却板、35はガス導入系、36は真空排気系である。
(Embodiment 5) FIG. 18 is a sectional view showing the structure of a circuit board on which electronic components for solder connection are temporarily fixed by a manufacturing apparatus according to an embodiment of the present invention, and FIG. 19 is according to an embodiment of the present invention. A perspective view showing a configuration of an electronic circuit board manufacturing apparatus,
FIG. 20 is a cross-sectional view showing the internal structure of the processing container, and FIG. 21 is a diagram illustrating an example of a liquid used for temporarily fixing electronic components. 18 to 20, 21 is an electronic component, 22 is a liquid for temporarily fixing the electronic component 21, 23 is a connection surface, 24 is a circuit board, 25 is a solder material, 26 is a processing container, 27 is a pressure control unit, 28 Is an oxygen concentration monitor unit, 29 is a temperature control unit, 30 is an electronic circuit board transfer unit, 31 is a control unit, 32 is an electronic circuit board to be processed, 33 is a carbon heater, 34 is a cooling plate, 35 is a gas introduction system, 36 Is an evacuation system.

【0061】本発明によりはんだ接続が行われる電子部
品と回路基板とによる被処理電子回路基板32は、図1
8に示すように、はんだ材25によるはんだバンプ端子
が設けられているLSI等の電子部品21が、セラミッ
ク、ガラスエポキシ等により形成された回路基板24上
に、電子部品21を仮固定する液体2により仮固定され
て構成される。その際、はんだ接続される回路基板24
に設けられている接続面3と電子部品のはんだ材25と
の位置が一致するように位置合わせされている。
The electronic circuit board 32 to be processed by the electronic component and the circuit board to be soldered according to the present invention is shown in FIG.
As shown in FIG. 8, an electronic component 21 such as an LSI provided with solder bump terminals made of a solder material 25 is a liquid 2 for temporarily fixing the electronic component 21 on a circuit board 24 formed of ceramic, glass epoxy or the like. And is temporarily fixed by. At that time, the circuit board 24 to be soldered
The connection surface 3 provided on the electronic component and the solder material 25 of the electronic component are aligned with each other.

【0062】前述のように電子部品21が回路基板24
に仮固定されている被処理電子回路基板32に対して処
理を行い、電子部品21に設けられているはんだ材25
と回路基板24に設けられている接続面3とをはんだ接
続する本発明の一実施例による電子回路基板の製造装置
は、図19に示すように、図18に示す被処理電子回路
基板に対して加熱、冷却等の処理を行いはんだ接続を行
う処理容器26と、液体22の蒸発速度を制御するため
の圧力制御部27、処理容器26内に形成した低酸素濃
度雰囲気の酸素濃度をモニターする酸素濃度モニター部
28と、被処理電子回路基板32を加熱するカーボンヒ
ータの温度制御部29と、一連の動作を自動処理するた
めの電子回路基板搬送部30と、装置全体の自動制御処
理を行う制御部31とにより構成されている。
As described above, the electronic component 21 is connected to the circuit board 24.
The electronic circuit board 32 that is temporarily fixed to the electronic component 21 is processed and the solder material 25 provided on the electronic component 21 is processed.
An apparatus for manufacturing an electronic circuit board according to an embodiment of the present invention that solder-connects the connection surface 3 provided on the circuit board 24 to the processed electronic circuit board shown in FIG. A processing container 26 that performs processing such as heating and cooling to perform solder connection, a pressure control unit 27 for controlling the evaporation rate of the liquid 22, and an oxygen concentration of a low oxygen concentration atmosphere formed in the processing container 26 are monitored. An oxygen concentration monitor unit 28, a temperature control unit 29 of a carbon heater for heating an electronic circuit board 32 to be processed, an electronic circuit board transfer unit 30 for automatically processing a series of operations, and an automatic control process for the entire apparatus are performed. It is configured by the control unit 31.

【0063】そして、前述した処理容器26内には、図
20に示すように、被処理電子回路基板32を加熱する
ためのカーボンヒータ33と、加熱されたカーボンヒー
タ33と被処理電子回路基板32とを冷却する金属製の
水冷タイプの冷却板34とが配置されており、被処理電
子回路基板32は、カーボンヒータ33上に載置されて
処理される。また、処理容器26には、ガス導入系35
と、真空排気系36とが接続されており、処理容器26
内の処理雰囲気の制御が行われる。なお、前述した密閉
処理容器26とガス導入系35と真空排気系36とカー
ボンヒータ33の加熱手段とが、リフロー加熱装置を構
成している。
As shown in FIG. 20, a carbon heater 33 for heating the electronic circuit board 32 to be processed, the heated carbon heater 33 and the electronic circuit board 32 to be processed are provided in the processing container 26. A metallic water-cooling type cooling plate 34 for cooling the and is disposed, and the to-be-processed electronic circuit board 32 is placed on the carbon heater 33 and processed. Further, the processing container 26 includes a gas introduction system 35.
And the vacuum exhaust system 36 are connected to each other, and the processing container 26
The processing atmosphere inside is controlled. The closed processing container 26, the gas introduction system 35, the vacuum exhaust system 36, and the heating means of the carbon heater 33 constitute a reflow heating device.

【0064】次に、本発明の一実施例による電子回路基
板の製造装置を使用してはんだ接続を行う方法を説明す
る。
Next, a method for solder connection using the electronic circuit board manufacturing apparatus according to the embodiment of the present invention will be described.

【0065】まず、ディスペンサーにより予めコントロ
ールされた量の液体22を回路基板24上に供給する。
この供給量は、はんだ材25と接続面23とを覆い、か
つ、液体22の表面張力等により電子部品21を持ち上
げることのない量に制御される。次に、予めはんだ材2
5が供給されたLSI等の電子部品21と、液体22を
塗布した回路基板24上の接続面23と位置合わせを行
って、電子部品21を回路基板24上に搭載する。 電
子部品21を搭載した回路基板24は、図18に示すよ
うな被処理電子回路基板32となり、この被処理電子回
路基板32は、図19に示す電子回路基板の製造装置の
電子回路基板搬送部30にセットされる。搬送部30に
セットされた被処理電子回路基板32は、処理容器26
内のカーボンヒータ33上にロボットにより移動され
る。この結果、処理容器26内は図20に示すようにな
る。
First, the liquid 22 of a pre-controlled amount is supplied onto the circuit board 24 by the dispenser.
This supply amount is controlled to an amount that covers the solder material 25 and the connection surface 23 and does not lift the electronic component 21 due to the surface tension of the liquid 22 or the like. Next, solder material 2 in advance
The electronic component 21 such as the LSI to which 5 is supplied and the connection surface 23 on the circuit board 24 coated with the liquid 22 are aligned, and the electronic component 21 is mounted on the circuit board 24. The circuit board 24 on which the electronic component 21 is mounted becomes a to-be-processed electronic circuit board 32 as shown in FIG. 18, and this to-be-processed electronic circuit board 32 is an electronic circuit board carrying section of the electronic circuit board manufacturing apparatus shown in FIG. Set to 30. The to-be-processed electronic circuit board 32 set in the transport unit 30 is the processing container 26.
The robot is moved onto the carbon heater 33 inside. As a result, the inside of the processing container 26 becomes as shown in FIG.

【0066】次に、ロータリーポンプ等で構成された真
空排気系36により、処理容器26内のガスを排気し、
流量、圧力を調整することができるガス導入系35によ
り、He、N2 等の非酸化性ガス又は、H2 とN2 を混
合した還元性ガス等を導入して、処理容器26の内部を
一度大気圧にまで戻す。このとき、酸素濃度モニター部
28により処理容器26内の酸素濃度を測定し、酸素濃
度が所定の濃度(好ましくは10ppm以下)まで下が
らない場合、前述の真空排気とガス導入とを所定の低酸
素濃度雰囲気を形成するまで繰り返す。低酸素濃度雰囲
気は、加熱中の被処理電子回路基板32における回路基
板24、電子部品21の接続面、はんだ材25の酸化を
防止する効果がある。
Next, the gas in the processing container 26 is exhausted by the vacuum exhaust system 36 composed of a rotary pump or the like,
A non-oxidizing gas such as He or N 2 or a reducing gas in which H 2 and N 2 are mixed is introduced by a gas introduction system 35 capable of adjusting the flow rate and the pressure, and the inside of the processing container 26 is introduced. Return to atmospheric pressure once. At this time, the oxygen concentration in the processing container 26 is measured by the oxygen concentration monitor unit 28. If the oxygen concentration does not drop to a predetermined concentration (preferably 10 ppm or less), the above-mentioned vacuum exhaust and gas introduction are performed to a predetermined low oxygen concentration. Repeat until a concentrated atmosphere is formed. The low oxygen concentration atmosphere has an effect of preventing oxidation of the circuit board 24, the connection surface of the electronic component 21, and the solder material 25 in the electronic circuit board 32 to be processed during heating.

【0067】前述した処理容器26内の低酸素濃度雰囲
気の形成終了後、加熱中に異常が生じていないかを常時
モニターしながら、カーボンヒータ33からの直接熱伝
導により被処理電子回路基板32を加熱する。この加熱
は、温度制御部29によりコントロールし、はんだ材2
5の融点よりも高くなるように設定して行われる。例え
ば、はんだ材25の融点が221℃の場合、カーボンヒ
ータ33の温度を250℃に設定する。
After the formation of the low oxygen concentration atmosphere in the processing container 26 described above, the electronic circuit board 32 to be processed is directly transferred from the carbon heater 33 while the abnormality is constantly monitored during heating. To heat. This heating is controlled by the temperature control unit 29, and the solder material 2
The melting point is set to be higher than the melting point of 5. For example, when the melting point of the solder material 25 is 221 ° C., the temperature of the carbon heater 33 is set to 250 ° C.

【0068】加熱が開始されると回路基板24上に電子
部品21を仮固定するために使用した液体22が蒸発を
開始する。この蒸発を促進、あるいは、抑制したい場
合、前述の低酸素濃度雰囲気を形成する際のガス導入圧
力を、大気圧より低く、あるいは、高くしておけばよ
い。
When heating is started, the liquid 22 used for temporarily fixing the electronic component 21 on the circuit board 24 starts to evaporate. In order to accelerate or suppress this evaporation, the gas introduction pressure for forming the above-mentioned low oxygen concentration atmosphere may be set lower or higher than atmospheric pressure.

【0069】そして、はんだ材25が溶融してはんだ接
続が完了した後、金属製の水冷タイプの冷却板34に冷
却水が供給され、加熱されたカーボンヒータ33と被処
理電子回路基板32とが冷却され、基板搬送部30によ
り被処理電子回路基板32が取り出される。
After the solder material 25 is melted and the solder connection is completed, the cooling water is supplied to the metal water-cooling type cooling plate 34, and the heated carbon heater 33 and the processed electronic circuit board 32 are separated from each other. After being cooled, the electronic circuit board 32 to be processed is taken out by the board carrying section 30.

【0070】次に、前述した本発明の一実施例による装
置を使用して、被処理電子回路基板32における液体2
2を全て蒸発させ、はんだ接続後の洗浄工程を省略し
て、電子部品21を回路基板24にはんだ接続する方法
を具体的に説明する。
Next, using the apparatus according to the embodiment of the present invention described above, the liquid 2 on the processed electronic circuit board 32 is
A method of soldering the electronic component 21 to the circuit board 24 by evaporating all of 2 and omitting the cleaning step after soldering will be specifically described.

【0071】本発明の一実施例においては、使用するは
んだ材として融点221℃のものを使用し、カーボンヒ
ータ33の温度を250℃に設定するものとする。ま
た、電子部品21を回路基板24に固定するための液体
として、例えば、図21に示すようなアルコール系の液
体を使用するものとする。
In one embodiment of the present invention, the solder material used has a melting point of 221 ° C. and the temperature of the carbon heater 33 is set to 250 ° C. As the liquid for fixing the electronic component 21 to the circuit board 24, for example, an alcohol-based liquid as shown in FIG. 21 is used.

【0072】図21に示す液体Aは、エチレングリコー
ルで、その沸点が197℃であり、使用するはんだ材2
5の融点221℃に比べて比較的その沸点が低い。この
ような液体を使用する場合、カーボンヒータ33により
加熱を開始し、被処理電子回路基板32の温度が上昇す
るに従って液体の蒸発が始まる。この例では、融点が2
21℃のはんだ材を用い、カーボンヒータ33の温度が
250℃まで上昇するので、はんだ接続が完了する前に
液体が全て蒸発してしまうことになる。
The liquid A shown in FIG. 21 is ethylene glycol, the boiling point of which is 197 ° C.
5 has a melting point of 221 ° C., which is relatively low. When such a liquid is used, heating is started by the carbon heater 33, and evaporation of the liquid starts as the temperature of the electronic circuit substrate 32 to be processed rises. In this example, the melting point is 2
Since the solder material of 21 ° C. is used and the temperature of the carbon heater 33 rises to 250 ° C., all the liquid is evaporated before the solder connection is completed.

【0073】液体が全て蒸発し、はんだ材25が完全に
溶融して、はんだ接続が行われた状態で、冷却板34に
冷却水が供給され、加熱されたカーボンヒータ33と被
処理電子回路基板32とが冷却され、基板搬送部30に
より被処理電子回路基板32が取り出される。
In the state where the liquid is completely evaporated, the solder material 25 is completely melted, and the solder connection is made, the cooling water is supplied to the cooling plate 34, and the heated carbon heater 33 and the electronic circuit board to be processed are heated. 32 and 32 are cooled, and the to-be-processed electronic circuit board 32 is taken out by the board transfer part 30.

【0074】前述したように、使用するはんだ材25の
融点に比べて沸点の低い液体により電子部品21が回路
基板24に仮固定されている場合、本発明の一実施例
は、仮固定のために使用した液体を全く残すことなくは
んだ接続を行うことができるので、はんだ接続後の洗浄
等の工程を省略することができる。
As described above, when the electronic component 21 is temporarily fixed to the circuit board 24 by a liquid having a lower boiling point than the melting point of the solder material 25 used, one embodiment of the present invention is for temporary fixing. Since the solder connection can be performed without leaving the liquid used for the above, it is possible to omit the steps such as cleaning after the solder connection.

【0075】また、図21に示す液体Bは、トリエチレ
ングリコールで、その沸点が287℃であり、使用する
はんだ材25の融点221℃に比べて比較的その沸点が
高い。このような液体を使用する場合、カーボンヒータ
33により加熱を開始し、被処理電子回路基板32の温
度が上昇しても、液体の蒸発が遅く、はんだ接続完了時
に液体が完全に蒸発せずに残ることになる。
The liquid B shown in FIG. 21 is triethylene glycol, which has a boiling point of 287 ° C., which is relatively higher than the melting point 221 ° C. of the solder material 25 used. When such a liquid is used, even if the heating is started by the carbon heater 33 and the temperature of the electronic circuit board 32 to be processed rises, the liquid evaporates slowly and the liquid does not completely evaporate when the solder connection is completed. Will remain.

【0076】本発明の一実施例は、これを解決するため
に、はんだ接続完了後に処理容器26内を真空排気して
その内部圧力を下げる。これにより、被処理電子回路基
板32が冷却板34により冷却されるまでに、液体を全
て蒸発させることができ、前述した液体Aを使用した場
合と同様に、はんだ接続後の洗浄等の工程を省略するこ
とができる。
In order to solve this, one embodiment of the present invention evacuates the inside of the processing container 26 to reduce the internal pressure thereof after the completion of solder connection. As a result, all the liquid can be evaporated before the electronic circuit board 32 to be processed is cooled by the cooling plate 34, and as in the case of using the liquid A described above, steps such as cleaning after solder connection can be performed. It can be omitted.

【0077】前述における液体A、Bの蒸発の制御は、
はんだ接続の処理を行っている間、前記電子部品を仮固
定している液体が、はんだの溶融まで残り、かつ、はん
だの溶融によりはんだ接続が完了したときになくなるよ
うに、処理容器26内の圧力を制御して前記液体の蒸発
速度を制御するように行われる。はんだが溶融するまで
液体が残ることにより、ある程度酸素が残っている雰囲
気中で処理が行われた場合にも、はんだ接続部の酸化を
防止して、より信頼性の高いはんだ接続を行うことがで
きる。
The control of the evaporation of the liquids A and B in the above is as follows.
While performing the solder connection process, the liquid temporarily fixing the electronic component remains in the processing container 26 such that the liquid remains until the melting of the solder and disappears when the solder connection is completed by the melting of the solder. The pressure is controlled to control the evaporation rate of the liquid. Since the liquid remains until the solder melts, even if the process is performed in an atmosphere where oxygen remains to some extent, it is possible to prevent oxidation of the solder joints and make more reliable solder joints. it can.

【0078】[0078]

【発明の効果】以上説明したように本発明によれば、は
んだ材等の金属表面に対し、金属表面の組織を変化させ
るエネルギーより小さなエネルギーのレーザ光を照射す
ることにより、フラックスを使用することなく、金属表
面の酸化膜を除去することができる。さらに、部品と回
路基板を液体で仮固定し、低酸素濃度雰囲気中ではんだ
材を加熱溶融することにより、加熱中の回路基板、電子
部品の接続面、はんだ材の酸化を防止して、信頼性の高
いはんだ接続を行うことができる。
As described above, according to the present invention, a flux is used by irradiating a metal surface such as a solder material with a laser beam having an energy smaller than the energy that changes the texture of the metal surface. Without, the oxide film on the metal surface can be removed. Furthermore, by temporarily fixing the parts and the circuit board with a liquid and heating and melting the solder material in a low oxygen concentration atmosphere, oxidation of the circuit board, the connection surface of the electronic parts, and the solder material during heating is prevented, and reliability is improved. A highly reliable solder connection can be performed.

【0079】また、本発明により、フロン等を使用する
フラックス洗浄プロセスが不要となり、地球環境に対す
る悪影響を防止することができると共に、生産設備及び
生産工程数の削減を図ることができる。
Further, according to the present invention, the flux cleaning process using chlorofluorocarbon or the like is not required, the adverse effect on the global environment can be prevented, and the production facility and the number of production steps can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による金属表面処理方法の実施例1を説
明するための断面図である。
FIG. 1 is a cross-sectional view for explaining a first embodiment of a metal surface treatment method according to the present invention.

【図2】図1に示す前記ハンダ層に代えて、半導体集積
回路(LSI)等の電子装置の製造方法におけるハンダ
バンプの表面にレンズおよびミラーを介してレーザ光を
照射する本実施例1の変形例である。
2 is a modification of the first embodiment in which the surface of a solder bump is irradiated with laser light through a lens and a mirror in a method of manufacturing an electronic device such as a semiconductor integrated circuit (LSI) instead of the solder layer shown in FIG. Here is an example.

【図3】本実施例1のハンダ層表面のレーザ光照射前の
走査型電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph of the solder layer surface of Example 1 before laser light irradiation.

【図4】図3の拡大写真である。FIG. 4 is an enlarged photograph of FIG.

【図5】本実施例1のハンダ層表面のレーザ光照射後の
走査型電子顕微鏡写真である。
FIG. 5 is a scanning electron micrograph of the solder layer surface of Example 1 after laser light irradiation.

【図6】図5の拡大写真である。FIG. 6 is an enlarged photograph of FIG.

【図7】本実施例1の縦軸にSn−Pb表面の酸化膜量
(%)を、横軸に1パルスのレーザ光照射エネルギー密
度(J/cm2)をとり、両者の関係をプロットしたグラ
フである。
FIG. 7 is a plot of the oxide film amount (%) on the surface of Sn—Pb on the vertical axis and the laser beam irradiation energy density (J / cm 2 ) for one pulse on the horizontal axis of the first embodiment. It is a graph.

【図8】本実施例1の縦軸にSn−Pb表面の酸化膜量
(%)を、横軸にエネルギー密度を1.5(J/cm2)に
一定値に保った時の照射回数を示したグラフである。
FIG. 8 shows the number of irradiations when the amount of oxide film (%) on the surface of Sn—Pb was kept constant on the vertical axis and the energy density was kept constant at 1.5 (J / cm 2 ) on the horizontal axis in Example 1. It is a graph showing.

【図9】本実施例1によりハンダ接合した電子装置の一
例を示す断面図である。
FIG. 9 is a cross-sectional view showing an example of an electronic device soldered according to the first embodiment.

【図10】本実施例1によるハンダ接合した電子装置の
他の例を示す断面図である。
FIG. 10 is a cross-sectional view showing another example of the solder-bonded electronic device according to the first embodiment.

【図11】本発明による金属表面処理方法の実施例2を
説明するための断面図である。
FIG. 11 is a sectional view for explaining a second embodiment of the metal surface treatment method according to the present invention.

【図12】本実施例2のニッケル層の同一部分に対する
レーザ光の照射回数を10回一定として、縦軸にニッケ
ルに形成された酸化膜4の厚さ(単位:nm)をとり、
横軸にレーザ光照射エネルギー密度(J/cm2)をとっ
て、両者の関係をプロットした図である。
FIG. 12 is a graph showing the thickness (unit: nm) of the oxide film 4 formed on nickel on the vertical axis with the number of times of laser light irradiation to the same portion of the nickel layer of Example 2 being constant 10 times;
It is the figure which plotted the laser beam irradiation energy density (J / cm < 2 >) on the horizontal axis | shaft, and the relationship of both.

【図13】本実施例2のレーザ光照射エネルギー密度を
0.75(J/cm2)に一定として、縦軸にニッケル層
の表面に形成される酸化膜の厚さ(単位:nm)をと
り、前記ニッケル層の同一部分に対するレーザの照射回
数をとって、両者の関係をプロットした図である。
FIG. 13 shows the thickness (unit: nm) of the oxide film formed on the surface of the nickel layer on the vertical axis, with the laser beam irradiation energy density of Example 2 being constant at 0.75 (J / cm 2 ). It is a figure in which the relationship between the two is plotted by taking the number of laser irradiations on the same portion of the nickel layer.

【図14】本発明による電子装置の製造方法の実施例3
を説明するための断面図である。
FIG. 14 is a third embodiment of a method for manufacturing an electronic device according to the present invention.
It is a sectional view for explaining.

【図15】本実施例3の再酸化防止手段を具体的に適用
した電子装置の構成断面図である。
FIG. 15 is a structural cross-sectional view of an electronic device to which the reoxidation preventing means of the third embodiment is specifically applied.

【図16】図15に示す入出力(I/O)ピンを用いな
いで電子装置と直接ロウ材もしくはハンダ材によりセラ
ミック基板上のニッケル(Ni)層もしくはニッケル合
金層とを電気的接続した場合を示す図である。
16 shows a case where an electronic device is directly electrically connected to a nickel (Ni) layer or a nickel alloy layer on a ceramic substrate by a brazing material or a solder material without using the input / output (I / O) pin shown in FIG. FIG.

【図17】本発明による電子装置の製造方法の実施例4
を説明するためのである。
FIG. 17 is a fourth embodiment of the method for manufacturing an electronic device according to the present invention.
To explain.

【図18】本発明の一実施例の製造装置によりはんだ接
続を行う電子部品を仮固定した回路基板の構成を示す断
面図である。
FIG. 18 is a cross-sectional view showing a configuration of a circuit board on which electronic components for solder connection are temporarily fixed by a manufacturing apparatus according to an embodiment of the present invention.

【図19】本発明の一実施例による電子回路基板の製造
装置の構成を示す斜視図である。
FIG. 19 is a perspective view showing the configuration of an electronic circuit board manufacturing apparatus according to an embodiment of the present invention.

【図20】処理容器の内部の状態を示す断面図である。FIG. 20 is a cross-sectional view showing an internal state of a processing container.

【図21】電子部品の仮固定用に使用する液体の例を説
明する図である。
FIG. 21 is a diagram illustrating an example of a liquid used for temporarily fixing an electronic component.

【符号の説明】[Explanation of symbols]

1 セラミック基板 2 メタライズ 2a ニッケル(Ni)層もしくはニッケル合金層 3 ハンダ層 3b ハンダバンプ 4 酸化膜 5 レーザ光 6 レンズ 7 ミラー 8 半導体集積回路(LSI) 9 封止キャップ 10 再酸化防止用のメッキ層 11 ロウ材(もしくはハンダ材) 12 電子装置の入出力(I/O)ピン 13 有機系絶縁層と密着性のよい金属膜 14 金(Au)リボンもしくはや金(Au)ワイヤ 15 有機系絶縁層 21 電子部品 22 液体 23 接続面 24 回路基板 25 はんだ材 26 処理容器 27 圧力制御部 28 酸素濃度モニター部 29 温度制御部 30 搬送部 31 制御部 32 被処理電子回路基板 33 カーボンヒータ 34 冷却板 35 ガス導入系 36 真空排気系 1 Ceramic substrate 2 Metallization 2a Nickel (Ni) layer or nickel alloy layer 3 solder layers 3b solder bump 4 oxide film 5 laser light 6 lenses 7 mirror 8 Semiconductor integrated circuits (LSI) 9 Sealing cap 10 Plating layer for preventing reoxidation 11 Solder material (or solder material) 12 Electronic device input / output (I / O) pins 13 Metal film with good adhesion to organic insulating layer 14 Gold (Au) ribbon or Gold (Au) wire 15 Organic insulating layer 21 electronic components 22 liquid 23 Connection surface 24 circuit board 25 Solder material 26 Processing container 27 Pressure control unit 28 Oxygen concentration monitor 29 Temperature controller 30 transport section 31 Control unit 32 Electronic circuit board to be processed 33 carbon heater 34 Cooling plate 35 gas introduction system 36 Vacuum exhaust system

フロントページの続き (72)発明者 太田 敏彦 神奈川県秦野市堀山下1番地 株式会社 日立製作所 汎用コンピュータ事業部内 (72)発明者 岩田 泰宏 神奈川県秦野市堀山下1番地 株式会社 日立製作所 汎用コンピュータ事業部内 (72)発明者 白井 貢 神奈川県秦野市堀山下1番地 株式会社 日立製作所 汎用コンピュータ事業部内 (72)発明者 田村 光範 神奈川県秦野市堀山下1番地 株式会社 日立製作所 汎用コンピュータ事業部内 (56)参考文献 特開 平6−326449(JP,A) 特開 昭61−151645(JP,A) 特開 平3−38821(JP,A) 特開 平5−124848(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05K 3/34 B23K 1/005 H05K 3/26 B23K 31/02 Front Page Continuation (72) Inventor Toshihiko Ota 1 Horiyamashita, Hadano City, Kanagawa Hitachi, Ltd. General-purpose computer division (72) Inventor Yasuhiro Iwata 1-Horiyamashita, Hadano, Kanagawa Hitachi Ltd. General-purpose computer division (72) Inventor Mitsugu Shirai 1 Horiyamashita, Hadano-shi, Kanagawa, Hitachi, Ltd. General-purpose computer division (72) Inventor, Mitsunori Tamura, 1-Horiyamashita, Hadano-shi, Kanagawa Hitachi, Ltd. General-purpose computer division (56) Reference References JP-A-6-326449 (JP, A) JP-A-61-151645 (JP, A) JP-A-3-38821 (JP, A) JP-A-5-124848 (JP, A) (58) Field (Int.Cl. 7 , DB name) H05K 3/34 B23K 1/005 H05K 3/26 B23K 31/02

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電子部品をはんだ材を介して回路基板上
に搭載し、電子部品と回路基板を接続する電子回路の製
造方法であって、前記はんだ材にレーザ光を照射して前
記はんだ材の表面をクリーニングするステップと、前記
回路基板上に前記はんだ材の融点よりも高い沸点を持つ
液体を前記回路基板の接続面を覆うように供給するステ
ップと、前記回路基板上に前記電子部品を位置合わせし
前記液体を介して搭載するステップと、前記回路基板
を処理容器中に置くステップと、前記処理容器内に低酸
素濃度雰囲気を形成するステップと、前記処理容器内で
前記はんだ材を加熱溶融して前記電子部品と前記回路基
板を接続するステップと、前記処理容器内の圧力を低下
させて前記液体を蒸発させるステップと、前記回路基板
を冷却するステップとを備えることを特徴とする電子回
路の製造方法。
1. A method of manufacturing an electronic circuit in which an electronic component is mounted on a circuit board via a solder material and the electronic component and the circuit board are connected to each other, wherein the solder material is irradiated with laser light.
The step of cleaning the surface of the solder material, the step of supplying a liquid having a boiling point higher than the melting point of the solder material onto the circuit board so as to cover the connection surface of the circuit board, and the circuit. Aligning the electronic component on a substrate and mounting the electronic component through the liquid; placing the circuit board in a processing container ;
Forming an elementary concentration atmosphere, heating and melting the solder material in the processing container to form the electronic component and the circuit board.
Connecting the plates and reducing the pressure inside the processing vessel
And evaporating the liquid , the circuit board
And a step of cooling the electronic circuit.
【請求項2】 前記処理容器内に低酸素濃度雰囲気を形
成するステップは、酸素濃度10PPM以下とする
とを特徴とする請求項1に記載の電子回路の製造方法。
2. A low oxygen concentration atmosphere is formed in the processing container.
Step method of manufacturing an electronic circuit according to claim 1, wherein the this <br/> that the oxygen concentration than 10PPM that formed.
【請求項3】 前記処理容器内に低酸素濃度雰囲気を形
成するステップは、前記処理容器内の酸素濃度を測定し
ながら、ガス排気とガス導入とを繰り返すことによって
低酸素濃度雰囲気を形成することを特徴とする請求項
に記載の電子回路の製造方法。
3. A low oxygen concentration atmosphere is formed in the processing container.
The step of forming the claim 1, characterized in that while measuring the oxygen concentration in the processing chamber to form a low oxygen concentration atmosphere by repeating the gas introducing gas exhaust
A method for manufacturing an electronic circuit according to.
【請求項4】 前記ガス導入は非酸性ガスもしくは
還元性ガスを導入することを特徴とする請求項に記載
の電子回路の製造方法。
Wherein said gas introduction method of manufacturing an electronic circuit according to claim 3, characterized in that the introduction of non-oxidative gas or reducing gas.
【請求項5】 前記液体はアルコール系の液体であるこ
とを特徴とする請求項1に記載の電子回路の製造方法。
5. The method of manufacturing an electronic circuit according to claim 1, wherein the liquid is an alcohol-based liquid.
【請求項6】 前記アルコール系の液体は、トリエチレ
ングリコールであることを特徴とする請求項に記載の
電子回路の製造方法。
6. The alcohol-based liquid is triethylene
6. The method for manufacturing an electronic circuit according to claim 5 , wherein the method is a glycol .
【請求項7】 はんだバンプが設けられた電子部品を回
路基板に接続する電子回路装置の製造方法であって、前
記はんだバンプにレーザ光を照射して前記はんだバンプ
の表面をクリーニングし、前記回路基板上に前記はんだ
バンプの融点よりも高い沸点を持つ液体を供給し、前記
電子部品を前記回路基板上に位置合わせして搭載し、前
記回路基板を処理容器内に配置し、前記処理容器内で前
記はんだバ ンプを加熱溶融して前記電子部品を前記回路
基板に接続し、前記処理容器内の圧力を下げて前記液体
を蒸発させることを特徴とする電子回路装置の製造方
法。
7. An electronic component provided with a solder bump is rotated.
A method of manufacturing an electronic circuit device connected to a road board, comprising:
By irradiating the solder bump with a laser beam, the solder bump
Clean the surface of the
Supply a liquid with a boiling point higher than the melting point of the bump,
Electronic components are aligned and mounted on the circuit board,
Place the circuit board in the processing container and place it in the processing container.
Serial by heating and melting the solder bar pump the electronic component to the circuit
Connect to the substrate and reduce the pressure in the processing container
For manufacturing an electronic circuit device characterized by evaporating
Law.
【請求項8】 部品をはんだ材を介して回路基板上に搭
載し、部品と回路基板を接続する電子回路の製造方法で
あって、前記部品を仮固定するための液体であって前記
はんだ材の融点よりも高い沸点を持つ液体を前記回路基
板上に供給し、前記部品を前記液体が供給された前記回
路基板上に位置合わせして搭載し、前記回路基板を処理
容器内に配置し、前記処理容器内に低酸素濃度雰囲気を
形成し、前記低酸素濃度雰囲気中で前記はんだ材を前記
はんだ材の融点よりも高く前記液体の沸点よりも低い温
度で加熱して前記部品と前記回路基板を接続し、前記処
理容器内の圧力を下げて前記回路基板上に供給した前記
液体のうち蒸発していない液体を蒸発させ、前記回路基
板を冷却することを特徴とする電子回路の製造方法。
8. A component is mounted on a circuit board via a solder material.
The electronic circuit manufacturing method that mounts and connects the parts and the circuit board
The liquid for temporarily fixing the parts
A liquid with a boiling point higher than the melting point of the solder material
When the liquid is supplied onto the plate,
Aligned and mounted on the road board, processing the circuit board
Place in a container and create a low oxygen concentration atmosphere in the processing container.
Forming the solder material in the low oxygen concentration atmosphere
A temperature higher than the melting point of the solder material and lower than the boiling point of the liquid.
And heat the parts to connect the parts to the circuit board and
The pressure in the processing container is lowered and the pressure is supplied onto the circuit board.
Evaporate the liquid that has not evaporated,
A method of manufacturing an electronic circuit, comprising cooling a plate.
JP21036197A 1997-08-05 1997-08-05 Electronic circuit manufacturing method Expired - Fee Related JP3385925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21036197A JP3385925B2 (en) 1997-08-05 1997-08-05 Electronic circuit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21036197A JP3385925B2 (en) 1997-08-05 1997-08-05 Electronic circuit manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07121118A Division JP3120695B2 (en) 1995-05-19 1995-05-19 Electronic circuit manufacturing method

Publications (2)

Publication Number Publication Date
JPH1075049A JPH1075049A (en) 1998-03-17
JP3385925B2 true JP3385925B2 (en) 2003-03-10

Family

ID=16588107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21036197A Expired - Fee Related JP3385925B2 (en) 1997-08-05 1997-08-05 Electronic circuit manufacturing method

Country Status (1)

Country Link
JP (1) JP3385925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814972B1 (en) * 2000-10-05 2003-02-21 Snecma Moteurs METHOD OF BREWING A SURFACE PREVIOUSLY MACHINED BY ELECTRO-EROSION

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151645A (en) * 1984-12-26 1986-07-10 Fujitsu Ltd Resist coating method
JP2764069B2 (en) * 1989-07-06 1998-06-11 東京エレクトロン株式会社 Application method
JPH05124848A (en) * 1991-11-01 1993-05-21 Ashida Seisakusho:Kk Drying method of ceramics
JP2854782B2 (en) * 1993-05-12 1999-02-03 株式会社日立製作所 Electronic component fixing method, circuit board manufacturing method, and circuit board

Also Published As

Publication number Publication date
JPH1075049A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
JP3120695B2 (en) Electronic circuit manufacturing method
JP3355251B2 (en) Electronic device manufacturing method
US6471115B1 (en) Process for manufacturing electronic circuit devices
US5878943A (en) Method of fabricating an electronic circuit device and apparatus for performing the method
AU634441B2 (en) A fluxless soldering process
US6666369B2 (en) Semiconductor device manufacturing method, electronic parts mounting method and heating/melting process equipment
JP3215008B2 (en) Electronic circuit manufacturing method
US6227436B1 (en) Method of fabricating an electronic circuit device and apparatus for performing the method
US5164566A (en) Method and apparatus for fluxless solder reflow
US20030015574A1 (en) Solder alloy, substrate with solder alloy for mounting electronic part, member to be bonded of electronic part, and electronic-part-mounted substrate
JP2009111399A (en) Reflow soldering method
JP3378852B2 (en) Heat melting processing equipment
US6513701B2 (en) Method of making electrically conductive contacts on substrates
JP3207506B2 (en) Manufacturing method of electronic circuit device
US5023407A (en) Printed circuit board with a uniform conductive layer formed by equalization of metals therein
JP2012028589A (en) Heating and melting method and heating and melting system
JP3385925B2 (en) Electronic circuit manufacturing method
KR100411144B1 (en) Reflow Method of fluxless solder bump using Ar-H2 Plasma
KR20020051304A (en) Method for manufacturing the electronic circuit
JPH07235763A (en) Manufacture of electronic circuit
JP2004006818A (en) Reflow method and solder paste
KR0183477B1 (en) Process for making electronic device
JP2000049450A (en) Soldering of electronic component
JPH07170063A (en) Reflow soldering
Jellison et al. Advanced soldering processes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees