JP3385826B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3385826B2
JP3385826B2 JP27950095A JP27950095A JP3385826B2 JP 3385826 B2 JP3385826 B2 JP 3385826B2 JP 27950095 A JP27950095 A JP 27950095A JP 27950095 A JP27950095 A JP 27950095A JP 3385826 B2 JP3385826 B2 JP 3385826B2
Authority
JP
Japan
Prior art keywords
substrate
thickness
semiconductor element
semiconductor
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27950095A
Other languages
Japanese (ja)
Other versions
JPH09129885A (en
Inventor
良史 白井
正彦 鈴村
光英 前田
嘉城 早崎
貴司 岸田
仁路 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP27950095A priority Critical patent/JP3385826B2/en
Publication of JPH09129885A publication Critical patent/JPH09129885A/en
Application granted granted Critical
Publication of JP3385826B2 publication Critical patent/JP3385826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、SOIウェハ上
に、スイッチング素子としてMOSFETを形成する半
導体装置に関するものである。 【0002】 【従来の技術】SOIウェハは、半導体素子を形成する
半導体素子形成基板と半導体支持基板とに挟まれそれら
を分離する基板間絶縁層の誘電率が、半導体素子形成基
板の誘電率に比べて大きいことを利用して、半導体素子
に印加された電圧を基板間絶縁層に分担させることによ
って、ソース・ドレイン耐圧の向上を図るものである。
この場合、耐圧の最適化を図るためには、半導体素子形
成基板の不純物濃度とその厚み等の条件を適切に設定す
ることが必要であると言われている。 【0003】これまでに知られている、SOIウェハで
のMOSFETのソース・ドレイン耐圧に関する知見を
図2に基づいて説明する。図は半導体装置(SOIウェ
ハ)の断面図で、1a,1a2 は、半導体素子形成基
板、1b,1b2 は、それぞれ、半導体素子形成基板1
a,1a2 の下面に接する基板間絶縁層、1c,1c2
は、それぞれ、基板間絶縁層1b,1b2 の下面に接す
る半導体支持基板であり、(a)に示すSOIウェハ
は、厚さがd1で不純物濃度がN1である半導体素子形
成基板1aと、厚みがtbox1である基板間絶縁層1
bと、半導体支持基板1cとで構成され、(b)に示す
SOIウェハは、厚さがd2で不純物濃度がN2である
半導体素子形成基板1a2 と、厚みがtbox2である
基板間絶縁層1b2 と、半導体支持基板1c2 とで構成
されていることを示している。 【0004】SOIウェハでのMOSFETのソース・
ドレイン耐圧は、半導体素子形成基板1a,1a2 のそ
れぞれの厚みd1,d2と、半導体素子形成基板1a,
1a 2 のそれぞれの不純物濃度N1、N2、及び、基板
間絶縁層1b,1b2 のそれぞれの厚みtbox1,t
box2の3パラメータに依存する。このとき、半導体
素子形成基板1a,1a2 の、それぞれの不純物濃度N
1,N2と、それぞれの厚みtbox1,tbox2に
関しては、リサーフ条件として知られる最適条件があ
る。 【0005】そのリサーフ条件とは、半導体素子形成基
板1a,1a2 のそれぞれの不純物濃度N1、N2と、
半導体素子形成基板1a,1a2 のそれぞれの厚みの積
がある一定値となる場合に、ソース・ドレイン耐圧が最
適化されるというものである。つまり、その積がリサー
フ条件を満たす一定値から外れるように設定した場合
は、リサーフ条件を満たすように設定した場合に比べて
耐圧は低くなり、最適条件を満たす場合(不純物濃度と
厚みの積がその一定値になる場合)の耐圧は、半導体素
子形成基板の厚みに対して正比例するという重要な点に
ついても知られている。さらに、耐圧と基板間絶縁層1
b(1b2 )の関係に関しては、その厚みに対して正比
例するという関係が知られている。 【0006】図2(a)に示すSOIウェハと、図2
(b)に示すSOIウェハの場合を比較して説明する
と、(a)に示すSOIウェハの半導体素子形成基板1
aの厚みd1は、(b)のSOIウェハの半導体素子形
成基板1a2 の厚みd2より厚く設定されている。この
場合、それぞれのSOIウェハにおいて、耐圧の最適化
のためにリサーフ条件を満たすように不純物濃度を設定
したとすれば、(a)に示すSOIウェハの半導体素子
形成基板1aの不純物濃度N1は、(b)に示すSOI
ウェハの半導体素子形成基板1a2 の不純物濃度N2よ
り低濃度になることになる。そして、もし(a)及び
(b)に示すSOIウェハの基板間絶縁層1b,1b2
の厚みが同一であったと仮定すれば、即ち、tbox1
=tbox2であれば、半導体素子形成基板1a,1a
2 のうち、その厚みが厚い、(a)に示すSOIウェハ
の方が耐圧が高くなる。しかしながら、(b)に示すS
OIウェハの半導体素子形成基板1a2 を適切に厚くな
るように設定すれば両者の耐圧を等しくすることができ
る。両者の耐圧が同等のときの、上述した3パラメータ
の大小をまとめると以下のようになる。 d1>d2 N1<N2 tbox1<tbox2 次に、上式の関係が成り立つときの、耐圧以外の他のM
OSFET特性について説明する。スイッチング素子と
して重要な耐圧以外の特性は、オン抵抗とスイッチング
時間及び放熱特性である。オン抵抗は半導体素子形成基
板1a,1a2のそれぞれの不純物濃度N1,N2に依
存し濃度が大きければオン抵抗は小さい。従って、
(a)に示すSOIウェハのオン抵抗をRon1、
(b)に示すSOIウェハのオン抵抗をRon2とすれ
ば、Ron1>Ron2となる。つまり、(b)に示す
SOIウェハの方がオン抵抗が低く、優れているのであ
る。 【0007】スイッチング時間は、ドレイン−半導体支
持基板間の電気容量に依存し、電気容量が大きければス
イッチング時間も長くなる。SOI構造でのドレイン−
半導体支持基板間の電気容量は、基板間絶縁層の厚みに
逆比例するので、(a)に示すSOIウェハのドレイン
−半導体支持基板間の電気容量をCsub1、(b)に
示すSOIウェハのドレイン−半導体支持基板間の電気
容量をCsub2とすればCsub1>Csub2とな
る。つまり、(b)に示すSOIウェハの方がスイッチ
ング時間が短く、優れているのである。 【0008】放熱特性は、基板間絶縁層の厚みに依存す
る。これは、以下の理由による。半導体素子形成基板1
a,1a2 上に形成したMOSFETから動作中に発生
する熱は、それぞれ、半導体素子形成基板1a,1a2
から基板間絶縁層1b,1b 2 を通して半導体支持基板
1c,1c2 に伝達されることで放熱が行われる。い
ま、半導体素子形成基板1a,1a2 の構成材料として
シリコンを用い、基板間絶縁層1b,1b2 の構成材料
としてシリコン酸化膜を用いた場合、各々の熱伝達率
は、1.5 ワット/cm ℃(シリコン)、0.014 ワット/cm
℃(シリコン酸化膜)となり、2桁もシリコン酸化膜の
方が低くなる。従って、SOIウェハの放熱特性は、上
述のように基板間絶縁層1b,1b2 のそれぞれの厚み
tbox1,tbox2に依存し、それが厚ければ放熱
特性は悪くなるのである。(a)に示すSOIウェハの
熱伝達率をκ1、(b)に示すSOIウェハの熱伝達率
をκ2とすれば、κ1>κ2となる。つまり、(a)に
示すSOIウェハの方が放熱特性が良いのである。 【0009】最後に、SOIウェハの製造工程の一つで
あるリサーフ拡散工程について考察する。リサーフ拡散
工程は、リサーフ条件を満たすように半導体素子形成基
板1a,1a2 のそれぞれの不純物濃度N1,N2を調
節するために注入されたリサーフイオンを拡散する工程
である。この工程では、通常、半導体素子形成基板1
a,1a2 の表面側から注入されたリサーフイオンが、
基板間絶縁層1b,1b 2 まで拡散するように熱工程を
加えるが、ある程度、半導体素子形成基板1a,1a2
の表面側に偏った分布を有することになる。この偏りが
均一になる方が耐圧が高いことが判明している。 【0010】そこで、(a)と(b)に示すSOIウェ
ハそれぞれの、半導体素子形成基板1a,1a2 のそれ
ぞれの不純物濃度N1,N2の分布が共に同一の分布
(つまり半導体素子形成基板1a,1a2 の表面側と基
板間絶縁層1b,1b2 側の不純物濃度の差が同一)に
なるための熱工程時間を各々tRSF1、tRSF2と
すれば、それらは、それぞれ、半導体素子形成基板1a
の厚みd1、半導体素子形成基板1a2 の厚みd2に依
存し、tRSF1>tRSF2となる。つまり、(b)
に示すSOIウェハの方がリサーフ拡散時間が短くて済
み、製造上都合がよいのである。 【0011】以上の4点についてまとめてみると、オン
抵抗、ドレイン−半導体支持基板間の電気容量、リサー
フ拡散時間の3点については、(b)に示すSOIウェ
ハの方が優れているが、唯一放熱特性については、
(a)に示すSOIウェハの方が勝っているわけであ
る。 【0012】 【発明が解決しようとする課題】図2に示した半導体装
置の構造では、耐圧を変えずに半導体素子形成基板の厚
みを薄くすれば、オン抵抗、ドレイン−半導体支持基板
間の電気容量、リサーフ拡散時間の3点については、よ
り優れた特性が得られるが、放熱特性は悪化するという
問題点があった。 【0013】本発明は、上記問題点に鑑みなされたもの
で、その目的とするところは、耐圧、オン抵抗、ドレイ
ン−半導体支持基板間の電気容量、放熱特性という特性
が優れ、かつ、リサーフ拡散時間も短い、MOSFET
を備えたSOI構造の半導体装置の構造を提供すること
にある。 【0014】 【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体装置は、半導体素子形成基板と半導
体支持基板とが基板間絶縁層によって分離形成される、
いわゆる、SOIウェハの前記半導体素子形成基板上
に、スイッチング素子としてMOSFETを少なくとも
1つ形成する半導体装置において、前記MOSFETの
ドレイン領域直下の前記半導体素子形成基板の厚みを、
前記ドレイン領域以外の領域の前記半導体素子形成基板
の厚みよりも薄く形成し、前記半導体素子形成基板の不
純物濃度を、前記ドレイン領域直下の前記半導体素子形
成基板の厚さに対して前記MOSFETの耐圧が最適値
となるように設定し、前記ドレイン領域直下の前記基板
間絶縁層の厚みを前記ドレイン領域以外の領域の前記基
板間絶縁層の厚みよりも厚く形成することを特徴とする
ものである。 【0015】SOIウェハ上に形成されたMOSFET
の、耐圧及びドレイン−半導体支持基板間の電気容量
は、ドレイン領域直下の領域の状態にのみ依存すること
が知られているので、耐圧はドレイン領域直下の半導体
素子形成基板の、不純物濃度と、厚みと、基板間絶縁層
の厚みとに依存することになり、ドレイン−半導体支持
基板間の電気容量は、ドレイン領域直下の基板間絶縁層
の厚みにのみ依存することになる。 【0016】よって、本発明の半導体装置のように、ド
レイン領域直下の半導体素子形成基板の厚みを薄くして
その不純物濃度を耐圧が最適化されるように高濃度に設
定しても、ドレイン領域直下の基板間絶縁層の厚みを厚
くすれば、ドレイン領域直下以外の領域の、厚い半導体
素子形成基板の耐圧に相当する耐圧を得ることが可能で
ある。言い換えると、図2に示した2つのSOIウェハ
の場合と同等の耐圧を得ることができるのである。 【0017】また、本発明の半導体装置のオン抵抗は、
ドレイン領域直下の半導体素子形成基板の不純物濃度
が、ドレイン領域直下の領域以外の領域の半導体素子形
成基板の厚みに耐圧を最適化させた場合(図2(a)に
示すSOIウェハの場合)の不純物濃度より高いので、
その場合(図2(a)に示すSOIウェハの場合)より
オン抵抗を低くすることができる。言い換えると、図2
に示した2つのSOIウェハのうち、オン抵抗の低い、
(b)に示すSOIウェハの方のオン抵抗と同等のオン
抵抗を得ることができるのである。 【0018】そして、ドレイン−半導体基板間の電気容
量は、ドレイン領域直下の基板間絶縁層の厚みにのみ依
存するので、その大きさは、仮に、ドレイン領域直下の
領域以外の領域の基板間絶縁層の厚みに、SOIウェハ
全体の基板間絶縁層の厚みを設定した場合の電気容量よ
り基板間絶縁層の厚みが小さい分だけ小さくできる。言
い換えると、図2に示した2つのSOIウェハのうち、
より電気容量の小さい優れた特性を有する、(b)に示
すSOIウェハの場合の、ドレイン−半導体基板間の電
気容量と同等のドレイン−基板間容量にすることができ
るのである。 【0019】さらに、放熱特性については、本発明の半
導体装置は、ドレイン領域直下の基板間絶縁層のみ部分
的に厚くして、かつ、ドレイン領域直下以外の領域の基
板間絶縁層をその厚みより薄くしているので、SOIウ
ェハのあらゆる領域で基板間絶縁層を厚くしている、図
2(b)に示したSOIウェハの場合に比べて、より良
い放熱特性を得ることができる。 【0020】最後に、リサーフ拡散時間は、耐圧を決定
するドレイン領域直下の半導体素子形成基板の厚みが薄
いので、そのリサーフ拡散時間は、図2(b)に示した
SOIウェハの場合のリサーフ拡散時間と同等にするこ
とができ、図2(a)に示したSOIウェハのリサーフ
拡散時間よりも短くすることができる。 【0021】まとめると、本発明の半導体装置は、図2
に示した2つのSOIウェハのうち、放熱特性のみ劣り
他の特性では、(a)に示したSOIウェハより優れて
いる、(b)に示したSOIウェハに比べて、放熱特性
が改善され、しかも、他の特性が同等になるという特徴
を有している。 【0022】 【発明の実施の形態】以下、図1の断面図に基づいて本
発明の半導体装置の一実施形態について説明する。図に
示す半導体装置(SOIウェハ)は、シリコンを材料と
する半導体素子形成基板2aと、ドレイン領域2d直下
の、厚さがtbox2である基板間絶縁膜2bの部分、
及び、厚さがtbox1である基板間絶縁膜2b2 の部
分とを有する、シリコン酸化膜で構成された基板間絶縁
膜2と、シリコンを材料とする半導体支持基板2cとか
ら構成され、基板間絶縁膜2が、半導体素子形成基板2
aと半導体支持基板2cとに挟まれた構造となってい
る。半導体装置(SOIウェハ)のサイズは、4インチ
で厚みは約 525μm である。半導体素子形成基板2aの
面方位は(100)で、その導電型はN型である。 【0023】半導体素子形成基板2a上に、耐圧 350V
、容量1AクラスのMOSFET(但し、ドレイン領域
2dのみを図示することとしMOSFETの他の構成の
図示は省略している)が形成されており、デバイス活性
領域は、約0.067cm2を占めており、そのデバイス活性領
域中の、半導体素子形成基板の表面に形成されたドレイ
ン領域2dは、不純物濃度の高いN型層で、深さが約1
μm 、面積が約0.031cm2である。 【0024】耐圧 350V の特性を得るために、ドレイン
領域2dの直下の半導体素子形成基板2aの厚みd2は
約5μm 、ドレイン領域2dの直下の基板間絶縁膜2b
の厚みtbox2は約3μm 、半導体素子形成基板2a
の不純物濃度N2は、約4E15cm-3であり、不純物濃度N
2と半導体素子形成基板2aの厚みd2の積が約2E12cm
-2になるように設定されている。ドレイン領域2dの直
下の領域以外の領域では、半導体素子形成基板2aの厚
みd1は約7μm 、基板間絶縁膜2b2 の厚みtbox
1は、約1μm である。 【0025】もし、半導体素子形成基板2aの厚みd1
と基板間絶縁膜2b2 の厚みtbox1とを適切に設定
して耐圧の最適化を図ったとしても、たかだか、耐圧は
約250Vにしかならない。しかも、最適化のための半導体
素子形成基板2aの不純物濃度は、ドレイン領域2dの
直下の領域以外の領域の半導体素子形成基板2aの厚み
d1が、ドレイン領域2dの直下の領域の半導体素子形
成基板2aの厚みd2より大きいために、不純物濃度N
2より小さくしなければリサーフ条件を満足しない。即
ち、半導体素子形成基板2aの厚みd1にて耐圧を最適
化すると、前述したように、MOSFETのオン抵抗
は、半導体素子形成基板2aの厚みをd2とした場合よ
り大きくなってしまい、図1に示した本発明の半導体装
置に比べてオン抵抗の特性は劣ってしまう。 【0026】また、ドレイン−半導体支持基板間の電気
容量についても、前述したように、tbox2>tbo
x1のため、もし、図1に示した半導体装置のドレイン
領域2dの直下の基板間絶縁膜2bの厚みをtbox1
とした場合は、図1に示した半導体装置のドレイン−半
導体支持基板間の電気容量よりも大きくなり、スイッチ
ング時間が、図1に示した半導体装置の場合に比べて長
くなってしまう。 【0027】さらに、ドレイン領域2dの直下の領域以
外の領域の基板間絶縁膜2b2 の厚みtbox1が約1
μm と薄いので、SOIウェハ全体の放熱効果は、SO
Iウェハ全体の基板間絶縁膜の厚みを、ドレイン領域2
dの直下の領域の基板間絶縁膜2bの厚みtbox2
(約3μm )とした場合より、図1に示す本発明の半導
体装置のの方が優れている。 【0028】また、リサーフ拡張時間も、ドレイン領域
2dの直下の半導体素子形成基板2aの薄い領域(厚さ
がd2である領域)のみでリサーフ条件を満たすように
拡散させればよいため、厚い半導体素子形成基板2aの
領域(厚さがd1である領域)で、リサーフ条件を満た
すように拡散させなければいけない場合に比べると、図
1に示した本発明の半導体装置の方が短くて済む。 【0029】まとめると、本発明の半導体装置は、従来
例のうち、オン抵抗、スイッチング時間、リサーフ拡散
時間の3つの特性で優れている、図2(b)に示した半
導体装置の長所を全て有し、かつ、図2(b)に示した
半導体装置の短所である放熱特性の点では、図2(b)
に示した半導体装置よりも優れているという利点があ
る。 【0030】 【発明の効果】以上に説明したように、本発明の半導体
装置によれば、SOIウェハ上のスイッチング素子とし
て用いるMOSFETの3つの特性(オン抵抗、スイッ
チング時間、放熱特性)において優れているばかりでな
く、長時間を要していたリサーフ拡散工程に要する時間
も短い時間で行うことができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] [0001] The present invention relates to an SOI wafer.
Next, a half of forming a MOSFET as a switching element
The present invention relates to a conductor device. [0002] 2. Description of the Related Art SOI wafers form semiconductor devices.
Sandwiched between the semiconductor element forming substrate and the semiconductor supporting substrate
The dielectric constant of the inter-substrate insulating layer that separates
Utilizing the fact that it is larger than the dielectric constant of the board,
By sharing the voltage applied to the
Thus, the source / drain breakdown voltage is improved.
In this case, in order to optimize the breakdown voltage, the semiconductor element type
Set conditions such as the impurity concentration of the substrate and its thickness appropriately.
Is said to be necessary. [0003] So far known SOI wafers
Of source / drain breakdown voltage of MOSFET
A description will be given based on FIG. The figure shows a semiconductor device (SOI wafer).
C) In the sectional view of 1), 1a, 1aTwoIs the semiconductor element formation base
Board, 1b, 1bTwoAre the semiconductor element forming substrates 1
a, 1aTwoInter-substrate insulating layer in contact with the lower surface of the substrate, 1c, 1cTwo
Are the inter-substrate insulating layers 1b and 1b, respectively.TwoTouch the underside of
SOI wafer shown in FIG.
Is a semiconductor device type having a thickness of d1 and an impurity concentration of N1.
Forming substrate 1a and inter-substrate insulating layer 1 having a thickness of tbox1
b and a semiconductor support substrate 1c, as shown in FIG.
The SOI wafer has a thickness of d2 and an impurity concentration of N2.
Semiconductor element forming substrate 1aTwoAnd the thickness is tbox2
Inter-substrate insulating layer 1bTwoAnd the semiconductor support substrate 1cTwoComposed of
It is shown that it is. [0004] The source of MOSFET on SOI wafer
The drain withstand voltage is determined by the semiconductor element forming substrates 1a, 1a.TwoNoso
The respective thicknesses d1 and d2 and the semiconductor element forming substrate 1a,
1a TwoImpurity concentration N1, N2, and substrate
Insulating layer 1b, 1bTwoEach thickness tbox1, t
It depends on three parameters of box2. At this time, semiconductor
Element forming substrate 1a, 1aTwoOf each impurity concentration N
1, N2 and their respective thicknesses tbox1, tbox2
There is an optimal condition known as the resurf condition.
You. [0005] The resurf condition is defined as a semiconductor element formation base.
Plates 1a, 1aTwoAnd the respective impurity concentrations N1 and N2 of
Semiconductor element forming substrates 1a, 1aTwoProduct of each thickness of
When a certain value is reached, the source / drain breakdown voltage is
Is to be optimized. In other words, the product is
Is set so that it deviates from a certain value that satisfies the
Is compared to the case where it is set to satisfy the resurf condition.
The withstand voltage becomes lower and when the optimum condition is satisfied (impurity concentration and
(When the product of the thickness becomes a constant value)
Important point that it is directly proportional to the thickness of the
It is also known. Furthermore, withstand voltage and inter-substrate insulating layer 1
b (1bTwo) Is related to the thickness
The relationship of example is known. [0006] The SOI wafer shown in FIG.
The case of the SOI wafer shown in FIG.
And a semiconductor element forming substrate 1 of an SOI wafer shown in FIG.
The thickness d1 of a is the semiconductor element shape of the SOI wafer of (b).
Composite substrate 1aTwoIs set to be thicker than the thickness d2. this
In each case, optimize the breakdown voltage for each SOI wafer
Impurity concentration to satisfy RESURF condition
If so, the semiconductor element of the SOI wafer shown in FIG.
The impurity concentration N1 of the formation substrate 1a is the SOI shown in FIG.
Semiconductor element forming substrate 1a of waferTwoImpurity concentration N2
The concentration will be much lower. And if (a) and
The inter-substrate insulating layers 1b, 1b of the SOI wafer shown in FIG.Two
Are the same, ie, tbox1
= Tbox2, the semiconductor element forming substrates 1a, 1a
TwoSOI wafer shown in (a) having a large thickness
Has a higher withstand voltage. However, S shown in (b)
Semiconductor element forming substrate 1a of OI waferTwoProperly thicken
If they are set so that the breakdown voltage of both can be equal
You. The above three parameters when the breakdown voltage of both is equal
The sum of the sizes is as follows. d1> d2 N1 <N2 tbox1 <tbox2 Next, when the relationship of the above expression holds, M other than the withstand voltage is used.
The OSFET characteristics will be described. Switching element
The other important characteristics other than withstand voltage are on-resistance and switching.
Time and heat dissipation characteristics. On-resistance is the semiconductor element formation base
Plates 1a, 1aTwoDepends on the respective impurity concentrations N1 and N2.
If the concentration is high, the on-resistance is small. Therefore,
The on-resistance of the SOI wafer shown in FIG.
The ON resistance of the SOI wafer shown in FIG.
In this case, Ron1> Ron2. That is, as shown in (b)
SOI wafers have lower on-resistance and are better.
You. The switching time depends on the drain-semiconductor support.
It depends on the electric capacity between the holding substrates.
The switching time also increases. Drain in SOI structure
The electric capacity between the semiconductor supporting substrates depends on the thickness of the inter-substrate insulating layer.
Since it is inversely proportional, the drain of the SOI wafer shown in FIG.
-The capacitance between the semiconductor supporting substrates is set to Csub1, (b).
Electricity between drain and semiconductor support substrate of SOI wafer shown
If the capacity is Csub2, then Csub1> Csub2.
You. In other words, the SOI wafer shown in FIG.
The running time is short and excellent. The heat radiation characteristic depends on the thickness of the inter-substrate insulating layer.
You. This is for the following reason. Semiconductor element forming substrate 1
a, 1aTwoGenerated during operation from MOSFET formed on top
The generated heat is applied to the semiconductor element forming substrates 1a, 1a, respectively.Two
To inter-substrate insulating layers 1b, 1b TwoThrough the semiconductor support substrate
1c, 1cTwoThe heat is dissipated by being transmitted to the I
Also, the semiconductor element forming substrates 1a, 1aTwoAs a constituent material
Using silicon, the inter-substrate insulating layers 1b, 1bTwoConstituent materials
When a silicon oxide film is used as the
Is 1.5 watts / cm C (silicon), 0.014 watts / cm
° C (silicon oxide film)
Is lower. Therefore, the heat radiation characteristics of the SOI wafer
As described above, the inter-substrate insulating layers 1b, 1bTwoThe thickness of each
Depends on tbox1 and tbox2, heat dissipation if it is thick
The characteristics deteriorate. The SOI wafer shown in FIG.
The heat transfer coefficient of the SOI wafer is shown as κ1, (b).
Is κ2, κ1> κ2. That is, in (a)
The SOI wafer shown has better heat radiation characteristics. Finally, in one of the manufacturing processes of the SOI wafer,
Consider a RESURF diffusion process. RESURF diffusion
The process is based on semiconductor element formation so as to satisfy RESURF conditions.
Plates 1a, 1aTwoOf the respective impurity concentrations N1 and N2
Diffusion of implanted RESURF ions to save
It is. In this step, usually, the semiconductor element forming substrate 1
a, 1aTwoRESURF ions implanted from the surface side of
Inter-substrate insulating layers 1b, 1b TwoHeat process to diffuse
In addition, to some extent, the semiconductor element forming substrates 1a, 1aTwo
Has a distribution that is biased toward the surface side of. This bias is
It has been found that the more uniform, the higher the withstand voltage. Therefore, the SOI wafers shown in FIGS.
C, the respective semiconductor element forming substrates 1a, 1aTwoThat of
The distributions of the impurity concentrations N1 and N2 are the same.
(That is, the semiconductor element forming substrates 1a, 1aTwoSurface side and base
Inter-plate insulating layers 1b, 1bTwoSide impurity concentration difference is the same)
The thermal process times to become tRSF1 and tRSF2 respectively
Then, they respectively correspond to the semiconductor element forming substrate 1a.
Thickness d1, semiconductor element forming substrate 1aTwoDepends on the thickness d2 of
Therefore, tRSF1> tRSF2. That is, (b)
SOI wafer shown in Figure 2 requires less resurf diffusion time
This is convenient for manufacturing. The above four points are summarized as follows.
Resistance, electric capacity between drain and semiconductor support substrate, laser
For the three points of diffusion time, the SOI wafer shown in (b)
C is better, but the only heat dissipation characteristic is
The SOI wafer shown in (a) wins.
You. [0012] The semiconductor device shown in FIG.
In the structure of the device, the thickness of the substrate
If the thickness is reduced, ON resistance, drain-semiconductor support substrate
About the three points of electric capacity and RESURF diffusion time,
Excellent characteristics are obtained, but the heat radiation characteristics deteriorate.
There was a problem. The present invention has been made in view of the above problems.
The purpose is to withstand voltage, on-resistance,
Characteristics such as electric capacity and heat dissipation between
MOSFET with excellent resurf diffusion time
To provide a structure of a semiconductor device having an SOI structure provided with
It is in. [0014] Means for Solving the Problems To achieve the above object,
Therefore, the semiconductor device of the present invention is
Body support substrate and separated by an inter-substrate insulating layer,
On a so-called semiconductor element forming substrate of an SOI wafer
In addition, at least a MOSFET is used as a switching element.
In one semiconductor device to be formed,
The thickness of the semiconductor element forming substrate immediately below the drain region,
The semiconductor element forming substrate in a region other than the drain region
Formed thinner than the thickness of the semiconductor element forming substrate.
The concentration of the pure substance is determined by changing the semiconductor element type immediately below the drain region.
The breakdown voltage of the MOSFET is optimal for the thickness of the substrate
The substrate immediately below the drain region
The thickness of the insulating layer between
It is characterized by being formed thicker than the thickness of the inter-plate insulating layer
Things. MOSFET formed on SOI wafer
Withstand voltage and electric capacity between drain and semiconductor support substrate
Depends only on the state of the region immediately below the drain region
Is known, the breakdown voltage is the semiconductor just under the drain region.
Impurity concentration, thickness, and inter-substrate insulating layer of the element formation substrate
The thickness of the drain-semiconductor support
The electric capacity between the substrates is determined by the insulating layer
Only depends on its thickness. Therefore, as in the semiconductor device of the present invention,
Reduce the thickness of the semiconductor element formation substrate just below the rain area
The impurity concentration is set high to optimize the breakdown voltage.
The thickness of the inter-substrate insulating layer just below the drain region
In other words, thick semiconductors in regions other than immediately below the drain region
A withstand voltage equivalent to the withstand voltage of the element forming substrate can be obtained.
is there. In other words, the two SOI wafers shown in FIG.
It is possible to obtain the same breakdown voltage as in the case of (1). The on-resistance of the semiconductor device of the present invention is as follows:
Impurity concentration of the semiconductor device formation substrate just below the drain region
Is the semiconductor element type in the region other than the region immediately below the drain region
When the breakdown voltage is optimized for the thickness of the substrate (see FIG.
Is higher than the impurity concentration of the SOI wafer shown)
In that case (in the case of the SOI wafer shown in FIG. 2A)
ON resistance can be reduced. In other words, FIG.
Among the two SOI wafers shown in FIG.
On-resistance equivalent to the on-resistance of the SOI wafer shown in (b)
You can get resistance. The electric capacity between the drain and the semiconductor substrate
The amount depends only on the thickness of the inter-substrate insulating layer immediately below the drain region.
Therefore, the size is temporarily set just below the drain region.
The thickness of the inter-substrate insulating layer in the region other than the region
From the capacitance when the thickness of the entire inter-substrate insulating layer is set
The thickness of the inter-substrate insulating layer can be reduced by a small amount. Word
In other words, of the two SOI wafers shown in FIG.
As shown in (b), it has excellent characteristics with smaller electric capacity.
In the case of SOI wafers,
Drain-substrate capacity equivalent to air capacity
Because Further, with respect to the heat radiation characteristics, a half of the present invention is used.
The conductor device has only a part of the inter-substrate insulating layer directly under the drain region.
Thicker and the base of the region other than immediately below the drain region
Since the inter-plate insulating layer is thinner than its thickness, the SOI wafer
Thicker inter-substrate insulating layer in all areas of the wafer
Better than the SOI wafer shown in FIG.
High heat dissipation characteristics can be obtained. Finally, the RESURF diffusion time determines the breakdown voltage.
Thickness of the semiconductor element formation substrate immediately below the drain region
Therefore, the resurf diffusion time is shown in FIG.
Make it equal to the RESURF diffusion time for SOI wafers.
The resurf of the SOI wafer shown in FIG.
It can be shorter than the diffusion time. In summary, the semiconductor device of the present invention has the structure shown in FIG.
Of the two SOI wafers shown in (1), only the heat dissipation characteristics are inferior
Other characteristics are superior to the SOI wafer shown in (a).
Heat dissipation characteristics compared to the SOI wafer shown in (b)
Is improved, and other characteristics become equal.
have. [0022] BRIEF DESCRIPTION OF THE DRAWINGS FIG.
One embodiment of the semiconductor device of the present invention will be described. In the figure
The illustrated semiconductor device (SOI wafer) uses silicon as a material.
Element forming substrate 2a to be formed and immediately below drain region 2d
Part of the inter-substrate insulating film 2b having a thickness of tbox2,
And an inter-substrate insulating film 2b having a thickness of tbox1TwoPart of
Inter-substrate insulation composed of silicon oxide film
A film 2 and a semiconductor support substrate 2c made of silicon.
A semiconductor element forming substrate 2
a and the semiconductor support substrate 2c.
You. The size of the semiconductor device (SOI wafer) is 4 inches
And the thickness is about 525 μm. Of the semiconductor element forming substrate 2a
The plane orientation is (100) and its conductivity type is N-type. On the semiconductor element forming substrate 2a, a withstand voltage of 350 V
 , MOSFET of capacity 1A class (However, drain region
Only 2d is shown in the figure,
(Not shown) is formed, and the device is activated.
The area is about 0.067cmTwoOccupy the device activation area
Formed on the surface of the semiconductor device forming substrate in the region
The region 2d is an N-type layer having a high impurity concentration and has a depth of about 1
μm, area is about 0.031cmTwoIt is. In order to obtain a withstand voltage of 350 V, the drain
The thickness d2 of the semiconductor element forming substrate 2a immediately below the region 2d is
About 5 μm, the inter-substrate insulating film 2b immediately below the drain region 2d.
Has a thickness tbox2 of about 3 μm and a semiconductor element forming substrate 2a.
Impurity concentration N2 of about 4E15 cm-3And the impurity concentration N
2 and the thickness d2 of the semiconductor element forming substrate 2a is about 2E12 cm
-2It is set to be. Immediately after the drain region 2d
In regions other than the lower region, the thickness of the semiconductor element forming substrate 2a is
The thickness d1 is about 7 μm and the inter-substrate insulating film 2bTwoThickness tbox
1 is about 1 μm. If the thickness d1 of the semiconductor element forming substrate 2a
And inter-substrate insulating film 2bTwoThe thickness of tbox1 properly
Even if you try to optimize the withstand voltage by doing
Only about 250V. Moreover, semiconductors for optimization
The impurity concentration of the element forming substrate 2a is lower than that of the drain region 2d.
Thickness of semiconductor element forming substrate 2a in a region other than the region immediately below
d1 is a semiconductor element type in a region immediately below the drain region 2d.
Since the thickness of the substrate 2a is larger than the thickness d2, the impurity concentration N
If it is not smaller than 2, the resurf condition is not satisfied. Immediately
In other words, the breakdown voltage is optimized by the thickness d1 of the semiconductor element forming substrate 2a.
As described above, the on-resistance of the MOSFET
Is the case where the thickness of the semiconductor element forming substrate 2a is d2.
The semiconductor device of the present invention shown in FIG.
The characteristics of the on-resistance are inferior to the arrangement. Also, the electric power between the drain and the semiconductor supporting substrate
As described above, as for the capacity, tbox2> tbo
x1, if the drain of the semiconductor device shown in FIG.
The thickness of the inter-substrate insulating film 2b immediately below the region 2d is set to tbox1.
, The drain-half of the semiconductor device shown in FIG.
The switch becomes larger than the electrical capacity between the conductor support boards.
1 is longer than that of the semiconductor device shown in FIG.
It will get worse. Further, the region immediately below the drain region 2d
Out-of-substrate inter-substrate insulating film 2bTwoThickness tbox1 is about 1
μm, the heat dissipation effect of the entire SOI wafer
The thickness of the inter-substrate insulating film of the entire I wafer
The thickness tbox2 of the inter-substrate insulating film 2b in the region immediately below d
(About 3 μm), the semiconductor of the present invention shown in FIG.
Body devices are better. The RESURF extension time also depends on the drain region.
A thin region (thickness) of the semiconductor element formation substrate 2a immediately below 2d
So that the resurf condition is satisfied only in the region where
Since the diffusion may be performed, the thickness of the thick semiconductor element forming substrate 2a is reduced.
In the area (area with thickness d1), the resurf condition is satisfied
Compared to the case where diffusion must be
The semiconductor device of the present invention shown in FIG. In summary, the semiconductor device of the present invention
Examples include on-resistance, switching time, resurf diffusion
The half shown in FIG. 2B, which is excellent in three characteristics of time,
It has all the advantages of a conductor device and is shown in FIG.
FIG. 2B shows a heat dissipation characteristic which is a disadvantage of the semiconductor device.
The advantage is that it is superior to the semiconductor device shown in
You. [0030] As described above, the semiconductor of the present invention
According to the device, as a switching element on the SOI wafer
Characteristics (ON resistance, switch)
Not only excellent in the aging time and heat radiation characteristics)
Time required for the resurf diffusion process, which took a long time
Can be done in a short time.

【図面の簡単な説明】 【図1】本発明の半導体装置の一実施形態を示す断面図
である。 【図2】従来の半導体装置の2つの実施形態を示す断面
図である。 【符号の説明】 2a 半導体素子形成基板 2c 半導体支持基板 2b,2b2 基板間絶縁層 2d ドレイン領域
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing one embodiment of a semiconductor device of the present invention. FIG. 2 is a cross-sectional view illustrating two embodiments of a conventional semiconductor device. [Description of Signs] 2a Semiconductor element forming substrate 2c Semiconductor supporting substrates 2b, 2b 2 Inter-substrate insulating layer 2d Drain region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早崎 嘉城 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 岸田 貴司 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 高野 仁路 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開 平3−119733(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/762 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiki Hayasaki 1048 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. Inventor Hitoshi Takano 1048 Kadoma, Kazuma, Osaka Pref. Matsushita Electric Works, Ltd. (56) References JP-A-3-119733 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01L 29/786 H01L 21/762

Claims (1)

(57)【特許請求の範囲】 【請求項1】 半導体素子形成基板と半導体支持基板と
が基板間絶縁層によって分離形成される、いわゆる、S
OIウェハの前記半導体素子形成基板上に、スイッチン
グ素子としてMOSFETを少なくとも1つ形成する半
導体装置において、前記MOSFETのドレイン領域直
下の前記半導体素子形成基板の厚みを、前記ドレイン領
域以外の領域の前記半導体素子形成基板の厚みよりも薄
く形成し、前記半導体素子形成基板の不純物濃度を、前
記ドレイン領域直下の前記半導体素子形成基板の厚さに
対して前記MOSFETの耐圧が最適値となるように設
定し、前記ドレイン領域直下の前記基板間絶縁層の厚み
を前記ドレイン領域以外の領域の前記基板間絶縁層の厚
みよりも厚く形成することを特徴とする半導体装置。
(57) [Claims 1] A semiconductor element forming substrate and a semiconductor supporting substrate are separated and formed by an inter-substrate insulating layer.
In a semiconductor device in which at least one MOSFET is formed as a switching element on the semiconductor element forming substrate of an OI wafer, the thickness of the semiconductor element forming substrate immediately below a drain region of the MOSFET is reduced by setting the semiconductor in a region other than the drain region. It is formed thinner than the thickness of the element formation substrate, and the impurity concentration of the semiconductor element formation substrate is set so that the breakdown voltage of the MOSFET becomes an optimum value with respect to the thickness of the semiconductor element formation substrate immediately below the drain region. A semiconductor device, wherein the thickness of the inter-substrate insulating layer immediately below the drain region is greater than the thickness of the inter-substrate insulating layer in a region other than the drain region.
JP27950095A 1995-10-26 1995-10-26 Semiconductor device Expired - Fee Related JP3385826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27950095A JP3385826B2 (en) 1995-10-26 1995-10-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27950095A JP3385826B2 (en) 1995-10-26 1995-10-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH09129885A JPH09129885A (en) 1997-05-16
JP3385826B2 true JP3385826B2 (en) 2003-03-10

Family

ID=17611920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27950095A Expired - Fee Related JP3385826B2 (en) 1995-10-26 1995-10-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3385826B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013936A (en) * 1998-08-06 2000-01-11 International Business Machines Corporation Double silicon-on-insulator device and method therefor

Also Published As

Publication number Publication date
JPH09129885A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
US6525373B1 (en) Power semiconductor device having trench gate structure and method for manufacturing the same
KR0161356B1 (en) Method of manufacturing semiconductor
ITMI972399A1 (en) PROCESS FOR THE MANUFACTURE OF A GATE MOS DEVICE WITH SELF-ALIGNED CELLS
JP2006024958A (en) Method of manufacturing thin film transistor
NL8701251A (en) SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURE THEREOF
JP4073669B2 (en) Vertical high-voltage semiconductor device
JP2001119025A (en) Semiconductor element and forming method therefor
JPH08181321A (en) Soi substrate and its manufacture
KR940001505B1 (en) Semiconductor device
JP3385826B2 (en) Semiconductor device
KR20040002204A (en) Semiconductor device and method for manufacturing the same
JPH0828502B2 (en) Bidirectional power vertical MOS device and method of manufacturing the same
JP2024512868A (en) MOSFET device and its manufacturing method
JPH02208952A (en) Semiconductor device and its manufacture
KR100518506B1 (en) Trench gate power mos device and fabricating method therefor
JP2001119023A (en) Semiconductor device and manufacturing method therefor
KR970018525A (en) A trench DMOS semiconductor device and a method of fabricating the same
US4700460A (en) Method for fabricating bidirectional vertical power MOS device
US6383849B1 (en) Semiconductor device and method for fabricating the same
KR100580384B1 (en) Thin Film Transistor with Gate Insulation
JP2883779B2 (en) Semiconductor device
JPH1187696A (en) High breakdown strength semiconductor device
JP3336933B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH0669093B2 (en) Method for manufacturing semiconductor device
JPS6143474A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees