JP3378411B2 - Load drive circuit - Google Patents

Load drive circuit

Info

Publication number
JP3378411B2
JP3378411B2 JP16431895A JP16431895A JP3378411B2 JP 3378411 B2 JP3378411 B2 JP 3378411B2 JP 16431895 A JP16431895 A JP 16431895A JP 16431895 A JP16431895 A JP 16431895A JP 3378411 B2 JP3378411 B2 JP 3378411B2
Authority
JP
Japan
Prior art keywords
contact
semiconductor switch
circuit
output
electromagnetic relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16431895A
Other languages
Japanese (ja)
Other versions
JPH0919043A (en
Inventor
弘一 蓬原
坂井  正善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP16431895A priority Critical patent/JP3378411B2/en
Priority to DE69630182T priority patent/DE69630182T2/en
Priority to US08/737,364 priority patent/US5818681A/en
Priority to EP96907726A priority patent/EP0763842B1/en
Priority to PCT/JP1996/000866 priority patent/WO1996030923A1/en
Publication of JPH0919043A publication Critical patent/JPH0919043A/en
Application granted granted Critical
Publication of JP3378411B2 publication Critical patent/JP3378411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負荷の給電回路に半導
体スイッチと電磁リレー接点とを直列に介装し、半導体
スイッチで負荷電流を制御し、半導体スイッチ故障時に
リレー接点で負荷への給電を停止するようにした負荷駆
動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply circuit for a load, in which a semiconductor switch and an electromagnetic relay contact are provided in series, the load current is controlled by the semiconductor switch, and when the semiconductor switch fails, the relay contact supplies power to the load. The present invention relates to a load drive circuit that is configured to stop.

【0002】[0002]

【従来の技術】従来、例えばソレノイド等の負荷を駆動
する負荷駆動回路として、負荷の給電回路に、負荷電流
の供給/停止を制御するための半導体スイッチと、この
半導体スイッチの短絡故障時に負荷電流を強制遮断する
ための電磁リレー接点とを、直列に介装するようにした
負荷駆動回路が、例えば特開平6−331679号公報
及びPCT/JP93/01703等で開示されてい
る。
2. Description of the Related Art Conventionally, for example, as a load driving circuit for driving a load such as a solenoid, a semiconductor switch for controlling supply / stop of a load current to a power supply circuit of the load, and a load current at the time of a short circuit failure of the semiconductor switch. A load drive circuit in which an electromagnetic relay contact for forcibly shutting off is connected in series is disclosed in, for example, JP-A-6-331679 and PCT / JP93 / 01703.

【0003】これら従来の負荷駆動回路の基本動作は、
負荷駆動時は、負荷の駆動信号が入力した時に、先に電
磁リレーの接点がONし、その後に半導体スイッチがO
Nして初めて負荷に電流が供給され、負荷への通電停止
時は、負荷駆動信号が停止した時に、逆に半導体スイッ
チが先にOFFして負荷への給電が停止され、その後電
磁リレーの接点がOFFするように構成されている。そ
して、半導体スイッチの短絡故障が発生して負荷電流を
OFFできない場合には、電磁リレー接点をOFFさせ
て負荷への給電を遮断できるようにしている。
The basic operation of these conventional load drive circuits is as follows.
When driving a load, when the load drive signal is input, the contact of the electromagnetic relay is turned on first, and then the semiconductor switch is turned on.
When the current is supplied to the load for the first time after N, and the power supply to the load is stopped, when the load drive signal stops, the semiconductor switch is turned off first to stop the power supply to the load, and then the contact of the electromagnetic relay. Is configured to turn off. When the short circuit failure of the semiconductor switch occurs and the load current cannot be turned off, the electromagnetic relay contact is turned off so that the power supply to the load can be cut off.

【0004】[0004]

【発明が解決しようとする課題】ところで、これら従来
の負荷駆動回路では、半導体スイッチ及びリレー接点の
OFFを監視するセンサを半導体スイッチ及びリレー接
点に並列接続すると共に、センサの信号源を負荷駆動電
源とは別に設け、この信号源から送信される信号が、半
導体スイッチ及びリレー接点が共にOFFの時に受信さ
れることにより、半導体スイッチ及びリレー接点のOF
Fが確認される構成としている。このように、負荷駆動
電源とは別にセンサ信号源を設けているため、負荷駆動
電源によりセンサの信号の送受信が妨害されないよう
に、コンデンサを用いて負荷駆動電源をセンサ部から遮
断するようにしている。しかし、前記コンデンサに短絡
故障が起こると、半導体スイッチ及びリレー接点のOF
F時にセンサ部を介して負荷に大きな漏れ電流が流れる
という問題がある。
By the way, in these conventional load drive circuits, a sensor for monitoring OFF of a semiconductor switch and a relay contact is connected in parallel to the semiconductor switch and the relay contact, and a signal source of the sensor is a load drive power source. A signal transmitted from this signal source is received separately when the semiconductor switch and the relay contact are both OFF, so that the OF of the semiconductor switch and the relay contact is provided.
F is confirmed. In this way, since the sensor signal source is provided separately from the load drive power supply, the load drive power supply should be cut off from the sensor section using a capacitor so that the load drive power supply does not interfere with the transmission and reception of the sensor signal. There is. However, when a short circuit failure occurs in the capacitor, the OF of the semiconductor switch and relay contact
There is a problem that a large leakage current flows to the load via the sensor section at the time of F.

【0005】例えばソレノイドバルブのような負荷を駆
動する場合、通常、ソレノイドバルブのコイル電流値
は、バルブがONする時とバルブがOFFする時とで値
が異なり、この電流値の差はヒステリシスと呼ばれる。
特に、小さなコイル電流でバルブをONさせるためにソ
レノイドバルブのコイルの巻数を多くするとヒステリシ
スは大きくなる。ヒステリシスが大きくなって小さな電
流でもバルブがOFFし難くなると、上述のセンサ部の
コンデンサ短絡故障時の漏れ電流が問題となる。
When a load such as a solenoid valve is driven, the coil current value of the solenoid valve is usually different when the valve is turned on and when it is turned off, and the difference between the current values is hysteresis. be called.
In particular, if the number of turns of the solenoid valve coil is increased in order to turn on the valve with a small coil current, the hysteresis increases. If the hysteresis becomes large and it becomes difficult for the valve to be turned off even with a small current, the leakage current at the time of the above-mentioned short circuit of the capacitor in the sensor unit becomes a problem.

【0006】即ち、半導体スイッチ及びリレー接点をO
FFさせた時に、コンデンサに短絡故障が生じている
と、センサ部を介して流れる漏れ電流によって、バルブ
のOFFの応答(レスポンス)が遅延されることにな
る。特に、機械プレス等では、このようなバルブのOF
F応答の遅れはスライド停止の遅れとなり、例えば、非
常停止時にも容易にスライドが停止しない事態を招く虞
れがある。
That is, the semiconductor switch and the relay contact are turned off.
If a short-circuit failure occurs in the capacitor when the FF is applied, the leak current flowing through the sensor unit delays the OFF response of the valve. Especially in mechanical presses, such valve OF
The delay in the F response becomes a delay in stopping the slide, which may lead to a situation in which the slide does not easily stop even during an emergency stop, for example.

【0007】PCT/JP93/01703の第3図に
示す実施例では、半導体スイッチのOFFを確認するセ
ンサ部に、負荷駆動電源から直接微小電流を供給する構
成としている。この場合、コンデンサが介在しないの
で、上述のコンデンサ短絡時の漏れ電流による負荷のO
FF応答低下に配慮する必要はない。しかしながら、こ
の実施例の場合はリレー接点のOFFを確認する構成と
はなっていないため、リレー接点に本質的に溶着しない
接点を用いなければならない。
In the embodiment shown in FIG. 3 of PCT / JP93 / 01703, a minute current is directly supplied from the load driving power source to the sensor section for confirming the OFF state of the semiconductor switch. In this case, since the capacitor does not intervene, the load O
It is not necessary to consider the reduction in FF response. However, in the case of this embodiment, since the configuration is not such that the relay contact is turned off, a contact that is essentially not welded to the relay contact must be used.

【0008】尚、PCT/JP93/01703には、
別の実施例として、スイッチのOFF状態を光ビームセ
ンサで監視する方法が述べられており、この方法を用い
て電磁リレーのOFF確認を行うことは可能であるが、
この方法は電磁リレーの中に光センサを配置しなければ
ならないという不便さがある。本発明は上記の事情に鑑
みなされたもので、強制操作型電磁リレーを用いてリレ
ー接点のOFF確認を行うことにより、コンデンサの短
絡故障や接点溶着故障等に配慮する必要のないフェール
セーフな構成の負荷駆動回路を提供することを目的とす
る。
The PCT / JP93 / 01703 includes:
As another example, a method of monitoring the OFF state of the switch with an optical beam sensor is described, and it is possible to confirm the OFF state of the electromagnetic relay using this method.
This method has the inconvenience of having to place the optical sensor in the electromagnetic relay. The present invention has been made in view of the above circumstances, and is a fail-safe configuration in which it is not necessary to consider a short-circuit failure of a capacitor, a contact welding failure, etc. by confirming OFF of a relay contact using a forced operation electromagnetic relay. It is an object of the present invention to provide a load driving circuit of the above.

【0009】[0009]

【課題を解決するための手段】このため請求項1記載の
発明の負荷駆動回路は、励磁時にONする励磁接点と非
励磁時にONする非励磁接点を有し、且つ、非励磁接点
と励磁接点を連動させる強制ガイドを有し、該強制ガイ
ドによって励磁接点のON時に非励磁接点が強制的にO
FFし、励磁接点のOFF時に非励磁接点が強制的にO
Nする構成の強制操作型電磁リレーと、負荷の給電回路
に前記励磁接点と共に直列に挿入される半導体スイッチ
と、該半導体スイッチエネルギを供給し半導体スイッ
チOFF状態の時に供給エネルギに基づく受信レベルが
高レベルとなって論理値1のスイッチOFF検出信号を
発生し半導体スイッチON状態の時に供給エネルギに基
づく受信レベルが低レベルとなって出力が論理値0とな
って前記スイッチOFF検出信号を停止する半導体スイ
ッチ監視手段と、該半導体スイッチ監視手段のスイッチ
OFF検出信号と前記電磁リレーの非励磁接点のON動
作に基づく励磁接点OFF検出信号との論理積信号をト
リガ入力とし、負荷駆動信号をリセット入力とし、前記
トリガ入力を自己保持すると共に故障時に出力が停止す
るフェールセーフな自己保持手段と、該自己保持手段の
出力が発生した時、前記電磁リレーを励磁した後に半導
体スイッチをONし、自己保持手段の出力が停止した
時、半導体スイッチをOFFした後に電磁リレーを非励
磁とするよう電磁リレー及び半導体スイッチを制御して
負荷への通電を制御する通電制御手段とを備えて構成し
た。
For this reason, the load drive circuit according to the invention of claim 1 has an exciting contact which is turned on during excitation and a non-exciting contact which is turned on during non-excitation, and the non-exciting contact and the exciting contact. Has a forced guide that interlocks with the non-excited contact when the excited contact is turned on by the forced guide.
FF is turned on and the non-excitation contact is forced to O when the excitation contact is turned off.
A forced operation type electromagnetic relay configured to N, a semiconductor switch is inserted in series with the excitation contact to the power supply circuit of the load, the reception level based on the supplied energy when the semiconductor switches OFF state to supply the energy to the semiconductor switch When the semiconductor switch is in the ON state, the reception level based on the supplied energy becomes low and the output becomes the logical value 0, and the switch OFF detection signal is stopped. The semiconductor switch monitoring means, a logical product signal of the switch OFF detection signal of the semiconductor switch monitoring means and the excitation contact OFF detection signal based on the ON operation of the non-excitation contact of the electromagnetic relay is used as a trigger input, and the load drive signal is reset input. Fail-safe that self-holds the trigger input and stops output in case of failure When the self-holding means and the output of the self-holding means are generated, the electromagnetic relay is excited and then the semiconductor switch is turned on, and when the output of the self-holding means is stopped, the semiconductor switch is turned off and the electromagnetic relay is de-excited. Control the electromagnetic relay and semiconductor switch so that
An energization control means for controlling energization to the load is provided.

【0010】また、請求項2記載の発明では、前記通電
制御手段における電磁リレーの制御信号が、前記自己保
持手段の出力からトランスを介して供給される構成とし
た。また、請求項3記載の発明では、前記通電制御手段
は、前記トランスの出力を第1整流回路で整流して電磁
リレーに制御信号として供給する一方、前記トランスの
出力の一部を第2整流回路を介して整流した後、前記励
磁接点とは別に設けた前記電磁リレーのもう1つの励磁
接点を介して半導体スイッチの制御信号として供給し、
且つ、前記第1整流回路の放電時定数を第2整流回路の
放電時定数より大きく設定する構成とした。
According to the second aspect of the invention, the control signal of the electromagnetic relay in the energization control means is supplied from the output of the self-holding means via a transformer. Further, in the invention according to claim 3, the energization control means rectifies the output of the transformer by the first rectifying circuit and supplies the rectified output to the electromagnetic relay as a control signal , while a part of the output of the transformer is second rectified. After rectifying through the circuit, it is supplied as a control signal of the semiconductor switch through another exciting contact of the electromagnetic relay provided separately from the exciting contact,
Moreover, the discharge time constant of the first rectifier circuit is set to be larger than the discharge time constant of the second rectifier circuit.

【0011】また、請求項4記載の発明では、前記強制
操作型電磁リレーが、負荷の給電回路に半導体スイッチ
と共に直列に挿入され非励磁接点と連動する第1励磁接
点とは別の第2励磁接点を有する構成であり、半導体ス
イッチ監視手段が、前記半導体スイッチエネルギを供
給し半導体スイッチOFF状態の時に供給エネルギに基
づき交流の受光出力を発生するフォトカプラと、該フォ
トカプラの交流出力を倍電圧整流する倍電圧整流回路と
を備え、該倍電圧整流回路の出力端を前記自己保持回路
のトリガ端子に接続すると共に、前記フォトカプラの受
光素子の出力端と電源との間に前記非励磁接点を介装し
当該非励磁接点ON時に受光素子に電源が接続される構
成であり、前記通電制御手段は、前記自己保持回路の出
力に基づいてトランスを介して電磁リレーの制御信号を
発生すると共に、前記第2励磁接点のON動作に基づい
て発生する出力信号と前記負荷駆動信号との論理積演算
を行う論理積演算回路を介して半導体スイッチの制御信
号を発生する構成である。
Further, in the invention according to claim 4, the forced operation type electromagnetic relay is inserted into the power feeding circuit of the load in series with the semiconductor switch in series, and the second excitation different from the first excitation contact interlocking with the non-excitation contact. a configuration having contacts, multiple semiconductor switch monitoring means includes a photocoupler for generating a light reception output of based on supply energy exchange at the time of the semiconductor switch OFF state to supply the energy to the semiconductor switches, the AC output of the photocoupler A voltage doubler rectifying circuit for rectifying the voltage, the output terminal of the voltage doubler rectifying circuit is connected to the trigger terminal of the self-holding circuit, and the non-excitation is provided between the output terminal of the light receiving element of the photocoupler and the power supply. A power supply is connected to the light receiving element when a contact is interposed and the non-excitation contact is turned on. A semiconductor switch via a logical product arithmetic circuit for generating a logical product of an output signal generated based on an ON operation of the second exciting contact and a load driving signal while generating a control signal of an electromagnetic relay via the switch. The control signal is generated.

【0012】[0012]

【作用】かかる構成において、電磁リレーの励磁接点及
び半導体スイッチが共にOFFの時には、非励磁接点は
必ずOFF状態であり、且つ、半導体スイッチ監視手段
から論理値1のスイッチOFF検出信号が発生する。こ
れにより、自己保持回路のトリガ入力は論理値1であ
る。この状態で、自己保持回路のリセット入力として論
理値1の負荷駆動信号が入力すれば、自己保持回路は出
力を発生し、通電制御手段によって電磁リレーが励磁さ
れて励磁接点がONとなり、その後、半導体スイッチが
ONして負荷に給電が開始される。励磁接点がONする
と非励磁接点がOFFとなるが、自己保持回路の出力は
自己保持されて継続し、励磁接点及び半導体スイッチは
ON状態に維持される。負荷駆動信号が停止すれば、自
己保持回路の出力が停止し、半導体スイッチがOFFし
た後、電磁リレーの励磁接点がOFFとなり負荷への給
電が停止する。
In such a configuration, when both the exciting contact and the semiconductor switch of the electromagnetic relay are OFF, the non-exciting contact is always in the OFF state, and the semiconductor switch monitoring means generates the switch OFF detection signal of logical value 1. As a result, the trigger input of the self-holding circuit has a logical value of 1. In this state, if a load drive signal having a logical value of 1 is input as the reset input of the self-holding circuit, the self-holding circuit generates an output, the energization control means excites the electromagnetic relay to turn on the exciting contact, and thereafter, The semiconductor switch is turned on and power supply to the load is started. When the exciting contact is turned on, the non-exciting contact is turned off, but the output of the self-holding circuit is self-held and continues, and the exciting contact and the semiconductor switch are maintained in the ON state. When the load drive signal is stopped, the output of the self-holding circuit is stopped, the semiconductor switch is turned off, the exciting contact of the electromagnetic relay is turned off, and the power supply to the load is stopped.

【0013】このように、強制操作型電磁リレーを用い
ることにより、電磁リレーの励磁接点のOFF状態をそ
の非励磁接点で確認してから負荷への給電を制御するこ
とができるので、電磁リレーの接点として溶着しない接
点を用いなくとも負荷駆動回路の信頼性を向上できる。
請求項2記載の発明によれば、トランスを介して電磁リ
レーを励磁する構成としているので、電磁リレーが常に
励磁されてしまうような故障が発生することがない。
As described above, by using the forced operation type electromagnetic relay, it is possible to confirm the OFF state of the exciting contact of the electromagnetic relay with the non-exciting contact and then control the power supply to the load. The reliability of the load drive circuit can be improved without using a non-welded contact as the contact.
According to the second aspect of the invention, since the electromagnetic relay is excited via the transformer, there is no possibility that the electromagnetic relay is always excited.

【0014】請求項3記載の発明によれば、リレー接点
を介して半導体スイッチに制御信号を供給するので、電
磁リレーが半導体スイッチより先にONすることが保証
できる。請求項4記載の発明によれば、電磁リレー接点
に比較的大きな電流を流すことが可能となり、溶着故障
は起こり難いが比較的大きな電流を流さないと接触不良
が起こり易い銀−酸化カドミウム接点を使用することが
できるようになる。
According to the third aspect of the invention, since the control signal is supplied to the semiconductor switch through the relay contact, it can be guaranteed that the electromagnetic relay is turned on before the semiconductor switch. According to the invention described in claim 4, it is possible to pass a relatively large current to the electromagnetic relay contact, and a silver-cadmium oxide contact is apt to cause contact failure unless a welding failure is likely to occur but a relatively large current is not passed. You will be able to use it.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1に本発明に係る負荷駆動回路の第1実施例を
示す。図1において、定電圧VCCを負荷Lに供給する給
電回路には、前記負荷Lと後述する強制操作型電磁リレ
ーRLの第1励磁接点1a及び半導体スイッチSW(図
ではトランジスタで示す)が直列接続されている。前記
第1励磁接点1aと負荷Lに対して並列接続される抵抗
1 を介して前記半導体スイッチSWの出力端(コレク
タ側)にエネルギとして定電圧VCCが供給される。ま
た、半導体スイッチSWに対して並列にトランジスタQ
が接続し、トランジスタQのベースに、高周波信号を発
生する信号発生手段としての信号発生器SGの出力端が
接続される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the load drive circuit according to the present invention. In FIG. 1, the load L, a first exciting contact 1a of a forced operation electromagnetic relay RL, which will be described later, and a semiconductor switch SW (indicated by a transistor in the figure) are connected in series in a power supply circuit that supplies a constant voltage V CC to the load L. It is connected. A constant voltage V CC is supplied as energy to the output end (collector side) of the semiconductor switch SW via a resistor R 1 connected in parallel with the first excitation contact 1a and the load L. Also, the transistor Q is connected in parallel to the semiconductor switch SW.
And the output terminal of the signal generator SG as a signal generating means for generating a high frequency signal is connected to the base of the transistor Q.

【0016】倍電圧整流回路REC3は、半導体スイッ
チSWのOFF状態で、信号発生器SGからの高周波信
号供給に伴うトランジスタQのON/OFF動作によっ
て発生する交流信号を倍電圧整流するものである。この
倍電圧整流回路REC3は、図2に示すように、2つの
コンデンサC1 ,C2 と2つのダイオードD1 ,D2
有し、入力信号を倍電圧整流して電圧VCCを重畳した出
力を発生する構成であり、米国特許5,027,114号明細書
及びWO94/23303等で従来公知である。
The voltage doubler rectifier circuit REC3 doubles voltage the AC signal generated by the ON / OFF operation of the transistor Q accompanying the high frequency signal supply from the signal generator SG when the semiconductor switch SW is in the OFF state. As shown in FIG. 2, this voltage doubler rectifier circuit REC3 has two capacitors C 1 and C 2 and two diodes D 1 and D 2 , and voltage-doubles the input signal to superimpose the voltage V CC . It is a configuration for generating an output, and is conventionally known in US Pat. No. 5,027,114, WO94 / 23303 and the like.

【0017】ここで、前記抵抗R1 、トランジスタQ、
信号発生器SG及び倍電圧整流回路REC3によって、
半導体スイッチSWのOFF状態で論理値1の半導体ス
イッチOFF検出信号を発生する半導体スイッチ監視手
段が構成される。前記倍電圧整流回路REC3の出力信
号は、前記電磁リレーRLの非励磁接点1bを介してフ
ェールセーフな自己保持手段としての自己保持回路1の
トリガ端子に入力される。この自己保持回路1は、倍
圧整流回路REC3の出力信号が論理値1であること及
非励磁接点1bがON状態(第1励磁接点1aがOF
F状態であることを示す)となっていることを条件とし
て、リセット端子に負荷駆動のための論理値1の負荷駆
動信号INが入力した時に交流の出力信号を発生すると
共に、この交流出力の整流信号をトリガ端子側に帰還す
ることで出力信号を自己保持する構成である。そして、
この自己保持回路1は、電源電圧より高いレベルの入力
信号が入力した時のみ交流信号を発生(論理値1)し故
障時には交流信号を発生しない(論理値0)フェールセ
ーフな構成である。このようなフェールセーフな自己保
持回路は、複数の抵抗とトランジスタで構成されるフェ
ールセーフなANDゲートを適用して構成され、米国特
許4,757,417号明細書、米国特許5,027,114号明細書、W
O94/23303及びWO94/23496等で従来
公知である。
Here, the resistor R 1 , the transistor Q,
By the signal generator SG and the voltage doubler rectifier circuit REC3,
A semiconductor switch monitoring unit is configured to generate a semiconductor switch OFF detection signal having a logical value of 1 when the semiconductor switch SW is OFF. The output signal of the voltage doubler rectifier circuit REC3 is input to the trigger terminal of the self-holding circuit 1 as fail-safe self-holding means via the non-exciting contact 1b of the electromagnetic relay RL. This self-holding circuit 1 has a function that the output signal of the voltage doubler rectifier circuit REC3 has a logical value of 1.
And the non-excitation contact 1b is in the ON state (the first excitation contact 1a is OF
(Indicating that it is in the F state), an AC output signal is generated when a load drive signal IN having a logical value 1 for driving a load is input to the reset terminal, and The output signal is self-held by feeding back the rectified signal to the trigger terminal side. And
The self-holding circuit 1 has a fail-safe configuration in which an AC signal is generated (logical value 1) only when an input signal having a level higher than the power supply voltage is input, and an AC signal is not generated (logical value 0) when a failure occurs. Such a fail-safe self-holding circuit is configured by applying a fail-safe AND gate composed of a plurality of resistors and transistors. US Pat. No. 4,757,417, US Pat. No. 5,027,114, W
It is conventionally known in O94 / 23303 and WO94 / 23496.

【0018】自己保持回路1の交流の出力信号は、交流
増幅器2で増幅されてトランスT1の一次巻線N1 に供
給され、二次巻線N2 側に伝達される。二次巻線N2
らの出力信号は、第1整流回路REC1で整流されて前
述した強制操作型電磁リレーRLのコイルに電磁リレー
の制御信号として供給され、電磁リレーRLが励磁され
る。前記電磁リレーRLは、励磁された時にONとなる
第1及び第2励磁接点1a,2aと、非励磁の時にON
となる1つの非励磁接点1bを有し、第1励磁接点1a
がON又はOFFした時には非励磁接点1bを強制的に
逆のOFF又はON位置に案内する強制ガイドを備えて
おり、前記第1励磁接点1aと非励磁接点1bが連動す
る構成である。
The AC output signal of the self-holding circuit 1 is amplified by the AC amplifier 2, supplied to the primary winding N 1 of the transformer T1, and transmitted to the secondary winding N 2 side. The output signal from the secondary winding N 2 is rectified by the first rectifier circuit REC1 and supplied to the coil of the above-mentioned forced operation electromagnetic relay RL as a control signal for the electromagnetic relay, and the electromagnetic relay RL is excited. The electromagnetic relay RL is the first and second excitation contacts 1a and 2a which are turned on when excited and the non-excited state when turned on.
Has one non-exciting contact 1b, and the first exciting contact 1a
When the switch is turned on or off, a forced guide for forcibly guiding the non-excitation contact 1b to the opposite OFF or ON position is provided, and the first excitation contact 1a and the non-excitation contact 1b are interlocked.

【0019】尚、強制操作型電磁リレー(Forced-opera
tion contacts relay)とは、励磁接点(メーク接点)と
非励磁接点(ブレーク接点)を有するリレーであって、
励磁接点に溶着が生じたときそのままの状態で決して非
励磁接点がONせず、また、逆に非励磁接点に溶着が生
じたときそのままの状態で決して励磁接点がONしない
ように構成される電磁リレーである。このようなリレー
は例えばドイツHENGSTLER 社で市販されており、また、
U.S. Patent 4,291,359 号明細書でも、compulsorily g
uid contacts relayとして示されている。
A forced-operated electromagnetic relay (Forced-opera
tion contacts relay) is a relay that has an excitation contact (make contact) and a non-excitation contact (break contact),
Electromagnetically configured so that the non-exciting contact never turns on when welding occurs on the exciting contact, and conversely the exciting contact does not turn on when welding occurs on the non-exciting contact. It is a relay. Such relays are commercially available, for example, from HENGSTLER GmbH in Germany, and
In US Patent 4,291,359, compulsorily g
Shown as uid contacts relay.

【0020】前記交流増幅器2の増幅出力信号は、ま
た、前記トランスT1の三次巻線N3を介して第2整流
回路REC2に入力して整流され、電磁リレーRLの第
2励磁接点2aを介して半導体スイッチSWのベースに
半導体スイッチSWの制御信号として入力する。ここ
で、前記整流回路REC1,2は、公知の全波整流回路
を用いてもよく、また、図3に示すような、2つのコン
デンサC3 ,C4 と2つのダイオードD3,D4 で構成
した倍電圧整流回路でもよい。ただし、第1整流回路R
EC1の平滑のOFF応答(入力が停止してから出力が
停止するまでの時間)は、第2整流回路REC2の平滑
のOFF応答より長くなるよう構成する。これは、第1
整流回路REC1の時定数を第2整流回路REC2の時
定数より大きく設定すればよい。具体的には平滑コンデ
ンサC 4 の静電容量を第1整流回路REC1の方を第2
整流回路REC2より極端に大きくすればよい。
The amplified output signal of the AC amplifier 2 is also input to the second rectifier circuit REC2 via the tertiary winding N 3 of the transformer T1 to be rectified and passed through the second exciting contact 2a of the electromagnetic relay RL. Input to the base of the semiconductor switch SW as a control signal for the semiconductor switch SW. Here, the rectifying circuit REC1,2 may use a known full-wave rectifier circuit, also as shown in FIG. 3, two capacitors C 3, C 4 and two diodes D 3, in D 4 The configured voltage doubler rectifier circuit may be used. However, the first rectifier circuit R
The smooth OFF response of EC1 (the time from the stop of the input until the stop of the output) is configured to be longer than the smooth OFF response of the second rectifier circuit REC2. This is the first
The time constant of the rectifier circuit REC1 may be set larger than the time constant of the second rectifier circuit REC2. Specifically, smoothing
The capacitance of the sensor C 4 to the first rectifier circuit REC1 to the second
It may be extremely larger than the rectifier circuit REC2.

【0021】このようにOFF応答を設定すれば、負荷
駆動信号INの停止により交流増幅器2の出力信号が消
滅した時、まず、半導体スイッチSWがOFFし、次に
電磁リレーRLの励磁接点1a,2aがOFFすること
になる。ここで、交流増幅器2、トランスT1、第1及
び第2整流回路REC1,REC2及び電磁リレーRL
の第2励磁接点2aによって通電制御手段が構成され
る。
By setting the OFF response in this way, when the output signal of the AC amplifier 2 disappears due to the stop of the load drive signal IN, the semiconductor switch SW is turned OFF first, and then the exciting contact 1a of the electromagnetic relay RL, 2a is turned off. Here, the AC amplifier 2, the transformer T1, the first and second rectifier circuits REC1 and REC2, and the electromagnetic relay RL.
The second excitation contact 2a constitutes an energization control means.

【0022】次に動作を説明する。電磁リレーRL及び
半導体スイッチSWが正常であれば、負荷駆動信号IN
が発生する以前では、電磁リレーRLが非励磁状態で第
1及び第2励磁接点1a,2aはOFF状態で、非励磁
接点1bはON状態にあり、半導体スイッチSWもOF
F状態にある。この時、信号発生器SGからトランジス
タQのベースに高周波信号が入力すると、トランジスタ
Qのスイッチング動作によって抵抗R1 を介して流れる
電流がスイッチされ、倍電圧整流回路REC3に交流信
号が入力する。交流信号は、倍電圧整流回路REC3で
倍電圧整流され、ON状態にある非励磁接点1bを介し
て自己保持回路1のトリガ端子に入力する。即ち、倍電
圧整流回路REC3の論理値1の出力信号によって半導
体スイッチSWのOFFが確認され、非励磁接点1bの
ON状態で第1励磁接点1aのOFFが確認され、両O
FF確認検出信号の論理積出力が自己保持回路1のトリ
ガ端子に入力することになる。
Next, the operation will be described. If the electromagnetic relay RL and the semiconductor switch SW are normal, the load drive signal IN
Before the occurrence of the noise, the electromagnetic relay RL is in the non-excited state, the first and second exciting contacts 1a and 2a are in the OFF state, the non-exciting contact 1b is in the ON state, and the semiconductor switch SW is also in the OF state.
It is in the F state. At this time, when a high frequency signal is input from the signal generator SG to the base of the transistor Q, the current flowing through the resistor R 1 is switched by the switching operation of the transistor Q, and the AC signal is input to the voltage doubler rectifier circuit REC3. The AC signal is subjected to voltage doubler rectification by the voltage doubler rectifier circuit REC3, and is input to the trigger terminal of the self-holding circuit 1 via the non-excitation contact 1b in the ON state. That is, the semiconductor switch SW is confirmed to be OFF by the output signal of the logical value 1 of the voltage doubler rectifier circuit REC3, and the OFF state of the first excitation contact 1a is confirmed in the ON state of the non-excitation contact 1b.
The logical product output of the FF confirmation detection signal is input to the trigger terminal of the self-holding circuit 1.

【0023】この状態で、負荷駆動信号INが自己保持
回路1のリセット端子に入力すると、自己保持回路1に
交流の出力信号を生じ、この出力信号は、交流増幅器2
で増幅され、トランスT1を介して第1整流回路REC
1で整流され電磁リレーRLを励磁する。これにより、
第1及び第2励磁接点1a,2aがON状態となる。第
2励磁接点2aがONした後、第2整流回路REC2の
整流出力信号で半導体スイッチSWがONされ、半導体
スイッチSWがONした時点で初めて負荷Lに電流が供
給される。電磁リレーRLが励磁されると非励磁接点1
bがOFFし、倍電圧整流回路REC3から自己保持回
路1に供給されるトリガ入力信号は消滅するが、自己保
持回路1の自己保持動作によって負荷駆動信号INが入
力する限り、自己保持回路1は出力信号を継続し、負荷
Lには負荷電流が流れ続ける。
In this state, when the load drive signal IN is input to the reset terminal of the self-holding circuit 1, an AC output signal is generated in the self-holding circuit 1, and this output signal is generated by the AC amplifier 2.
Is amplified by the first rectifier circuit REC via the transformer T1.
It is rectified by 1 to excite the electromagnetic relay RL. This allows
The first and second exciting contacts 1a, 2a are turned on. After the second excitation contact 2a is turned on, the semiconductor switch SW is turned on by the rectified output signal of the second rectifier circuit REC2, and the current is supplied to the load L only when the semiconductor switch SW is turned on. When the electromagnetic relay RL is excited, the non-excitation contact 1
Although b is turned off and the trigger input signal supplied from the voltage doubler rectifier circuit REC3 to the self-holding circuit 1 disappears, as long as the load drive signal IN is input by the self-holding operation of the self-holding circuit 1, the self-holding circuit 1 The output signal continues, and the load current continues to flow in the load L.

【0024】負荷駆動信号INが消滅すると、自己保持
回路1の出力信号が消滅し、交流増幅器2の出力信号も
消滅する。ここで、第1整流回路REC1の平滑のOF
F応答が第2整流回路REC2の平滑のOFF応答より
長く設定してあるため、第2整流回路REC2の整流出
力が先に消滅し、半導体スイッチSWが先にOFFして
負荷Lへの給電が停止した後、第1整流回路REC1の
整流出力が消滅して電磁リレーRLの第1及び第2励磁
接点1a,2aがOFFすることになる。
When the load drive signal IN disappears, the output signal of the self-holding circuit 1 disappears and the output signal of the AC amplifier 2 disappears. Here, the smoothing OF of the first rectifying circuit REC1
Since the F response is set to be longer than the smoothing OFF response of the second rectifier circuit REC2, the rectified output of the second rectifier circuit REC2 disappears first, the semiconductor switch SW turns OFF first, and power is supplied to the load L. After the stop, the rectified output of the first rectifier circuit REC1 disappears and the first and second exciting contacts 1a and 2a of the electromagnetic relay RL are turned off.

【0025】負荷駆動信号IN、電磁リレーRLの両励
磁接点1a,2a及び半導体スイッチSWの動作を、タ
イムチャートで示せば図4の通りとなる。負荷駆動信号
INが入力した後、第1整流回路REC1からの整流出
力で電磁リレーRLが励磁されて両励磁接点1a,2a
がONとなり、第2励磁接点2aがONしてから第2整
流回路REC2の整流動作が始まり時間TON経過後に第
2整流回路REC2からの出力で半導体スイッチSWが
立ち上がる。負荷駆動信号INの消滅時は、第1及び第
2整流回路REC1,2のOFF応答の相違によって、
両励磁接点1a,2aがOFFする以前に第2整流回路
REC2の出力が消滅して半導体スイッチSWがOFF
し、時間TOFF 遅れて電磁リレーRLが非励磁となり、
両励磁接点1a,2aがOFFする。
The operations of the load drive signal IN, the two excitation contacts 1a and 2a of the electromagnetic relay RL, and the semiconductor switch SW are shown in a time chart in FIG. After the load drive signal IN is input, the electromagnetic relay RL is excited by the rectified output from the first rectifier circuit REC1 and both the excitation contacts 1a and 2a.
Is turned on, the rectification operation of the second rectifier circuit REC2 starts after the second excitation contact 2a is turned on, and the semiconductor switch SW is activated by the output from the second rectifier circuit REC2 after the time T ON has elapsed. When the load drive signal IN disappears, due to the difference in the OFF response of the first and second rectifier circuits REC1 and REC2,
Before the two exciting contacts 1a and 2a are turned off, the output of the second rectifier circuit REC2 disappears and the semiconductor switch SW is turned off.
Then, the electromagnetic relay RL becomes non-excited after a delay of time T OFF ,
Both exciting contacts 1a and 2a are turned off.

【0026】かかる構成の負荷駆動回路によれば、第1
励磁接点1aが負荷に流れる電流(負荷電流)を直接O
N/OFFすることがなく、負荷電流は半導体スイッチ
SWによってON/OFFされるため、第1励磁接点1
aの溶着の可能性が極端に小さくなる。また、負荷駆動
信号INが入力されている状態(負荷電流が流れている
状態)で、万一半導体スイッチSWにON故障が生じた
場合、負荷駆動信号INが消滅した時点で、第1励磁接
点1aによって負荷電流を遮断して負荷Lの駆動を停止
できる。負荷駆動信号INが一旦停止した後、負荷駆動
信号INが入力しても、半導体スイッチSWがON状態
であるため倍電圧整流回路REC3からは論理値1の出
力信号が発生せず、自己保持回路1にトリガ信号が入力
されないので、電磁リレーRLは励磁されず負荷Lが駆
動することはない。尚、負荷駆動信号INが入力されて
いる状態で、万一半導体スイッチSWと第1励磁接点1
aがON故障すると、負荷Lには負荷駆動信号INが消
滅しても負荷電流が流れ続けることになるが、本実施例
回路の場合、第1励磁接点1aで負荷電流を直接ON/
OFFする構成ではないため、第1励磁接点1aが溶着
故障する心配は殆どなく、このような故障は起こらない
と考えてよい。
According to the load drive circuit having such a configuration, the first
The exciting contact 1a directly outputs the current (load current) flowing to the load.
Since the load current is turned ON / OFF by the semiconductor switch SW without turning N / OFF, the first excitation contact 1
The possibility of welding a is extremely reduced. Further, in the event that an ON failure occurs in the semiconductor switch SW while the load drive signal IN is being input (the state in which the load current is flowing), the first excitation contact will be reached when the load drive signal IN disappears. The load current can be interrupted by 1a to stop driving the load L. Even if the load drive signal IN is input after the load drive signal IN is once stopped, since the semiconductor switch SW is in the ON state, the voltage doubler rectifier circuit REC3 does not generate the output signal of the logical value 1 and the self-holding circuit Since the trigger signal is not input to 1, the electromagnetic relay RL is not excited and the load L is not driven. If the load drive signal IN is input, the semiconductor switch SW and the first excitation contact 1
When a has an ON failure, the load current continues to flow to the load L even if the load drive signal IN disappears. However, in the case of the circuit of this embodiment, the load current is directly turned ON / OFF at the first exciting contact 1a.
Since it is not turned off, there is almost no concern that the first excitation contact 1a will cause a welding failure, and it can be considered that such a failure does not occur.

【0027】また、電磁リレーRLの第2励磁接点2a
を介して半導体スイッチSWに制御信号を供給する構成
であるため、第1励磁接点1aがONしてから後、半導
体スイッチSWがONする過程が保証される。尚、第1
整流回路REC1として、図3の倍電圧整流回路を適用
した場合、平滑コンデンサC4 のリード線に断線故障が
生じると、図4の遅れ時間TOFF が保証できない場合が
起こる。これを避けるには、図5で示すように、平滑コ
ンデンサとして4端子コンデンサC4 ′を使用すればよ
く、更にフェールセーフ性が向上し、負荷駆動回路の信
頼性を高めることができる。
The second excitation contact 2a of the electromagnetic relay RL
Since the control signal is supplied to the semiconductor switch SW via the switch, the process of turning on the semiconductor switch SW after the first exciting contact 1a is turned on is guaranteed. The first
When the voltage doubler rectifier circuit of FIG. 3 is applied as the rectifier circuit REC1, if a disconnection failure occurs in the lead wire of the smoothing capacitor C 4 , the delay time T OFF of FIG. 4 may not be guaranteed. In order to avoid this, as shown in FIG. 5, a 4-terminal capacitor C 4 ′ may be used as a smoothing capacitor, which further improves the fail-safe property and the reliability of the load drive circuit.

【0028】また、本実施例回路では、第1励磁接点1
aと非励磁接点1bは、一方がONしているとき他方が
必ずOFFすることが条件である。もし、第1励磁接点
1aがONしていながら非励磁接点1bがONしてしま
うようでは、非励磁接点1bに第1励磁接点1aのOF
F検出機能を持たせた意味がない。通常、電磁リレーに
おける狭い接点間隔で上記の条件を保証することは難し
いが、これを保証することができる電磁リレーが、強制
操作型電磁リレーであり、通常の電磁リレーとは区別さ
れる。
In the circuit of this embodiment, the first exciting contact 1
It is a condition that one of the a and the non-excitation contact 1b is always turned off when the other is turned on. If the non-excitation contact 1b is turned on while the first excitation contact 1a is on, the non-excitation contact 1b has an OF of the first excitation contact 1a.
There is no point in having an F detection function. Normally, it is difficult to guarantee the above condition with a narrow contact distance in an electromagnetic relay, but an electromagnetic relay that can guarantee this is a forced operation type electromagnetic relay, which is distinguished from a normal electromagnetic relay.

【0029】また、万一、第2整流回路REC2の出力
信号が常に出力されてしまうような故障が起こると、半
導体スイッチSWは第2励磁接点2aによってON/O
FFされることになる。これは図4における遅れ時間T
OFF が略零に近いことに等しい。例えば、図6で示すよ
うに、自己保持回路1の出力信号を、コンデンサC42
抵抗R41,R42及びトランジスタQ1 で構成した増幅回
路を介して第2整流回路REC2(図6では図3の倍電
圧整流回路を適用したものを示してある)に入力させる
構成とした場合、万一、コンデンサC3 に短絡故障が起
こって、且つ、トランジスタQ1 のコレクタに断線故障
が起こると、図中点線aで示すように直接電位VCCが抵
抗R41を介し第2励磁接点2aから半導体スイッチSW
に常に印加されることになる。即ち、図1中の信号I
N′が常に発生してしまうような故障があってはならな
い。
If a failure occurs such that the output signal of the second rectifying circuit REC2 is always output, the semiconductor switch SW is turned on / off by the second exciting contact 2a.
It will be FF. This is the delay time T in FIG.
OFF is almost equal to zero. For example, as shown in FIG. 6, the output signal of the self-holding circuit 1 is changed to the capacitor C 42 ,
When the configuration is such that the second rectifier circuit REC2 (shown in FIG. 6 is the one to which the voltage doubler rectifier circuit of FIG. 3 is applied) via the amplifier circuit composed of the resistors R 41 and R 42 and the transistor Q 1 In the unlikely event that a short-circuit failure occurs in the capacitor C 3 and a disconnection failure occurs in the collector of the transistor Q 1 , the direct potential V CC is directly connected to the second exciting contact via the resistor R 41 as indicated by a dotted line a in the figure. 2a to semiconductor switch SW
Will always be applied to. That is, the signal I in FIG.
There must be no failure such that N'will always occur.

【0030】本実施例回路では、トランスT1を介して
第2整流回路REC2に入力信号を与える構成としてお
り、トランスT1の巻線間が絶縁されているため、この
ような故障は起こり得ない。尚、図1中の信号IN′′
が常に発生するような故障は生じてもかまわない。なぜ
ならば、このような故障は、半導体スイッチSWの信号
入力が第2励磁接点2aのスイッチング動作には関係せ
ず、半導体スイッチSWの出力側短絡故障と同じであ
り、半導体スイッチOFF検出信号が発生せず、自己保
持回路1がトリガされなくなるからである。
In the circuit of this embodiment, an input signal is applied to the second rectifier circuit REC2 via the transformer T1. Since the windings of the transformer T1 are insulated, such a failure cannot occur. The signal IN ″ in FIG.
It does not matter if a failure that always occurs occurs. This is because such a failure is not related to the switching operation of the second exciting contact 2a because the signal input of the semiconductor switch SW is the same as the output side short circuit failure of the semiconductor switch SW, and the semiconductor switch OFF detection signal is generated. This is because the self-holding circuit 1 is no longer triggered.

【0031】また、本実施例回路において、図7で示す
ように、第1励磁接点1aと負荷Lの位置を入れ換えて
もよい。しかし、第1励磁接点1aと負荷Lの直列回路
と半導体スイッチSWとの間に抵抗R1 を介して定電圧
CCを供給する必要がある。図8の場合は、第1励磁接
点1aで定電圧VCCがON/OFFされてしまう。ま
た、図9の場合は、半導体スイッチSWのON/OFF
に従って倍電圧整流回路REC3の出力状態は変化する
が、負荷Lに抵抗R1 を介して小さな電流が流れてしま
うため、負荷が小さな電流で動作するソレノイドバルブ
等の場合に問題である。尚、負荷抵抗は抵抗R 1 の抵抗
値より十分小さいものとする。
Further, in the circuit of this embodiment, as shown in FIG. 7, the positions of the first exciting contact 1a and the load L may be exchanged. However, it is necessary to supply the constant voltage V CC between the series circuit of the first excitation contact 1a and the load L and the semiconductor switch SW via the resistor R 1 . In the case of FIG. 8, the constant voltage V CC is turned ON / OFF at the first excitation contact 1a. Further, in the case of FIG. 9, ON / OFF of the semiconductor switch SW
Accordingly, the output state of the voltage doubler rectifier circuit REC3 changes, but a small current flows through the load L through the resistor R 1 , which is a problem in the case of a solenoid valve or the like in which the load operates with a small current. The load resistance is sufficiently smaller than the resistance value of the resistor R 1 .

【0032】また、電磁リレーRLが常に励磁されてし
まうような故障が起こると、半導体スイッチSWに短絡
故障が起こったとき、負荷への給電を遮断することがで
きない。例えば、図10のようにトランスを用いず自己保
持回路1の出力信号を図3の整流回路で整流してトラン
ジスタQ60で増幅してリレーRLを駆動する構成では、
トランジスタQ60にON故障(コレクタ/エミッタ間短
絡故障)が起こるとリレーRLは常に励磁されてしま
う。また、図11のように、自己保持回路1の出力信号を
結合コンデンサC60とトランジスタQ61による増幅回路
で増幅し、図2の構成の倍電圧整流回路によって整流し
てリレーRLを駆動する構成では、例えばコンデンサC
1 、ダイオードD2 、トランジスタQ61のコレクタ/エ
ミッタ間に短絡故障が起こると(更にダイオードD1
断線故障が起こると)リレーRLは常に励磁状態とな
る。
Further, if a failure occurs such that the electromagnetic relay RL is always excited, the power supply to the load cannot be cut off when a short-circuit failure occurs in the semiconductor switch SW. For example, as shown in FIG. 10, in the configuration in which the output signal of the self-holding circuit 1 is rectified by the rectifier circuit of FIG. 3 and amplified by the transistor Q 60 to drive the relay RL without using a transformer,
When an ON failure (collector / emitter short-circuit failure) occurs in the transistor Q 60 , the relay RL is always excited. Further, as shown in FIG. 11, the output signal of the self-holding circuit 1 is amplified by an amplifier circuit including a coupling capacitor C 60 and a transistor Q 61 , rectified by the voltage doubler rectifier circuit of FIG. 2, and the relay RL is driven. Then, for example, capacitor C
1, diode D 2, a short circuit fault between the collector / emitter of the transistor Q 61 occurs (further disconnection fault in the diode D 1 occurs) relay RL is always energized state.

【0033】本実施例回路では、トランスT1を用いて
いるので、このような電磁リレーRLが常に励磁状態と
なるような故障は起こらず、信頼性が高い。尚、抵抗R
1 に断線故障が起こった場合やトランジスタQに故障が
起こった場合、倍電圧整流回路REC3の出力信号は生
じない。また、交流増幅器2は出力側がトランスT1で
結合されるような増幅器であるから、自己発振の故障が
起こらないような増幅器(通常負帰還回路を持たないよ
うな増幅器)であれば、故障時トランスT1に交流の出
力信号は生じない。
Since the transformer T1 is used in the circuit of the present embodiment, such a failure that the electromagnetic relay RL is always in the excited state does not occur, and the reliability is high. The resistance R
When the disconnection failure occurs in 1 or the failure occurs in the transistor Q, the output signal of the voltage doubler rectifier circuit REC3 does not occur. Further, since the AC amplifier 2 is an amplifier whose output side is coupled by the transformer T1, an amplifier that does not cause a self-oscillation failure (usually an amplifier that does not have a negative feedback circuit) is a transformer at the time of failure. No alternating output signal occurs at T1.

【0034】また、通常電磁リレーは複数の接点が同時
にON又はOFFするように構成されるので、第2励磁
接点2aに溶着故障が生じると、第1励磁接点1aに溶
着故障が起こったことと同じ事象が起こるが、図1の第
1実施例回路では、第2励磁接点2aに流れる電流は小
さいので第2励磁接点2aの溶着故障の心配は殆どな
い。
Further, since a plurality of contacts are normally turned on or off at the same time in an electromagnetic relay, when a welding failure occurs in the second exciting contact 2a, it is considered that a welding failure occurs in the first exciting contact 1a. Although the same phenomenon occurs, in the circuit of the first embodiment shown in FIG. 1, since the current flowing through the second exciting contact 2a is small, there is almost no risk of the welding failure of the second exciting contact 2a.

【0035】次に、図12に本発明の第2実施例を示す。
図12は、負荷Lの電源と、半導体スイッチSW及び電磁
リレーRLの駆動電源とを別電源としたものである。
尚、第1実施例と同一部分には同一符号を付して説明を
省略する。図12において、本実施例は、半導体スイッチ
SWのON/OFF確認信号をフォトカプラで抽出する
構成であり、負荷Lと第1励磁接点1aと半導体スイッ
チSWの直列回路には、半導体スイッチSW及び電磁リ
レーRLの駆動電源とは別の交流電源3が接続される。
負荷Lと第1励磁接点1aの直列回路に並列接続される
抵抗R1 と直列にダイオードD70が設けられる。半導体
スイッチSWには、ダイオードD71、抵抗R2 、第1フ
ォトカプラPC1 の発光ダイオードPB1 及び第2フォ
トカプラPC2 のフォトダイオードDB2 の直列回路が
並列接続される。前記フォトダイオードDB2 と第2フ
ォトカプラPC2 を構成する発光ダイオードPB 2 は抵
抗R3 を介して信号発生器SGからの高周波信号が印加
される。前記第1フォトカプラPC1 のフォトダイオー
ドDB1 は、抵抗R4 を介して定電圧VCCが印加され、
フォトダイオードDB1 の受光出力は、倍電圧整流回路
REC3に入力される。その他の構成は、第1実施例と
同様であり説明を省略する。尚、前記ダイオードD70
71は、整流用である。
Next, FIG. 12 shows a second embodiment of the present invention.
In FIG. 12, the power source of the load L and the drive power source of the semiconductor switch SW and the electromagnetic relay RL are separate power sources.
The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. 12, the present embodiment has a configuration in which the ON / OFF confirmation signal of the semiconductor switch SW is extracted by a photocoupler, and the load L, the first exciting contact 1a, and the semiconductor switch SW are connected in series with the semiconductor switch SW and An AC power supply 3 different from the driving power supply of the electromagnetic relay RL is connected.
A diode D 70 is provided in series with a resistor R 1 connected in parallel with a series circuit of the load L and the first excitation contact 1a. The semiconductor switch SW, a diode D 71, the resistor R 2, the first photocoupler PC 1 emitting diodes PB 1 and the second photo-coupler PC 2 photo diode series circuit of the DB 2 is
Connected in parallel . The photodiode DB 2 with the high frequency signal from the light-emitting diode PB 2 via the resistor R 3 signal generator SG constituting the second photocoupler PC 2 is applied. A constant voltage V CC is applied to the photodiode DB 1 of the first photocoupler PC 1 via a resistor R 4 ,
The received light output of the photodiode DB 1 is input to the voltage doubler rectifier circuit REC3. Other configurations are the same as those in the first embodiment, and the description is omitted. The diode D 70 ,
D 71 is for rectification.

【0036】次に動作を説明する。負荷駆動信号INが
発生する以前で、第1励磁接点1a及び半導体スイッチ
SWが共にOFF状態にある時、信号発生器SGから第
2フォトカプラPC2 の発光ダイオードPB2 に高周波
信号が入力すると、この発光信号は、第2フォトカプラ
PC2 のフォトダイオードDB2 で受信されて、抵抗R
1 を介して流れる交流電源3の半波の電流がスイッチさ
れる。このスイッチング信号は、半導体スイッチSWが
OFFの時に、第1フォトカプラPC1 の発光ダイオー
ドPB1 を介してフォトダイオードDB1 に伝達され、
倍電圧整流回路REC3から論理値1の半導体スイッチ
OFF検出信号として出力され、ON状態の非励磁接点
1bを介して自己保持回路1にトリガ信号として入力さ
れる。その後の動作は、第1実施例と同様で、電磁リレ
ーRLが励磁されて第1励磁接点1aがONし、その後
に半導体スイッチSWがONして負荷Lに電流が供給さ
れる。
Next, the operation will be described. Before the load drive signal IN is generated, when both the first excitation contact 1a and the semiconductor switch SW are in the OFF state, when a high frequency signal is input from the signal generator SG to the light emitting diode PB 2 of the second photocoupler PC 2 , This light emission signal is received by the photodiode DB 2 of the second photocoupler PC 2 and the resistance R
The half-wave current of the AC power supply 3 flowing through 1 is switched. This switching signal is transmitted to the photodiode DB 1 through the light emitting diode PB 1 of the first photocoupler PC 1 when the semiconductor switch SW is OFF,
It is output from the voltage doubler rectifier circuit REC3 as a semiconductor switch OFF detection signal having a logic value of 1, and is input as a trigger signal to the self-holding circuit 1 via the non-excitation contact 1b in the ON state. The subsequent operation is the same as that of the first embodiment, and the electromagnetic relay RL is excited to turn on the first excitation contact 1a, and then the semiconductor switch SW is turned on to supply current to the load L.

【0037】次に、図13に本発明の第3実施例を示す。
現在、実用化されている電気接点材料で比較的溶着故障
の起こり難い材料は、銀−酸化カドミウム(AgCd
O)接点である。しかし、この接点材料は、接点を流れ
る電流が例えば100mA以上というような大きな電流
が流れないと接触不良が起こり易い。
Next, FIG. 13 shows a third embodiment of the present invention.
Among the electrical contact materials that are currently in practical use, silver-cadmium oxide (AgCd) is a material that is less likely to cause welding failure.
O) Contact. However, with this contact material, contact failure is likely to occur unless a large current such as 100 mA or more flows through the contact.

【0038】図13は、非励磁接点1b及び第2励磁接点
2aに比較的大きな電流を流すことのできるよう構成し
た負荷駆動回路を示す。尚、第1及び第2実施例と同一
部分には同一符号を付して説明を省略する。図13におい
て、フォトカプラPC1 のフォトダイオードDB1
は、電磁リレーRLの非励磁接点1bと抵抗R4 を介し
て定電圧VCCが印加される。また、フォトダイオードD
1 とこのフォトダイオードDB1 の負荷抵抗である抵
抗R4に対して抵抗R5 が並列接続される。非励磁接点
1bに流れる電流は、前記抵抗R5 の抵抗値で決定され
る。フォトダイオードDB1 からの交流信号に基づく倍
電圧整流回路REC3の論理値1の半導体スイッチOF
F検出信号は、直接自己保持回路1のトリガ入力として
入力する。
FIG. 13 shows a load drive circuit configured so that a relatively large current can be passed through the non-excitation contact 1b and the second excitation contact 2a. The same parts as those of the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted. In FIG. 13, the constant voltage V CC is applied to the photodiode DB 1 of the photocoupler PC 1 via the non-excitation contact 1b of the electromagnetic relay RL and the resistor R 4 . In addition, the photodiode D
A resistor R 5 is connected in parallel with B 1 and a resistor R 4 which is a load resistor of the photodiode DB 1 . The current flowing through the non-excitation contact 1b is determined by the resistance value of the resistor R 5 . Semiconductor switch OF having a logical value of 1 in the voltage doubler rectifier circuit REC3 based on the AC signal from the photodiode DB 1.
The F detection signal is directly input as a trigger input of the self-holding circuit 1.

【0039】また、第2励磁接点2aがON状態の時
に、信号発生器SGの高周波信号によるトランジスタQ
2 のスイッチング動作に伴う交流信号が、倍電圧整流回
路REC4に入力する。第2励磁接点2aに流れる電流
は、抵抗R6 の抵抗値で決定される。尚、抵抗R7 はト
ランジスタQ2 の負荷抵抗である。倍電圧整流回路RE
C4の整流出力は、論理積演算回路ANDの一方に入力
し、該論理積演算回路ANDの他方の入力には、負荷駆
動信号INが入力する。尚、前記論理積演算回路AND
は、故障時に出力が論理値0となるフェールセーフな構
成とする。なぜなら、論理積演算回路ANDの故障で、
倍電圧整流回路REC4からの整流出力が入力しないに
も拘らず、負荷駆動信号INの入力だけで論理積演算回
路ANDから出力が発生すれば、半導体スイッチSWが
電磁リレーRLの第1励磁接点1aより先にONし、電
磁リレーRLの第1励磁接点1aが負荷電流を直接制御
するようになって、第1励磁接点1aに溶着故障が発生
し易くなってしまうからである。
When the second exciting contact 2a is in the ON state, the transistor Q generated by the high frequency signal of the signal generator SG.
The AC signal accompanying the switching operation of 2 is input to the voltage doubler rectifier circuit REC4. Current flowing through the second excitation contact 2a is determined by the resistance value of the resistor R 6. The resistor R 7 is the load resistor of the transistor Q 2 . Double voltage rectifier circuit RE
The rectified output of C4 is input to one of the AND operation circuits AND, and the load drive signal IN is input to the other input of the AND operation circuit AND. The AND operation circuit AND
Has a fail-safe configuration in which the output has a logical value of 0 when a failure occurs. Because the failure of the AND operation circuit AND,
Even if the rectified output from the voltage doubler rectifier circuit REC4 is not input, if the output is generated from the AND operation circuit AND only by inputting the load drive signal IN, the semiconductor switch SW causes the semiconductor switch SW to generate the first excitation contact 1a of the electromagnetic relay RL. This is because it is turned on earlier and the first exciting contact 1a of the electromagnetic relay RL directly controls the load current, so that a welding failure is likely to occur at the first exciting contact 1a.

【0040】尚、フェールセーフな論理積演算回路は、
米国特許4,661,880 号明細書、WO94/23303及
びWO94/23496等で公知である。また、倍電圧
整流回路REC4の出力側に設けられるコンデンサC0
は、第2励磁接点2aがONしてから論理積演算回路A
NDに整流出力が入力するまでの時間を少し遅らせるた
めのためのものであり、図4の遅れ時間TONを確実に確
保するためのものである。尚、第2整流回路REC2の
整流出力の平滑のOFF応答は、第1整流回路REC1
の平滑のOFF応答より短く設定すること言うまでもな
い。
The fail-safe AND operation circuit is
It is known from U.S. Pat. No. 4,661,880, WO94 / 23303 and WO94 / 23496. Further, a capacitor C 0 provided on the output side of the voltage doubler rectifier circuit REC4
Is the AND operation circuit A after the second excitation contact 2a is turned on.
This is for slightly delaying the time until the rectified output is input to ND, and for ensuring the delay time T ON in FIG. The smoothed OFF response of the rectified output of the second rectifier circuit REC2 is determined by the first rectifier circuit REC1.
It goes without saying that it should be set shorter than the OFF response of the smoothness.

【0041】次に動作を説明する。負荷駆動信号INが
発生する以前で、第1励磁接点1a及び半導体スイッチ
SWが共にOFF状態にある時、信号発生器SGからト
ランジスタQ1 に高周波信号が入力すると、フォトカプ
ラPC1 の発光ダイオードPB1 がスイッチされる。こ
の時、非励磁接点1bはON状態にあるため、このスイ
ッチ信号をフォトダイオードDB1 が受信して、倍電圧
整流回路REC3に交流信号が入力し、倍電圧整流回路
REC3から論理値1の半導体スイッチOFF検出信号
が自己保持回路1にトリガ信号として入力される。
Next, the operation will be described. When the high frequency signal is input from the signal generator SG to the transistor Q 1 when the first excitation contact 1a and the semiconductor switch SW are both in the OFF state before the load drive signal IN is generated, the light emitting diode PB of the photocoupler PC 1 is detected. 1 is switched. At this time, since the non-excitation contact 1b is in the ON state, the photodiode DB 1 receives this switch signal, the AC signal is input to the voltage doubler rectifier circuit REC3, and the semiconductor device having the logical value 1 is input from the voltage doubler rectifier circuit REC3. The switch OFF detection signal is input to the self-holding circuit 1 as a trigger signal.

【0042】この状態で、負荷駆動信号INが自己保持
回路1のリセット端子に入力すると、自己保持回路1の
自己保持出力に基づいて電磁リレーRLが励磁されて第
1及び第2励磁接点1a,2aがONとなる。第2励磁
接点2aがONすると、トランジスタQ2 のスイッチン
グ動作に基づいて倍電圧整流回路REC4から整流出力
が、コンデンサC0 の平滑作用を受けて論理積演算回路
ANDの一方に入力する。論理積演算回路ANDの他方
には、既に負荷駆動信号INが入力しているため、倍電
圧整流回路REC4からの整流出力が入力すると、論理
積演算回路ANDから論理値1の出力信号が発生し、第
2整流回路REC2を介して半導体スイッチSWがON
し、負荷Lに負荷電流が供給される。
In this state, when the load drive signal IN is input to the reset terminal of the self-holding circuit 1, the electromagnetic relay RL is excited based on the self-holding output of the self-holding circuit 1, and the first and second exciting contacts 1a, 2a is turned on. When the second excitation contact 2a is turned on, the rectified output from the voltage doubler rectifier circuit REC4 based on the switching operation of the transistor Q 2 is input to one of the AND operation circuits AND by the smoothing action of the capacitor C 0 . Since the load drive signal IN has already been input to the other of the AND operation circuits AND, when the rectified output from the voltage doubler rectifier circuit REC4 is input, the AND operation circuit AND generates an output signal of logical value 1. , The semiconductor switch SW is turned on via the second rectifier circuit REC2
Then, the load current is supplied to the load L.

【0043】かかる第3実施例回路によれば、電磁リレ
ーRLの非励磁接点1b、第2励磁接点2aに比較的大
きな電流を流すことができるので、接触不良の問題もな
く溶着故障の起こり難い銀−酸化カドミウム(AgCd
O)接点を使用することができる。
According to the circuit of the third embodiment, since a relatively large current can be applied to the non-exciting contact 1b and the second exciting contact 2a of the electromagnetic relay RL, there is no problem of contact failure and it is unlikely that welding failure occurs. Silver-Cadmium oxide (AgCd
O) contacts can be used.

【0044】[0044]

【発明の効果】以上説明したように請求項1記載の本発
明によれば、強制操作型電磁リレーを使用することで、
コンデンサの短絡故障に起因する負荷への漏れ電流を考
慮せずに負荷給電回路に介装する電磁リレー接点のOF
F確認しながら負荷への給電を制御できるので、電磁リ
レーの接点に溶着故障がおこるような接点材料を使用し
たとしても、負荷駆動回路のフェールセーフ性を確保し
て負荷駆動回路の信頼性を向上できる。
As described above, according to the present invention as set forth in claim 1, by using the forced operation type electromagnetic relay,
OF of the electromagnetic relay contact that is inserted in the load power supply circuit without considering the leakage current to the load due to the short-circuit failure of the capacitor
Since the power supply to the load can be controlled while checking F, even if a contact material that causes a welding failure at the contact of the electromagnetic relay is used, the fail-safe property of the load drive circuit is ensured and the reliability of the load drive circuit is improved. Can be improved.

【0045】また、請求項2記載の発明によれば、トラ
ンスを介して電磁リレーに給電する構成としたので、電
磁リレーが常に励磁されるような故障を防止でき、電磁
リレー接点の負荷電流強制遮断機能を保証できる。ま
た、請求項3記載の発明によれば、請求項2記載の発明
の効果に加えて、電磁リレー接点が負荷電流を直接ON
/OFFすることがなく、電磁リレー接点の溶着故障の
発生を防止できる。
According to the second aspect of the invention, since the electromagnetic relay is supplied with power via the transformer, it is possible to prevent a failure such that the electromagnetic relay is constantly excited, and to force the load current of the electromagnetic relay contact. The blocking function can be guaranteed. According to the invention of claim 3, in addition to the effect of the invention of claim 2, the electromagnetic relay contact directly turns on the load current.
It is possible to prevent the occurrence of welding failure of the electromagnetic relay contact without turning on / off.

【0046】また、請求項4記載の発明によれば、電磁
リレーの接点に比較的大きな電流を流すことが可能とな
り、溶着故障は起こり難いが比較的大きな電流を流さな
いと接触不良が起こり易い銀−酸化カドミウム接点を使
用することができ、負荷駆動回路の信頼性をより高める
ことができる。
Further, according to the invention described in claim 4, a relatively large current can be made to flow through the contact of the electromagnetic relay, and a welding failure is unlikely to occur, but contact failure is likely to occur unless a relatively large current is made to flow. A silver-cadmium oxide contact can be used to further enhance the reliability of the load drive circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る負荷駆動回路の第1実施例を示す
回路図
FIG. 1 is a circuit diagram showing a first embodiment of a load drive circuit according to the present invention.

【図2】同上第1実施例の倍電圧整流回路の具体的な回
路図
FIG. 2 is a specific circuit diagram of a voltage doubler rectifier circuit according to the first embodiment.

【図3】同上第1実施例の第1及び第2整流回路の具体
的な回路図
FIG. 3 is a detailed circuit diagram of the first and second rectifier circuits of the first embodiment.

【図4】半導体スイッチと励磁接点の動作を示すタイム
チャート
FIG. 4 is a time chart showing the operation of the semiconductor switch and the excitation contact.

【図5】第1整流回路の別の具体的な回路図FIG. 5 is another specific circuit diagram of the first rectifier circuit.

【図6】トランスを介して第2整流回路に信号を入力す
る効果の説明図
FIG. 6 is an explanatory diagram of an effect of inputting a signal to a second rectifier circuit via a transformer.

【図7】同上第1実施例の負荷給電回路の変形態様を示
す図
FIG. 7 is a diagram showing a modification of the load power supply circuit of the first embodiment.

【図8】半導体スイッチにエネルギを供給する場合の好
ましくない回路図
FIG. 8 is an unfavorable circuit diagram when supplying energy to a semiconductor switch.

【図9】半導体スイッチにエネルギを供給する場合の好
ましくない別の回路図
FIG. 9 is another undesirable circuit diagram when supplying energy to a semiconductor switch.

【図10】トランスを介して電磁リレーを駆動する効果の
説明図
FIG. 10 is an explanatory diagram of an effect of driving an electromagnetic relay via a transformer.

【図11】トランスを介して電磁リレーを駆動する効果の
別の説明図
FIG. 11 is another explanatory diagram of the effect of driving the electromagnetic relay via the transformer.

【図12】本発明に係る負荷駆動回路の第2実施例を示す
回路図
FIG. 12 is a circuit diagram showing a second embodiment of the load drive circuit according to the present invention.

【図13】本発明に係る負荷駆動回路の第3実施例を示す
回路図
FIG. 13 is a circuit diagram showing a third embodiment of the load drive circuit according to the present invention.

【符号の説明】[Explanation of symbols]

1 自己保持回路 2 交流増幅器 RL 電磁リレー L 負荷 SW 半導体スイッチ 1a 第1励磁接点 2a 第2励磁接点 1b 非励磁接点 REC3 倍電圧整流回路 R1 抵抗 SG 信号発生器 AND 論理積演算回路 PC1 第1フォトカプラ PC2 第2フォトカプラ1 Self-holding circuit 2 AC amplifier RL Electromagnetic relay L Load SW Semiconductor switch 1a 1st excitation contact 2a 2nd excitation contact 1b Non-excitation contact REC3 Double voltage rectifier circuit R 1 Resistance SG Signal generator AND AND operation circuit PC 1 1st Photo coupler PC 2 2nd photo coupler

フロントページの続き (56)参考文献 特開 平6−331679(JP,A) 特開 平5−252745(JP,A) 特公 平4−14452(JP,B2) 米国特許4757417(US,A) 米国特許5027114(US,A) 国際公開94/23303(WO,A1) 国際公開94/23496(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H02H 3/00 H02H 7/00 H01H 47/00 H01H 9/54 Continuation of the front page (56) References JP-A-6-331679 (JP, A) JP-A-5-252745 (JP, A) JP-B-4-14452 (JP, B2) US Patent 4757417 (US, A) US Pat. No. 5027114 (US, A) International Publication 94/23303 (WO, A1) International Publication 94/23496 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H02H 3/00 H02H 7 / 00 H01H 47/00 H01H 9/54

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】励磁時にONする励磁接点と非励磁時にO
Nする非励磁接点を有し、且つ、非励磁接点と励磁接点
を連動させる強制ガイドを有し、該強制ガイドによって
励磁接点のON時に非励磁接点が強制的にOFFし、励
磁接点のOFF時に非励磁接点が強制的にONする構成
の強制操作型電磁リレーと、負荷の給電回路に前記励磁
接点と共に直列に挿入される半導体スイッチと、該半導
体スイッチエネルギを供給し半導体スイッチOFF状
態の時に供給エネルギに基づく受信レベルが高レベルと
なって論理値1のスイッチOFF検出信号を発生し半導
体スイッチON状態の時に供給エネルギに基づく受信レ
ベルが低レベルとなって出力が論理値0となって前記ス
イッチOFF検出信号を停止する半導体スイッチ監視手
段と、該半導体スイッチ監視手段のスイッチOFF検出
信号と前記電磁リレーの非励磁接点のON動作に基づく
励磁接点OFF検出信号との論理積信号をトリガ入力と
し、負荷駆動信号をリセット入力とし、前記トリガ入力
を自己保持すると共に故障時に出力が停止するフェール
セーフな自己保持手段と、該自己保持手段の出力が発生
した時、前記電磁リレーを励磁した後に半導体スイッチ
をONし、自己保持手段の出力が停止した時、半導体ス
イッチをOFFした後に電磁リレーを非励磁とするよう
電磁リレー及び半導体スイッチを制御して負荷への通電
を制御する通電制御手段とを備えて構成したことを特徴
とする負荷駆動回路。
1. An exciting contact that is turned on during excitation and O when deenergized.
Has a non-exciting contact that turns on N, and has a forced guide that interlocks the non-exciting contact and the exciting contact. The non-exciting contact is forcibly turned off when the exciting contact is turned on by the forced guide, and when the exciting contact is turned off. a forced operation type electromagnetic relay having the structure-energized contacts are oN forcibly, the semiconductor switch is inserted in series with the excitation contact to the power supply circuit of the load, and supplying energy to said semiconductor switch when the semiconductor switch OFF state The reception level based on the supplied energy becomes a high level to generate a switch OFF detection signal having a logical value 1, and when the semiconductor switch is in the ON state, the reception level based on the supplied energy becomes a low level and the output becomes a logical value 0. A semiconductor switch monitoring means for stopping the switch OFF detection signal, a switch OFF detection signal of the semiconductor switch monitoring means, and the electromagnetic relay. AND the excitation contact OFF detection signal based on the ON operation of the non-exciting contact is used as the trigger input, the load drive signal is used as the reset input, and the trigger input is held by itself and the output is stopped at the time of failure. When the self-holding means and the output of the self-holding means are generated, the electromagnetic relay is excited and then the semiconductor switch is turned on, and when the output of the self-holding means is stopped, the semiconductor switch is turned off and the electromagnetic relay is de-excited. And a power supply control means for controlling the power supply to the load by controlling the electromagnetic relay and the semiconductor switch.
【請求項2】前記通電制御手段における電磁リレーの制
御信号が、前記自己保持手段の出力からトランスを介し
て供給される構成である請求項1記載の負荷駆動回路。
2. The load drive circuit according to claim 1, wherein the control signal of the electromagnetic relay in the energization control means is supplied from the output of the self-holding means via a transformer.
【請求項3】前記通電制御手段は、前記トランスの出力
を第1整流回路で整流して電磁リレーに制御信号として
供給する一方、前記トランスの出力の一部を第2整流回
路を介して整流した後、前記励磁接点とは別に設けた前
記電磁リレーのもう1つの励磁接点を介して半導体スイ
ッチの制御信号として供給し、且つ、前記第1整流回路
の放電時定数を第2整流回路の放電時定数より大きく設
定する構成とした請求項2記載の負荷駆動回路。
3. The energization control means rectifies the output of the transformer by a first rectifying circuit and supplies the rectified output to an electromagnetic relay as a control signal , while supplying a part of the output of the transformer to a second rectifying circuit. After being rectified via the electromagnetic switch, the electromagnetic relay is provided as a control signal of the semiconductor switch via another exciting contact of the electromagnetic relay provided separately from the exciting contact, and the discharge time constant of the first rectifying circuit is set to a second value. The load drive circuit according to claim 2, wherein the load drive circuit is configured to be set to be larger than the discharge time constant of the rectifier circuit.
【請求項4】前記強制操作型電磁リレーが、負荷の給電
回路に半導体スイッチと共に直列に挿入され非励磁接点
と連動する第1励磁接点とは別の第2励磁接点を有する
構成であり、半導体スイッチ監視手段が、前記半導体ス
イッチエネルギを供給し半導体スイッチOFF状態の
時に供給エネルギに基づき交流の受光出力を発生するフ
ォトカプラと、該フォトカプラの交流出力を倍電圧整流
する倍電圧整流回路とを備え、該倍電圧整流回路の出力
端を前記自己保持回路のトリガ端子に接続すると共に、
前記フォトカプラの受光素子の出力端と電源との間に前
記非励磁接点を介装し当該非励磁接点ON時に受光素子
に電源が接続される構成であり、前記通電制御手段は、
前記自己保持回路の出力に基づいてトランスを介して電
磁リレーの制御信号を発生すると共に、前記第2励磁接
点のON動作に基づいて発生する出力信号と前記負荷駆
動信号との論理積演算を行う論理積演算回路を介して半
導体スイッチの制御信号を発生する構成とした請求項1
記載の負荷駆動回路。
4. The semiconductor device according to claim 4, wherein the forced operation type electromagnetic relay has a second exciting contact different from the first exciting contact which is inserted in series with the semiconductor switch in the power feeding circuit of the load and interlocks with the non-exciting contact. switch monitoring means includes a photocoupler for generating a light reception output of based on supply energy exchange at the time of the semiconductor switch OFF state to supply the energy to the semiconductor switch, a voltage doubler rectifier circuit for voltage doubler rectifying the AC output of the photocoupler And connecting the output terminal of the voltage doubler rectifier circuit to the trigger terminal of the self-holding circuit,
The non-exciting contact is interposed between the output end of the light receiving element of the photocoupler and the power source, and the power source is connected to the light receiving element when the non-exciting contact is turned on.
A control signal for an electromagnetic relay is generated via a transformer based on the output of the self-holding circuit, and a logical product operation of an output signal generated based on an ON operation of the second excitation contact and the load drive signal is performed. 2. A structure for generating a control signal for a semiconductor switch via an AND operation circuit.
The load drive circuit described.
JP16431895A 1995-03-31 1995-06-29 Load drive circuit Expired - Fee Related JP3378411B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16431895A JP3378411B2 (en) 1995-06-29 1995-06-29 Load drive circuit
DE69630182T DE69630182T2 (en) 1995-03-31 1996-03-29 CONTROL CIRCUIT OF A SUBMERSIBLE RELAY
US08/737,364 US5818681A (en) 1995-03-31 1996-03-29 Electromagnetic relay drive circuit
EP96907726A EP0763842B1 (en) 1995-03-31 1996-03-29 Solenoid relay driving circuit
PCT/JP1996/000866 WO1996030923A1 (en) 1995-03-31 1996-03-29 Solenoid relay driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16431895A JP3378411B2 (en) 1995-06-29 1995-06-29 Load drive circuit

Publications (2)

Publication Number Publication Date
JPH0919043A JPH0919043A (en) 1997-01-17
JP3378411B2 true JP3378411B2 (en) 2003-02-17

Family

ID=15790880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16431895A Expired - Fee Related JP3378411B2 (en) 1995-03-31 1995-06-29 Load drive circuit

Country Status (1)

Country Link
JP (1) JP3378411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659376B2 (en) * 2011-06-06 2015-01-28 オプテックス株式会社 DC insulation type semiconductor relay device

Also Published As

Publication number Publication date
JPH0919043A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
JP4355058B2 (en) Power supply
JP4063328B2 (en) Load drive circuit
JPH09314409A (en) Boring machine control system
JP3730253B2 (en) Load drive circuit
JP3338587B2 (en) Earth leakage detector
JP3378411B2 (en) Load drive circuit
EP0763842B1 (en) Solenoid relay driving circuit
JPH0620174B2 (en) Switching circuit
KR101074239B1 (en) Excitation Control Device for an Electro-Magnetic Brake Operable when Unexcited
JPH08149806A (en) Switching power supply circuit
JP3062707B2 (en) Load drive circuit
JP6883243B2 (en) Latch reset circuit
JPH104677A (en) Overvoltage protection circuit
JPH0866023A (en) Rectifier circuit employing semiconductor element with control electrode
JP6596308B2 (en) Power switching circuit
JPH048135A (en) Switching power source
JP2552332Y2 (en) 2 times overvoltage excitation circuit
JPH0370468A (en) Self exciting switching type constant voltage circuit
JPH04336402A (en) Power source for exciting electromagnet
JP2931950B2 (en) Electromagnet drive
JP2002165452A (en) Switching power supply
KR200193598Y1 (en) Interlock apparatus of dry etching apparatus
JPS6247106B2 (en)
JPS6068523A (en) Electromagnetic contactor
JPH0556554A (en) Power source device for brake

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees