JP3380599B2 - Blast furnace core activity detection method - Google Patents

Blast furnace core activity detection method

Info

Publication number
JP3380599B2
JP3380599B2 JP21965393A JP21965393A JP3380599B2 JP 3380599 B2 JP3380599 B2 JP 3380599B2 JP 21965393 A JP21965393 A JP 21965393A JP 21965393 A JP21965393 A JP 21965393A JP 3380599 B2 JP3380599 B2 JP 3380599B2
Authority
JP
Japan
Prior art keywords
furnace
pressure
core
furnace core
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21965393A
Other languages
Japanese (ja)
Other versions
JPH0770623A (en
Inventor
幸雄 富田
勝博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21965393A priority Critical patent/JP3380599B2/en
Publication of JPH0770623A publication Critical patent/JPH0770623A/en
Application granted granted Critical
Publication of JP3380599B2 publication Critical patent/JP3380599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、健全な炉況での高炉操
業に必要な炉芯部の通気性,通液性等を確保するため、
炉芯部の活性度を検出する方法に関する。 【0002】 【従来の技術】高炉の下部中央には、固体の移動が極端
に遅い領域、すなわち炉芯が存在する。炉芯の通気・通
液性が悪化すると、炉内の通気性も悪くなり、出銑比が
低下する。この現象が進行すると、冷え込み等の重大な
トラブルとなり、操業不能の状態になる。そのため、安
定した炉況で高炉操業する上で、炉芯を良好な活性状態
に維持することが要求される。特に、高出銑比に重点を
おいた高炉操業では、通気性及び通液性の管理が重要な
ファクターとなる。炉芯を不活性化させる要因の一つ
に、粉体の蓄積が掲げられる。特に、羽口から吹き込ま
れる微粉炭の吹込み量が増大の一途にある近年の高炉操
業では、羽口で燃焼し切れない微粉炭が炉芯に捕捉さ
れ、炉芯を不活性化させる傾向が強い。また、炉頂から
装入される鉱石,コークス等に随伴する微粒子や炉内で
の還元反応によって生じた微粉等も、炉芯を不活性化す
る要因となる。 【0003】炉芯の活性度を良好に維持するためには、
現在の活性度を適確に把握することが要求される。炉芯
の活性度を検出するため、従来から種々の手段が提案さ
れている。たとえば、特開平2−77505号公報で
は、炉芯にあるスラグを分析し、スラグ組成から炉芯の
活性度を判断している。特開平3−183707号公報
では、羽口先端から炉芯コークス表層部までの炉芯コー
クス深度をゾンデで測定し、炉芯コークス深度の測定値
に基づき炉芯の活性度を判断している。特開平3−21
5610号公報では、炉芯に挿入されるゾンデの挿入抵
抗が一定値以下になるように操業することにより、炉芯
の活性状態を維持している。また、特開平3−2437
08号公報では、炉芯部を伝播する衝撃波の減衰率及び
伝播速度に基づいて炉芯部の物理的特性を推定してい
る。 【0004】 【発明が解決しようとする課題】スラグ組成から炉芯の
活性度を判定する特開平2−77505号公報の方法で
は、スラグ組成の分析に時間がかかる。そのため、炉芯
の活性度に応じて操業条件を変更するアクションに遅れ
が生じる虞れがある。しかも、炉芯が不活性な状態にあ
るとき、炉芯内にあるスラグの組成変動が大きい。その
ため、スラグ組成から求められる炉芯の活性度に判定誤
差を生じ、実際の炉芯状況に対応した操業条件を採るこ
とができない場合もある。他方、特開平3−18370
7号公報,特開平3−215610号公報,特開平3−
243708号公報等の方法では、炉芯の活性状況と各
測定値との間の相関関係に対する信頼性が不十分であ
る。そのため、各測定値に基づき操業条件を調整して
も、炉芯を活性状態に維持又は回復できないことがあ
る。 【0005】本発明は、このような問題を解消すべく案
出されたものであり、炉頂圧力,送風管内圧力及び炉芯
内圧力の関係を利用することにより、炉上部における通
気性の悪化と区別して、炉芯の不活性化を簡単に且つ瞬
時に検出することを目的とする。 【0006】 【課題を解決するための手段】本発明の高炉炉芯部活性
度検出方法は、その目的を達成するため、送風中の高炉
羽口から炉中心に向けて炉内に挿入したゾンデにより炉
芯内圧力P1 を測定し、送風管内圧力P3 との差ΔP
3-1(=P3 −P1)及び送風管内圧力P3 と炉頂圧力P2
の差ΔP3-2(=P3 −P2)が共に大きいとき、炉芯部が
不活性な状態にあるものと判定することを特徴とする。 【0007】 【作用】本発明者等は、炉芯の不活性化状況を直接測定
することに関し、種々の調査・研究を重ねた。当初は、
炉芯内部の圧力変動のみで、炉芯活性度の判定を試み
た。しかし、炉芯が不活性化すると、高炉全体における
圧力損失が増大して送風圧力が増加するため、炉上部に
おけるガス流れの悪化と炉芯不活性化に起因したガス流
れの悪化とを判別することが困難であった。更に検討を
加えた結果、炉芯内と送風管との圧力差が炉芯の不活性
化との間に密接な相関関係を持っていることを見い出し
た。この相関関係は、炉芯が不活性化してくるとき、送
風管と炉頂間の圧力差が増大すると同時に、炉芯内への
ガス流入が阻害され、送風管と炉芯内の圧力差が増大す
ることに由来する。他方、鉱石還元に伴う原料の粉化等
によって炉上部における通気性が悪化する場合には、送
風管と炉頂間の圧力差が増大するものの、送風管と炉芯
内との圧力差はほとんど変化しない。したがって、双方
の圧力差から、炉芯の活性度を適確に判定することがで
きる。 【0008】炉芯内の圧力P1 は、図1に示すように、
圧力測定孔を設けたゾンデ1を高炉の側壁レンガ2に形
成した羽口3等の孔部から高炉の中心Cに向けて炉内に
挿入し、ゾンデ1の先端を炉芯内の圧力測定点Q1 に臨
ませることにより、容易に且つ迅速に測定することがで
きる。このとき、ゾンデ1の先端は、可能な限り中心C
の近傍に位置させることが好ましい。炉芯内圧力P1
測定と同時に、炉頂及び送風管内における圧力を測定
し、炉頂圧力P2 及び送風管内圧力P3 を測定する。圧
力P2 ,P3 は、従来から提案されている種々の手段で
測定される。そして、送風管内圧力P3 と炉芯内圧力P
1 との圧力差ΔP3-1 及び送風管内圧力P3 と炉頂圧力
2 との圧力差ΔP3−2を求める。 【0009】圧力差ΔP3-1 は、炉芯部の通気抵抗を表
す指標である。圧力差ΔP3-2 は、炉全体での通気抵抗
を表す指標である。したがって、炉上部におけるガス流
れの悪化から区別して、圧力差ΔP3-1 及びΔP3-2
変動状況から、炉芯の不活性化に起因する炉況の悪化を
適確に且つ迅速に予測することが可能となる。 【0010】測定のタイミングは、送風管内圧力P3
炉頂圧力P2 との圧力差ΔP3-2 が増大したときに設定
することが好ましい。圧力差ΔP3-2 が増大した炉況下
で、圧力測定用のゾンデ1を羽口3から中心Cに向けて
高炉内部に挿入する。そして、送風管内圧力P3 と炉芯
内圧力P1 との圧力差ΔP3-1 が設定値を超えた場合
も、炉芯が不活性化しているものと判断する。炉芯の不
活性化が判断されると、炉芯の活性度を回復させる操業
アクションが採られる。たとえば、微粉炭吹込み量の低
減,送風中酸素量の増加等によって、炉芯が活性化され
る。また、圧力差ΔP3-2 が増大しても、圧力差ΔP
3-1 が設定値以下にある場合、炉上部におけるガス流れ
が悪化したものと判断される。この場合、装入物分布の
変更,装入物強度の上昇等によって炉況の回復を図る。 【0011】 【実施例】中心Cから側壁レンガ2の外表面までの距離
が5.8mの高炉に本発明を適用した実施例を説明す
る。炉頂圧力P2及び送風管内圧力P3を常時測定し、圧
力差ΔP3-2を求めたところ、図2に示すように変動し
た。圧力差ΔP3-2が設定値1.2kgf/cm2を超え
たとき、炉内にゾンデ1を挿入し、中心Cから0.5m
の距離にある炉芯内の位置Q1にゾンデ1の先端を臨ま
せ、炉芯内圧力P1を測定した。炉芯が良好な状態にあ
るとき、送風管内圧力P3と炉芯内圧力P1との圧力差Δ
3-1は、0.3〜0.35kgf/cm2の範囲で推移
した。圧力差ΔP3-2は、この炉況で1.2〜1.3k
gf/cm2の範囲で推移した。そこで、通気性悪化の
管理基準をΔP3-2=1.35kgf/cm2に設定し、
圧力差ΔP3-2が1.35kgf/cm2を超えた場合に
炉芯内圧力P1を測定することとした。 【0012】炉芯及び炉上部の活性状態を圧力差ΔP
3-2とΔP3-1との関係で整理したところ、図3に示すよ
うに、圧力差ΔP3-2とΔP3-1との関係に基づき炉芯又
は炉上部の何れが不活性な状態にあるのかを判別するこ
とができた。図3では、図2に対応する圧力測定値の圧
力差P3-1=0.403kgf/cm2をA点で示した。
この場合、炉芯が不活性な状態にあるものと判定された
ことから、送風中酸素濃度を22%から22.5%まで
増加させた。その結果、図2に圧力差ΔP3-2の変動と
して示すように炉内圧力損失が低下し、数日中に炉況が
回復した。継続して高炉を操業していると、図4に示す
炉内圧力損失の上昇が検出された。そこで、炉内にゾン
デ1を挿入して炉芯内圧力P1を測定したところ、圧力
差ΔP3-1は0.361kgf/cm2であった。図3の
B点は、このときの圧力測定値に対応する位置を示す。
この場合、炉上部におけるガス流れが不良になったもの
と判断されることから、装入物分布制御によるアクショ
ンを実施した。その結果、図4に圧力差ΔP3-2の変動
として示すように炉内圧力損失が低下し、炉上部の通気
性が回復した。 【0013】 【発明の効果】以上に説明したように、本発明において
は、送風管内圧力に対する炉頂圧力及び炉芯内圧力の関
係を利用することにより、炉上部における通気性の悪化
と区別して、炉芯の不活性化を簡単に且つ瞬時に検出さ
れる。そのため、炉芯の不活性化による炉況の悪化がい
ち早く予測され、適切な操業アクションが採られる。そ
の結果、高炉の安定操業が可能になり、高出銑比が維持
される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for assuring gas permeability and liquid permeability of a furnace core required for blast furnace operation in a healthy furnace condition.
The present invention relates to a method for detecting the activity of a furnace core. [0002] In the center of the lower part of a blast furnace, there is an area where the movement of solids is extremely slow, that is, a furnace core. When the air permeability and liquid permeability of the furnace core deteriorate, the air permeability in the furnace also deteriorates, and the tapping ratio decreases. When this phenomenon progresses, serious troubles such as cooling down occur, and the operation becomes impossible. Therefore, in order to operate the blast furnace in a stable furnace condition, it is required to maintain the furnace core in a good activated state. In particular, in the blast furnace operation with an emphasis on the high tapping ratio, management of air permeability and liquid permeability is an important factor. One of the factors that inactivate the furnace core is powder accumulation. In particular, in recent blast furnace operations in which the amount of pulverized coal blown from tuyeres is constantly increasing, pulverized coal that cannot be completely burned at the tuyeres is trapped in the furnace mandrel and tends to inactivate the furnace mandrel. strong. In addition, fine particles accompanying the ore and coke charged from the furnace top, fine particles generated by a reduction reaction in the furnace, and the like also cause inactivation of the furnace core. [0003] In order to maintain good core activity,
It is necessary to accurately grasp the current activity. Conventionally, various means have been proposed for detecting the activity of the furnace core. For example, in Japanese Patent Application Laid-Open No. 2-77505, slag in a mandrel is analyzed, and the activity of the mandrel is determined from the slag composition. In JP-A-3-183707, the core coke depth from the tuyere tip to the surface layer of the core coke is measured with a sonde, and the activity of the core is determined based on the measured value of the core coke depth. JP-A-3-21
In Japanese Patent No. 5610, the active state of the furnace core is maintained by operating the probe so that the insertion resistance of the sonde inserted into the furnace core is equal to or less than a predetermined value. Also, JP-A-3-2437
In Japanese Patent Application Laid-Open No. 08-208, the physical characteristics of the furnace core are estimated based on the attenuation rate and propagation speed of a shock wave propagating in the furnace core. In the method disclosed in Japanese Patent Application Laid-Open No. 2-77505, in which the activity of the furnace core is determined from the slag composition, it takes a long time to analyze the slag composition. For this reason, there is a possibility that an action for changing the operating condition according to the activity of the furnace core may be delayed. Moreover, when the furnace core is in an inactive state, the composition of the slag in the furnace core varies greatly. For this reason, a determination error occurs in the activity of the mandrel obtained from the slag composition, and it may not be possible to adopt operating conditions corresponding to the actual mandrel condition. On the other hand, JP-A-3-18370
7, JP-A-3-215610, JP-A-3-215610
In the method disclosed in Japanese Patent No. 243708, the reliability of the correlation between the activated state of the furnace core and each measured value is insufficient. Therefore, even if the operating conditions are adjusted based on the measured values, the core may not be maintained or recovered in the active state. The present invention has been devised in order to solve such a problem. By utilizing the relationship among the pressure in the furnace top, the pressure in the blower tube, and the pressure in the core, the air permeability in the upper part of the furnace is deteriorated. It is another object of the present invention to easily and instantaneously detect the inactivation of a furnace core. In order to achieve the object, the method of detecting the core activity of a blast furnace according to the present invention has a sonde inserted into a furnace from a blast furnace tuyere being blown toward the center of the furnace. The pressure P 1 in the furnace core is measured by the following formula, and the difference ΔP from the pressure P 3 in the air duct is measured.
3-1 (= P 3 −P 1 ), blower pipe pressure P 3 and furnace top pressure P 2
When both the differences ΔP 3-2 (= P 3 −P 2 ) are large, it is determined that the furnace core is in an inactive state. The present inventors have conducted various investigations and studies on direct measurement of the state of inactivation of the furnace core. at first,
An attempt was made to determine the core activity using only the pressure fluctuation inside the core. However, when the core is deactivated, the pressure loss in the entire blast furnace increases and the blowing pressure increases, so that it is determined whether the gas flow in the upper part of the furnace is deteriorated and the gas flow due to the core deactivation is deteriorated. It was difficult. As a result of further investigation, it was found that the pressure difference between the furnace core and the blower tube had a close correlation with the inactivation of the furnace core. This correlation indicates that when the furnace core becomes inactive, the pressure difference between the blower tube and the furnace top increases, and at the same time, the gas flow into the furnace core is obstructed, and the pressure difference between the blower tube and the furnace core increases. Derived from the increase. On the other hand, when the permeability at the upper part of the furnace deteriorates due to powdering of raw materials accompanying the ore reduction, etc., the pressure difference between the blower tube and the furnace top increases, but the pressure difference between the blower tube and the furnace core is almost It does not change. Therefore, the activity of the furnace core can be accurately determined from the pressure difference between the two. [0008] reactor pressure P 1 in the core, as shown in FIG. 1,
A sonde 1 provided with a pressure measurement hole is inserted into a furnace from a hole such as a tuyere 3 formed in a side wall brick 2 of a blast furnace toward a center C of the blast furnace, and a tip of the sonde 1 is subjected to a pressure measurement point in a furnace core. by face the Q 1, it can be easily and quickly measured. At this time, the tip of the sonde 1
Is preferably located in the vicinity of. Simultaneously with the measurement of furnace core internal pressure P 1, to measure the pressure in the furnace top and the blower tube to measure the furnace top pressure P 2 and the blower pipe pressure P 3. The pressures P 2 and P 3 are measured by various means that have been conventionally proposed. Then, the pressure P 3 in the blower tube and the pressure P in the furnace core
Determine the pressure differential [Delta] P 3-2 the pressure difference [Delta] P 3-1 and the blower pipe pressure P 3 and the furnace top pressure P 2 with 1. The pressure difference ΔP 3-1 is an index indicating the ventilation resistance of the furnace core. The pressure difference ΔP 3-2 is an index representing the ventilation resistance in the entire furnace. Therefore, distinguishing from the deterioration of the gas flow in the upper part of the furnace, the fluctuation of the pressure differences ΔP 3-1 and ΔP 3-2 accurately and promptly predicts the deterioration of the furnace conditions due to the inactivation of the core. It is possible to do. The timing of the measurement is preferably set when the pressure difference ΔP 3-2 between the blower tube internal pressure P 3 and the furnace top pressure P 2 increases. Under the condition of the furnace where the pressure difference ΔP 3-2 is increased, the probe 1 for pressure measurement is inserted into the blast furnace from the tuyere 3 toward the center C. When the pressure difference ΔP 3-1 between the blower tube internal pressure P 3 and the furnace core pressure P 1 exceeds the set value, it is also determined that the furnace core is inactivated. When the inactivation of the mandrel is determined, an operating action is taken to restore the mandrel activity. For example, the furnace core is activated by reducing the amount of pulverized coal injected, increasing the amount of oxygen during blowing, and the like. Further, even if the pressure difference ΔP 3-2 increases, the pressure difference ΔP
If 3-1 is below the set value, it is determined that the gas flow in the upper part of the furnace has deteriorated. In this case, the furnace condition is restored by changing the charge distribution, increasing the charge strength, and the like. An embodiment in which the present invention is applied to a blast furnace having a distance of 5.8 m from the center C to the outer surface of the side wall brick 2 will be described. The furnace top pressure P 2 and the blower pipe pressure P 3 were constantly measured, and the pressure difference ΔP 3-2 was determined. When the pressure difference ΔP 3-2 exceeds the set value of 1.2 kgf / cm 2 , insert the sonde 1 into the furnace and move it 0.5 m from the center C.
A position to Q 1 in the furnace core in the the distance to face the tip of the probe 1, to measure the reactor core in the pressure P 1. When the furnace core is in a good condition, the pressure difference Δ between the blower tube pressure P 3 and the furnace core pressure P 1
P 3-1 changed in the range of 0.3 to 0.35 kgf / cm 2 . The pressure difference ΔP 3-2 is 1.2 to 1.3 k in this furnace condition.
gf / cm 2 . Therefore, the management standard for deterioration of air permeability is set to ΔP 3-2 = 1.35 kgf / cm 2 ,
When the pressure difference ΔP 3-2 exceeds 1.35 kgf / cm 2 , the furnace core pressure P 1 is measured. The activation state of the furnace core and the upper part of the furnace is determined by the pressure difference ΔP
When the relationship between 3-2 and ΔP 3-1 was arranged, as shown in FIG. 3, based on the relationship between the pressure difference ΔP 3-2 and ΔP 3-1 , either the core or the upper part of the furnace was inactive. It was able to determine whether it was in the state. In FIG. 3, the pressure difference P 3-1 = 0.403 kgf / cm 2 of the measured pressure value corresponding to FIG.
In this case, since it was determined that the furnace core was in an inactive state, the oxygen concentration during blowing was increased from 22% to 22.5%. As a result, the pressure loss in the furnace was reduced as shown in FIG. 2 as the fluctuation of the pressure difference ΔP 3-2 , and the furnace condition recovered within a few days. When the blast furnace was continuously operated, an increase in pressure loss in the furnace shown in FIG. 4 was detected. Therefore, measurement of the furnace core inside pressure P 1 by inserting sonde 1 in the furnace, the pressure difference [Delta] P 3-1 was 0.361kgf / cm 2. Point B in FIG. 3 indicates a position corresponding to the measured pressure value at this time.
In this case, since it was determined that the gas flow in the upper part of the furnace was defective, an action based on the charge distribution control was performed. As a result, the pressure loss in the furnace was reduced as shown in FIG. 4 as the fluctuation of the pressure difference ΔP 3-2 , and the gas permeability at the furnace upper part was restored. As described above, in the present invention, by utilizing the relationship between the pressure in the furnace and the pressure in the furnace core with respect to the pressure in the blower tube, the deterioration in air permeability in the upper part of the furnace is distinguished. , The inactivation of the mandrel is easily and instantaneously detected. Therefore, deterioration of the furnace condition due to inactivation of the furnace core is quickly predicted, and an appropriate operation action is taken. As a result, stable operation of the blast furnace becomes possible, and a high tapping ratio is maintained.

【図面の簡単な説明】 【図1】 炉内に挿入した圧力測定用のゾンデ 【図2】 本発明実施例における炉内圧力損失の変動を
示すグラフ 【図3】 炉内の不活性状態を圧力差ΔP3-1 及びΔP
3-2 の関係で表したグラフ 【図4】 同じく本発明実施例における他の時期におけ
る炉内圧力損失の変動を示すグラフ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 A sonde for pressure measurement inserted into a furnace FIG. 2 A graph showing fluctuations in pressure loss in a furnace in an embodiment of the present invention FIG. Pressure difference ΔP 3-1 and ΔP
Graph showing the variation in furnace pressure loss at other times in the same Invention Example graph [4] expressed in relation 3-2

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21B 7/24 303 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C21B 7/24 303

Claims (1)

(57)【特許請求の範囲】 【請求項1】 送風中の高炉羽口から炉中心に向けて炉
内に挿入したゾンデにより炉芯内圧力P1 を測定し、送
風管内圧力P3 との差ΔP3-1(=P3 −P1)及び送風管
内圧力P3 と炉頂圧力P2 の差ΔP3-2(=P3 −P2)が
共に大きいとき、炉芯部が不活性な状態にあるものと判
定することを特徴とする高炉炉芯部の活性度検出方法。
(57) [Claims 1 By inserted sonde towards the furnace center from a blast furnace tuyere in blowing furnace to measure the reactor core in the pressure P 1, the blowing pipe pressure P 3 When both the difference ΔP 3-1 (= P 3 −P 1 ) and the difference ΔP 3-2 (= P 3 −P 2 ) between the blower pipe pressure P 3 and the furnace top pressure P 2 are large, the furnace core is inactive. A method for detecting the activity of a blast furnace core, characterized in that it is determined that the blast furnace is in a stable state.
JP21965393A 1993-09-03 1993-09-03 Blast furnace core activity detection method Expired - Fee Related JP3380599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21965393A JP3380599B2 (en) 1993-09-03 1993-09-03 Blast furnace core activity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21965393A JP3380599B2 (en) 1993-09-03 1993-09-03 Blast furnace core activity detection method

Publications (2)

Publication Number Publication Date
JPH0770623A JPH0770623A (en) 1995-03-14
JP3380599B2 true JP3380599B2 (en) 2003-02-24

Family

ID=16738882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21965393A Expired - Fee Related JP3380599B2 (en) 1993-09-03 1993-09-03 Blast furnace core activity detection method

Country Status (1)

Country Link
JP (1) JP3380599B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246461B1 (en) * 2011-08-30 2013-03-21 현대제철 주식회사 Judgment method for central area of blast furnace

Also Published As

Publication number Publication date
JPH0770623A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP3380599B2 (en) Blast furnace core activity detection method
JP3004804B2 (en) Blast furnace core activity detection method
JP2007186759A (en) Method for operating blast furnace
JPH08302413A (en) Method for controlling terminating point of blowing in converter
JP3487203B2 (en) Blast furnace condition prediction method
CN113106177B (en) Anti-blocking and blockage-removing control device and method based on differential type large-scale blast furnace injection system
JPS5974209A (en) Detection of distribution of gaseous flow in blast furnace
JP2003306708A (en) Method for stably operating blast furnace
JP2696114B2 (en) Blast furnace operation management method
JPH0693317A (en) Control method for blowing pulverized coal from tuyere in blast furnace
JP3238037B2 (en) Blast furnace operation
JP2971336B2 (en) Slag cut control method and slag cut device in molten metal refining furnace
JP7502626B2 (en) Method for judging the condition of a blast furnace
JPH08188808A (en) Method for operating blast furnace
JP2021080556A (en) Method and device for judging furnace conditions in blast furnace, and program for judging furnace conditions in blast furnace
JPH0967603A (en) Operation of blast furnace
KR100402019B1 (en) Method For Anticipating Channeling In Blast Furnace
JPH04285105A (en) Method for grasping wall dropping condition in high temperature heating furnace
JP3465718B2 (en) Control method of core coke renewal rate in blast furnace
JPS6260442B2 (en)
JP2668486B2 (en) Blast furnace operation method using hydrogen gas utilization rate
JPH06346124A (en) Detection at the time of peeling scaffold in blast furnace and stable operation of blast furnace
JP2001262208A (en) Method for operating blast furnace
JP2000212618A (en) Operation of blast furnace
JP2694588B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees