JP3376836B2 - Wind-damping method of bridge girder - Google Patents

Wind-damping method of bridge girder

Info

Publication number
JP3376836B2
JP3376836B2 JP29645796A JP29645796A JP3376836B2 JP 3376836 B2 JP3376836 B2 JP 3376836B2 JP 29645796 A JP29645796 A JP 29645796A JP 29645796 A JP29645796 A JP 29645796A JP 3376836 B2 JP3376836 B2 JP 3376836B2
Authority
JP
Japan
Prior art keywords
bridge girder
wind
movable member
fairing
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29645796A
Other languages
Japanese (ja)
Other versions
JPH10140520A (en
Inventor
勝昭 武田
豪 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP29645796A priority Critical patent/JP3376836B2/en
Publication of JPH10140520A publication Critical patent/JPH10140520A/en
Application granted granted Critical
Publication of JP3376836B2 publication Critical patent/JP3376836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は構造物、特に橋梁の
橋桁の耐風制振方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind-damping control method for structures, particularly bridge girders of bridges.

【0002】[0002]

【従来の技術】橋梁は、自然風の作用下においては橋桁
に振動が生じることがある。この振動は、橋梁の規模
(スパン)が大きくなるほど、橋桁がフレキシブルな構
造になるほど生じ易い。
2. Description of the Related Art In a bridge, vibration may occur in the girder under the action of natural wind. This vibration is more likely to occur as the scale (span) of the bridge increases and the bridge girder has a flexible structure.

【0003】前記振動で一般的に良く知られている振動
としては、比較的低風速域(10m/秒)で発生する渦
励振、並びに、高風速(数10m/秒)で発生するフラ
ッタと呼ばれる破壊的な振動がある。
Vibrations generally well known as the above-mentioned vibrations are called vortex excitation generated in a relatively low wind velocity range (10 m / sec) and flutter generated in a high wind velocity (several tens m / sec). There is destructive vibration.

【0004】この振動防止対策は、主として風洞実験に
より事前に防止対策の検討が行われるが、その代表的な
方法として、特開昭61ー211406号公報に示され
るような、フェアリングと呼ばれる整流部材を橋桁の端
部に取付け全体形状を流線型化する方法(以下、従来技
術1という。)、橋桁横断面をフェアリング付の断面と
する方法(以下、従来技術2という。)またはフェアリ
ングを可動としてアクティブに制振を図る方法(以下、
従来技術3という。)、が知られている。
This vibration prevention measure is mainly studied in advance by a wind tunnel experiment. As a typical method, a rectification called fairing as disclosed in JP-A-61-211406 is performed. A member is attached to the end of the bridge girder to make the overall shape streamlined (hereinafter referred to as prior art 1), a cross-section of the bridge girder is a cross section with a fairing (hereinafter referred to as prior art 2), or a fairing. A method to actively suppress vibrations by moving (hereinafter,
Prior art 3 is called. ),It has been known.

【0005】図11は、前記従来技術1における橋桁1
の横断面図で、両側部にフェアリング2(整流部材)を
付加し、かつ、橋桁1の中央に開口11および抑流板1
2を設けてフラッタを防止せんとするものである。
FIG. 11 shows a bridge girder 1 in the prior art 1.
In the cross-sectional view of FIG. 1, fairings 2 (rectifying members) are added to both sides, and an opening 11 and a flow restrictor 1 are provided at the center of the bridge girder 1.
2 is provided to prevent flutter.

【0006】図12は、従来技術2における橋桁1の横
断面図で、橋桁1の端部をフェアリング2形状にし橋桁
1全体が流線形箱型断面としてフラッタを防止せんとす
るものである。
FIG. 12 is a cross-sectional view of a bridge girder 1 according to the prior art 2. The bridge girder 1 has a fairing 2 shape at its end, and the entire bridge girder 1 has a streamlined box-shaped cross section to prevent flutter.

【0007】図13は、従来技術3に用いるフラップA
の斜視図で、モータ13によりレバー14、レバー軸1
5を駆動して翼側板16に取付けられたフラップ17を
駆動するものである。
FIG. 13 shows a flap A used in the prior art 3.
In the perspective view of FIG.
5 is driven to drive the flap 17 attached to the blade side plate 16.

【0008】図14は、前記フラップAを橋桁1の両側
部に取付けて可動フェアリング2′とし、アクティブに
橋桁1の制振を図る提案である。
FIG. 14 shows a proposal for actively damping the bridge girder 1 by attaching the flaps A to both sides of the bridge girder 1 to form a movable fairing 2 '.

【0009】[0009]

【発明が解決しようとする課題】前述のとおり、フェア
リング2は、風による橋桁1の振動を防止する手段とし
て頻繁に用いられる方法であり、前記従来技術1および
2に示す方法では、図15に示すように、気流傾斜角が
0°の水平風が作用し、橋桁1の静的(ねじれ)変形が
小さく、かつ橋桁1が制止しているときには、流線イは
流れの剥離を生じることがなく、よって、風に起因する
振動を効果的に抑制する。
As described above, the fairing 2 is a method frequently used as a means for preventing the bridge girder 1 from vibrating due to wind. In the methods shown in the prior arts 1 and 2, the fairing 2 shown in FIG. As shown in Fig. 5, when the horizontal wind with the airflow inclination angle of 0 ° acts, the static (twist) deformation of the bridge girder 1 is small, and when the bridge girder 1 is stopped, streamline a causes flow separation. Therefore, the vibration caused by the wind is effectively suppressed.

【0010】ところが、図16に示すように風の乱れ等
によって、一旦、橋桁1に振動が生じると、フェアリン
グ2端部には相対迎角θ(フェアリング端部の鉛直方向
速度/平均風速)が生じる。
However, as shown in FIG. 16, once the bridge girder 1 vibrates due to wind turbulence or the like, the relative angle of attack θ (vertical velocity / average wind velocity at the end of the fairing) at the end of the fairing 2 is generated. ) Occurs.

【0011】この影響は、気流傾斜角や静的(ねじれ)
変形角が大きいときには、さらに大きくなり、ついに
は、フェアリング2端部から剥離渦ロを生じるようにな
り、フェアリング2の制振効果が顕著に低下する。
This effect is caused by the air flow inclination angle and static (twist).
When the deformation angle is large, the deformation angle is further increased, and finally the separation vortex B is generated from the end portion of the fairing 2, and the damping effect of the fairing 2 is significantly reduced.

【0012】また、前述の従来技術3に示す可動フェア
リング2′によれば、相対迎角、気流傾斜角および静的
変形角に応じてフェアリング2′を回転させ、該フェア
リング2′端部における剥離渦ロの発生を抑制すること
が可能であるが、図17に示すように迎角が大きいとき
には、フェアリング2と橋桁1の接合部18から新たな
剥離渦ロが発生することとなり、結局、制振効果の低下
を抑制することができない問題がある。
According to the movable fairing 2'shown in the prior art 3 described above, the fairing 2'is rotated according to the relative angle of attack, the airflow inclination angle and the static deformation angle, and the end of the fairing 2'is rotated. Although it is possible to suppress the generation of separation vortexes in the section, when the angle of attack is large as shown in FIG. 17, new separation vortexes are generated from the joint portion 18 between the fairing 2 and the bridge girder 1. After all, there is a problem that the reduction of the damping effect cannot be suppressed.

【0013】また、前述の従来技術3は、フェアリング
2′全体を駆動するために、装置が大がかりになり橋桁
1への設置が困難であり、また、コスト高となる問題が
ある。
Further, the above-mentioned prior art 3 has a problem that since the whole fairing 2'is driven, the device becomes large in size, installation on the bridge girder 1 is difficult, and the cost becomes high.

【0014】[0014]

【課題を解決するための手段】前述の課題を解決する第
一の手段は、 橋桁端部のフェアリング部先端に可動部
材を軸支させ、該可動部材の軸を、気流傾斜角センサ
ー、傾斜計及び加速度計からの信号により橋桁に対する
風の迎角が最小となるように、制御駆動することを特徴
とする橋桁の耐風制振方法である。
[Means for Solving the Problems ]
The first means is a movable part at the end of the fairing at the end of the bridge girder.
The shaft of the movable member is supported by the airflow inclination angle sensor.
To the bridge girder by the signal from the ー, inclinometer and accelerometer
Characterized by control drive to minimize the angle of attack of the wind
It is a wind-resistant damping method for bridge girders.

【0015】前述の第一の手段によれば、橋桁1に対す
る相対迎角、気流傾斜角および静的変形角によって発生
する迎角θを打ち消すように可動部材3を軸4を軸芯と
して回動することにより、図6に示すように大迎角時に
も剥離の弱い流れにすることにより、高い制振効果が得
られる。尚、図5は迎角が0°のときの流線を示したも
のである。
According to the above-mentioned first means, the movable member 3 is rotated about the shaft 4 so as to cancel the angle of attack θ generated by the relative angle of attack with respect to the bridge girder 1, the airflow inclination angle and the static deformation angle. As a result, as shown in FIG. 6, a flow with weak separation is obtained even at a large angle of attack, whereby a high vibration damping effect is obtained. Note that FIG. 5 shows the streamlines when the angle of attack is 0 °.

【0016】これは、図7に示すように、可動部材3の
勾配α1とフェアリングの勾配α2との二種類の勾配を
構成することにより風の流れをスムーズに橋桁1の路面
1′に導き、剥離の弱い流れとする。
As shown in FIG. 7, this is because the flow of wind is smoothly guided to the road surface 1'of the bridge girder 1 by constructing two kinds of slopes, that is, the slope α1 of the movable member 3 and the slope α2 of the fairing. , Flow with weak peeling.

【0017】従って、気流傾斜角と静的変形角について
は可動部材を静的な平均値的制御を行い、また、相対迎
角に対しては動的な制御を行うことが望ましい。
Therefore, it is desirable that the movable member is statically averaged for the air flow inclination angle and the static deformation angle, and that the relative angle of attack is dynamically controlled.

【0018】前述の課題を解決する第二の手段は、可動
部材が板材であることを特徴とする前記第一の手段に記
載の橋桁の耐風制振方法である。
The second means for solving the above-mentioned problems is the bridge girder anti-vibration method described in the first means, characterized in that the movable member is a plate member.

【0019】前述の第二の手段によれば、可動部材3を
板材とすることにより、軽量で簡単な構造とすることが
でき、コスト的に安価である。
According to the above-mentioned second means, since the movable member 3 is made of a plate material, it is possible to make it lightweight and have a simple structure, and the cost is low.

【0020】前述の課題を解決する第三の手段は、可動
部材が断面三角形状であることを特徴とする前記第一の
手段に記載の橋桁の耐風制振方法である。
A third means for solving the above-mentioned problems is the wind-damping damping method for bridge girders described in the first means, characterized in that the movable member has a triangular cross section.

【0021】前述の第三の手段によれば、可動部材を断
面三角形状とすることにより、より風の流れが整流され
る。
According to the above-mentioned third means, the flow of the wind is further rectified by making the movable member triangular in cross section.

【0022】[0022]

【発明の実施の形態】図1は、本発明にかかる橋桁の耐
風制振方法を説明する橋桁の横断面図で、図2はフェア
リング部2を一部断面図とした図1の平面図である。
1 is a cross-sectional view of a bridge girder for explaining a wind-damping-resistant method of a bridge girder according to the present invention, and FIG. 2 is a plan view of FIG. Is.

【0023】1は吊橋等の橋桁で、該橋桁1の両側部に
はフェアリング部2が取付けられている。前記フェアリ
ング部2は、橋桁1の構造の一部としてもよい。
Reference numeral 1 is a bridge girder such as a suspension bridge, and fairing portions 2 are attached to both sides of the bridge girder 1. The fairing 2 may be part of the structure of the bridge girder 1.

【0024】前記フェアリング部2の先端には板状3a
の可動部材3が軸4で軸支されており、可動部材3は軸
4を軸芯として矢視方向に回動する。
A plate-like 3a is provided at the tip of the fairing portion 2.
The movable member 3 is pivotally supported by the shaft 4, and the movable member 3 rotates in the arrow direction with the shaft 4 as the axis.

【0025】5は可動部材3の駆動機構であり、5′は
可動部材3と駆動機構5との間の操作軸、6は超音波風
速計等の気流傾斜角センサー、7は傾斜計、加速度計等
の変位検出器であり、8はコントローラである。尚、9
は高欄、10は地覆である。
Reference numeral 5 is a drive mechanism for the movable member 3, 5'is an operation axis between the movable member 3 and the drive mechanism 5, 6 is an air flow inclination angle sensor such as an ultrasonic anemometer, 7 is an inclinometer, and acceleration. Reference numeral 8 is a displacement detector such as a meter, and 8 is a controller. Incidentally, 9
Is a handrail and 10 is a ground cover.

【0026】以上からなる装置構成で、気流傾斜角セン
サー6および変位検出器7からの信号によりコントロー
ラ8で、迎角を打ち消すための信号を発信し、駆動機構
5により可動部材3を駆動し剥離の弱い流れに整流す
る。
With the above-mentioned device configuration, the controller 8 sends a signal for canceling the angle of attack by the signals from the air flow inclination angle sensor 6 and the displacement detector 7, and the driving mechanism 5 drives the movable member 3 to separate it. Rectify into a weak flow of.

【0027】図3は、前記駆動機構5の詳細を図示した
側面図で、可動部材3の他端は操作軸5′が一体的に取
付けられ、該操作軸5′の端部にシリンダー機構5aの
ロッド5bが連結され、シリンダー機構5aの伸縮作用
により前記軸4を軸芯として可動部材3が矢視方向に回
動する。
FIG. 3 is a side view showing the details of the drive mechanism 5. An operating shaft 5'is integrally attached to the other end of the movable member 3, and the cylinder mechanism 5a is attached to the end of the operating shaft 5 '. The rod 5b is connected, and the movable member 3 rotates in the direction of the arrow with the shaft 4 as the axis by the expansion and contraction of the cylinder mechanism 5a.

【0028】また、図4は前記駆動機構5の他の実施の
形態を示した側面図で、可動部材3と一体となった軸4
に対し、モータ5cからの操作軸5′とが傘歯車機構
4′で連結され、モータ5cの回転により可動部材3を
矢視方向に回動するものである。
FIG. 4 is a side view showing another embodiment of the drive mechanism 5, which is a shaft 4 integrated with the movable member 3.
On the other hand, the operation shaft 5'from the motor 5c is connected by the bevel gear mechanism 4 ', and the movable member 3 is rotated in the arrow direction by the rotation of the motor 5c.

【0029】前記駆動機構5の他の実施の形態として
は、油圧式のトルクヒンジタイプのものを使用してもよ
い。
As another embodiment of the drive mechanism 5, a hydraulic torque hinge type may be used.

【0030】図8は、上下非対称のフェアリング部2を
示した側断面図で、フェアリング部がブロックとして橋
桁1に取付けられ、その先端に可動部材3が取付けられ
ている。
FIG. 8 is a side cross-sectional view showing the vertically asymmetrical fairing portion 2. The fairing portion is attached to the bridge girder 1 as a block, and the movable member 3 is attached to the tip thereof.

【0031】また、図9は端部が上下非対称のフェアリ
ング部2とした橋桁1の側断面図で、橋桁1の先端に可
動部材3が取付けられている。
FIG. 9 is a side sectional view of the bridge girder 1 in which the ends are vertically asymmetrical fairing portions 2, and a movable member 3 is attached to the tip of the bridge girder 1.

【0032】図10は、可動部材3が断面三角形状3b
とした側断面図であり、翼型の流線形とすることで、よ
り整流効果が発揮できる。
In FIG. 10, the movable member 3 has a triangular cross section 3b.
Is a side cross-sectional view, and the rectification effect can be more exerted by adopting an airfoil streamline.

【0033】[0033]

【発明の効果】本発明は以上であるから、橋桁が相対迎
角、気流傾斜角、静的変形角の影響によって大迎角の風
をうけるとき、剥離の弱い流線を形成することが可能と
なり、迎角が小さいときと同様の高い制振効果を発揮す
ることができる。
As described above, according to the present invention, when the bridge girder receives wind at a large angle of attack due to the influence of the relative angle of attack, the airflow inclination angle, and the static deformation angle, it is possible to form streamlines with weak separation. Therefore, the same high damping effect as when the angle of attack is small can be exhibited.

【0034】さらに、本発明は、フェアリングまたはフ
ェアリング形状とした橋桁の一部に設置される平板状も
しくは三角形形状の可動部材を駆動する方式であるた
め、フェアリング全体を駆動する従来方式に比べてコン
パクトに構成でき、施工性に優れ、低コスト化を実現で
きる効果を有する。
Further, since the present invention is a method of driving a movable member having a flat plate shape or a triangular shape installed on a part of a fairing or a fairing-shaped bridge girder, a conventional method for driving the entire fairing is used. Compared to this, it has a compact structure, excellent workability, and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる橋桁の耐風制振方法を説明する
橋桁の横断面図。
FIG. 1 is a cross-sectional view of a bridge girder for explaining a wind-damping suppression method for a bridge girder according to the present invention.

【図2】フェアリング部を一部断面図とした図1の平面
図。
FIG. 2 is a plan view of FIG. 1 in which a fairing portion is partially sectional view.

【図3】本発明の可動部材の駆動機構の詳細を示した横
断面図。
FIG. 3 is a cross-sectional view showing details of a drive mechanism for a movable member of the present invention.

【図4】本発明の可動部材の駆動機構の他の駆動機構の
詳細を示した横断面図。
FIG. 4 is a cross-sectional view showing details of another drive mechanism of the drive mechanism for the movable member of the present invention.

【図5】本発明にかかる橋桁の耐風制振方法の効果を示
す横断面図で、迎角が0°のときの流線を示す。
FIG. 5 is a cross-sectional view showing the effect of the wind-damping suppression method for a bridge girder according to the present invention, showing a streamline when the angle of attack is 0 °.

【図6】本発明にかかる橋桁の耐風制振方法の効果を示
す横断面図で、迎角θが大迎角のときの流線を示す。
FIG. 6 is a cross-sectional view showing the effect of the wind-damping suppression method for a bridge girder according to the present invention, showing a streamline when the angle of attack θ is a large angle of attack.

【図7】本発明にかかる橋桁の耐風制振方法の効果を示
す横断面図で、迎角θが大迎角のときのフェアリング部
および可動部材の上面の勾配を示す。
FIG. 7 is a cross-sectional view showing the effect of the wind-damping damping method for a bridge girder according to the present invention, showing the slopes of the upper surfaces of the fairing part and the movable member when the angle of attack θ is a large angle of attack.

【図8】本発明にかかる橋桁の耐風制振方法の可動部材
の取付け方法を示す横断面図で、上面が大勾配となった
フェアリング部に取付けたケースを示す。
FIG. 8 is a cross-sectional view showing a method of mounting a movable member in the wind-damping damping method for a bridge girder according to the present invention, showing a case mounted on a fairing portion whose upper surface has a large slope.

【図9】本発明にかかる橋桁の耐風制振方法の可動部材
の取付け方法を示す横断面図で、下面が大勾配となった
フェアリング部に取付けたケースを示す。
FIG. 9 is a cross-sectional view showing a method of mounting a movable member in a wind-damping damping method for a bridge girder according to the present invention, showing a case mounted on a fairing portion whose lower surface has a large slope.

【図10】本発明にかかる橋桁の耐風制振方法の可動部
材の他の実施の形態を示す横断面図。
FIG. 10 is a cross-sectional view showing another embodiment of the movable member of the method for wind-damping damping of bridge girders according to the present invention.

【図11】従来技術1にかかるフェアリングを取付けた
橋桁の横断面図。
FIG. 11 is a cross-sectional view of a bridge girder to which a fairing according to the related art 1 is attached.

【図12】従来技術2にかかるフェアリングを構造の一
部とした橋桁の横断面図。
FIG. 12 is a cross-sectional view of a bridge girder in which a fairing according to the related art 2 is part of the structure.

【図13】従来技術3にかかるフラップAの斜視図。FIG. 13 is a perspective view of a flap A according to Related Art 3.

【図14】従来技術3にかかるフラップAを用いた橋桁
の横断面図。
FIG. 14 is a cross-sectional view of a bridge girder using a flap A according to Related Art 3.

【図15】従来技術2にかかる橋桁の静止時の風の流線
を示す横断面図。
FIG. 15 is a cross-sectional view showing a streamline of wind when the bridge girder according to the related art 2 is stationary.

【図16】従来技術2にかかる橋桁の振動時の風の流線
を示す横断面図。
FIG. 16 is a transverse cross-sectional view showing a streamline of wind when the bridge girder according to the related art 2 vibrates.

【図17】従来技術3にかかるフラップAを用いた橋桁
の振動時の横断面図。
FIG. 17 is a transverse cross-sectional view of a bridge girder using the flap A according to the related art 3 when vibrating.

【符号の説明】[Explanation of symbols]

1 橋桁 2 フェアリング部 3 可動部材 3a 板状の可動部材 3b 三角形状の可動部材 4 軸 5 駆動機構 6 気流傾斜角センサー 7 変位検出器 8 コントローラ 9 高欄 10 地覆 11 開口 12 抑流板 1 bridge girder 2 fairing section 3 movable members 3a Plate-shaped movable member 3b Triangular movable member 4 axes 5 Drive mechanism 6 Airflow tilt angle sensor 7 Displacement detector 8 controller 9 handrails 10 ground cover 11 openings 12 Suppression board

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−158314(JP,A) 特開 平5−181542(JP,A) 特開 平2−171404(JP,A) 実開 平5−87006(JP,U) 実公 昭47−14360(JP,Y1) 実公 昭50−17224(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) E01D 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-158314 (JP, A) JP-A-5-181542 (JP, A) JP-A-2-171404 (JP, A) Actual Kaihei 5- 87006 (JP, U) Actual public 47-14360 (JP, Y1) Actual public 50-17224 (JP, Y1) (58) Fields investigated (Int.Cl. 7 , DB name) E01D 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 橋桁端部のフェアリング部先端に可動部
材を軸支させ、該可動部材の軸を、気流傾斜角センサ
ー、傾斜計及び加速度計からの信号により橋桁に対する
風の迎角が最小となるように、制御駆動することを特徴
とする橋桁の耐風制振方法。
1. A movable member is axially supported at a tip of a fairing portion at an end of a bridge girder, and an axis of the movable member is used as an airflow inclination angle sensor.
A wind-damping method for bridge girders, which is controlled and driven so that the angle of attack of the wind on the bridge girder is minimized by signals from the inclinometer and accelerometer .
【請求項2】 可動部材が板材であることを特徴とする
請求項1に記載の橋桁の耐風制振方法。
2. The wind-resistant vibration damping method for a bridge girder according to claim 1, wherein the movable member is a plate member.
【請求項3】 可動部材が断面三角形状であることを特
徴とする請求項1に記載の橋桁の耐風制振方法。
3. The wind-damping damping method for a bridge girder according to claim 1, wherein the movable member has a triangular cross section.
JP29645796A 1996-11-08 1996-11-08 Wind-damping method of bridge girder Expired - Fee Related JP3376836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29645796A JP3376836B2 (en) 1996-11-08 1996-11-08 Wind-damping method of bridge girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29645796A JP3376836B2 (en) 1996-11-08 1996-11-08 Wind-damping method of bridge girder

Publications (2)

Publication Number Publication Date
JPH10140520A JPH10140520A (en) 1998-05-26
JP3376836B2 true JP3376836B2 (en) 2003-02-10

Family

ID=17833806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29645796A Expired - Fee Related JP3376836B2 (en) 1996-11-08 1996-11-08 Wind-damping method of bridge girder

Country Status (1)

Country Link
JP (1) JP3376836B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRPK20050311B3 (en) * 2005-04-06 2008-07-31 Horvat Darko Protection of bridges from the bora wind and other external influences
WO2016162059A1 (en) * 2015-04-08 2016-10-13 Technische Universität Hamburg-Harburg Device for damping vibrations of a bridge
CN105525565B (en) * 2016-01-28 2018-02-06 西南交通大学 A kind of streamlined box beam whirlpool shake vibration suppression construction
CN107609550B (en) * 2017-09-22 2019-08-13 广东天虹工程咨询有限公司 One kind being used for low clearance bridge image collecting device
CN108755390B (en) * 2018-05-22 2020-08-18 东南大学 Active control system and control method for improving wind resistance of long-span bridge
CN109634312B (en) * 2018-12-31 2024-05-28 华测检测认证集团股份有限公司 Automatic anti-fall atmospheric sampling equipment
CN111119031A (en) * 2020-01-14 2020-05-08 中铁二院工程集团有限责任公司 Device for inhibiting bridge flutter and using method thereof
CN111101436A (en) * 2020-01-14 2020-05-05 中铁二院工程集团有限责任公司 Bridge wind barrier device and using method thereof
CN111305042B (en) * 2020-02-29 2021-08-03 东北林业大学 Large-span bridge wind vibration control method of self-adaptive swing flap

Also Published As

Publication number Publication date
JPH10140520A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
JP3376836B2 (en) Wind-damping method of bridge girder
JPS62260905A (en) Suspension bridge structure having flatter measure applied thereto
JP2002266315A (en) Bridge
JP4037462B2 (en) Device for improving the maneuverability of a vehicle for road driving and vehicle equipped with the device
JPH10325109A (en) Mechanism for preventing flutter of bridge girder
JP3082810B2 (en) Fluid excitation force reduction device for structures
JPH0674674B2 (en) Vibration control device
JP2915736B2 (en) Vibration damper for structures
JPH05171837A (en) Flutter vibration absorber of bridge girder
JP5046115B2 (en) Control surface noise reduction device
JPH09137404A (en) Flutter preventive method of bridge girder
JP3064186B2 (en) Vibration damper for tower structures
JP2760196B2 (en) Movable damping device for bridge-like structures
JP3354753B2 (en) Anti-vibration device
JPH09217317A (en) Wind shut-off device of bridge
JPH0355608Y2 (en)
JPH11343608A (en) Vibration control structure of bridge
JP2001288711A (en) Wind resistant-vibration control structure for suspension bridge with no reinforcing steels
JP2002371516A (en) Main girder of cable stayed bridge having main girder constituted of sheet metal girder and installation method therefor
JP2545745B2 (en) Vibration suppression method for structures
JP2601917B2 (en) Aerodynamic damping method when installing tower
JPH08158314A (en) Damping device for structural member
JPH0218107Y2 (en)
JPH0218109Y2 (en)
JPH0218108Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021105

LAPS Cancellation because of no payment of annual fees