JP3374451B2 - Manufacturing method of magnetic fluid - Google Patents

Manufacturing method of magnetic fluid

Info

Publication number
JP3374451B2
JP3374451B2 JP19185693A JP19185693A JP3374451B2 JP 3374451 B2 JP3374451 B2 JP 3374451B2 JP 19185693 A JP19185693 A JP 19185693A JP 19185693 A JP19185693 A JP 19185693A JP 3374451 B2 JP3374451 B2 JP 3374451B2
Authority
JP
Japan
Prior art keywords
fine particles
magnetic fluid
water
solvent
substituted alkenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19185693A
Other languages
Japanese (ja)
Other versions
JPH06207190A (en
Inventor
智子 星野
穣 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP19185693A priority Critical patent/JP3374451B2/en
Publication of JPH06207190A publication Critical patent/JPH06207190A/en
Application granted granted Critical
Publication of JP3374451B2 publication Critical patent/JP3374451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、磁性流体の製造方法に
関する。更に詳しくは、低蒸気圧基油中にフェライト類
微粒子を高濃度で安定に分散せしめ、これにより飽和磁
化を向上せしめた低粘性の磁性流体の製造方法に関す
る。 【0002】 【従来の技術】フェライト類微粒子は、粉砕法、共沈
法、蒸着法などによって製造されているが、これらの方
法の中、純度、粒径制御、生産性などの点から、一般に
共沈法が用いられている。ところで、共沈法は、鉄イオ
ンを含む水溶液からの沈殿反応であるため、生成した磁
性微粒子は水溶液中にけん濁した水性サスペンションの
状態で得られる。 【0003】一方、磁性流体用の磁性微粒子は、凝集し
ていることなく、1個1個が分散していることが望まし
い。そのため、共沈法磁性微粒子の場合には、微粒子同
志の固着凝集の危険性を含む乾燥工程を経ることなく、
分散液状態で固着凝集防止用の界面活性剤を微粒子表面
に吸着させることが必要となり、従って水溶性の界面活
性剤が用いられている。 【0004】このように水溶性界面活性剤を吸着させた
磁性微粒子を分散させた磁性流体にあっては、その分散
基油がケロシン、トルエンなどの比較的揮発性に富む溶
媒に限定され、しかるに磁性流体が磁性流体シール、磁
性流体研磨などに用いられる場合には、基油の蒸発は磁
性流体の機能そのものを損う重要な問題としてとらえら
れる。 【0005】磁性流体は、このように一般にフェライト
類微粒子を高級脂肪酸塩、ソルビタンエステルの如き分
散剤を用いて基油中に分散せしめたものである。ところ
が、低蒸気圧の基油中にフェライト類微粒子を単に分散
させようとしても高い分散性が得られず、とても実用に
は供せられない。 【0006】かかる低蒸気圧基油への分散において、か
りに良い分散性が得られたとしても、低蒸気圧基油は一
般の有機溶媒や水が1cSt以下の動粘度(40℃)を示すの
に対し約8〜50cSt(40℃)という高い動粘度を有するた
め、均一なサスペンションの形成に非常な長時間を要す
る。しかも、分散さるべきフェライト類微粒子すべてが
安定なサスペンションを形成する訳ではなく、かなりの
割合のフェライト類微粒子が遠心分離などの精製時にと
り除かれ、効率が非常に悪いという問題もある。 【0007】本出願人は先に、フェライト類微粒子を低
蒸気圧基油中に安定にかつ高濃度で分散させた磁性流体
を効率良く製造することを目的として、フェライト類微
粒子の水性サスペンションに、N-ポリアルキレンポリア
ミン置換アルケニルコハク酸イミドを水より高沸点の炭
化水素溶媒の溶液として添加し、N-ポリアルキレンポリ
アミン置換アルケニルコハク酸イミドをフェライト類微
粒子に吸着させた後、水をほぼ完全に除去し、残渣の炭
化水素溶液に凝集溶媒を加えて回収したN-ポリアルキレ
ンポリアミン置換アルケニルコハク酸イミド吸着フェラ
イト類微粒子を、25℃において0.1mmHg以下の蒸気圧を
有する低蒸気圧基油中に分散せしめて磁性流体を製造す
る方法を提案している(特開平4-221,809号公報)。この
提案された方法は、従来のものより低粘性、長寿命と磁
性流体の性能向上には満足すべきものがあったが、飽和
磁化の点では更に改善さるべき余地がみられた。 【0008】 【発明が解決しようとする課題】本発明の目的は、上記
提案方法において、得られる磁性流体の分散安定性や飽
和磁化値のなお一層の向上を図ることにある。 【0009】 【課題を解決するための手段】かかる本発明の目的は、
上記提案された方法において、水をほぼ完全に除去した
後、窒素ガス気流中で約180℃以上で熱処理を施す工程
および残渣の炭化水素溶液に凝集溶媒を加えた後、分離
された微粒子を芳香族炭化水素中に分散させ、その上澄
液から回収する工程を挿入することにより達成される。 【0010】フェライト類微粒子としては、純度、粒径
制御、そして何よりも生産性の点において有利である共
沈法によって製造されたものが、水性サスペンションそ
のままの形で用いられる。即ち、共沈法での水性サスペ
ンションの形成は、鉄塩混合物水溶液へのNaOH水溶液の
滴下、熟成、冷却および塩のデカンテーションという一
連の工程を経ることにより行われ、そこに粒径約50〜30
0Å、好ましくは約70〜120Åのフェライト類を約0.1〜5
0重量%、好ましくは約1〜30重量%の濃度で分散させたサ
スペンションが得られる。 【0011】N-ポリアルキレンポリアミン置換アルケニ
ルコハク酸イミドとしては、次のようなものが用いられ
る。 R:炭素数12〜24の炭化水素基 分子量約300〜2000のポリブテニル基 R´:炭素数1〜6のアルキレン基 R´が2個以上くり返される時互いに同一または異なり得
る n:1〜5 m:0〜4 【0012】N-ポリアルキレンポリアミン置換アルケニ
ルコハク酸イミドは、それを水より高沸点、好ましくは
約150℃以上の沸点を有しかつ水と共沸しない炭化水素
溶媒の溶液として、フェライト類微粒子の水性サスペン
ションに添加される。 【0013】かかる炭化水素溶媒としては、例えばn-デ
カン、n-ドデカン、1-デセン、n-ヘキサデカン、メシチ
レン、ジエチルベンゼン、テトラリン、デカリン、ドデ
シルベンゼン、トルエン、キシレンなどが単独溶媒また
は混合溶媒として用いられる。また、これらの溶媒の
内、水と共沸しない溶媒が用いられる場合には、水と共
沸するトルエン、キシレンなどと併用することもでき
る。 【0014】そして、これらの炭化水素溶液は、水性サ
スペンションに対し、一般に容積比で約0.01〜100、好
ましくは約1〜100の割合で用いられる。これら両者の混
合は、ホモジナイザなどを用い、エマルジョンが形成さ
れるような撹拌条件下で行われる。このような撹拌条件
下で撹拌することにより、N-ポリアルキレンポリアミン
置換アルケニルコハク酸イミドがエマルジョンの界面に
おいてフェライト類微粒子に吸着されるが、この吸着反
応を迅速に行わせるために、約40〜90℃の温度条件下で
撹拌処理されることが望ましく、そのような処理は約30
〜60分間行われる。 【0015】このようにしてN-ポリアルキレンポリアミ
ン置換アルケニルコハク酸イミドをフェライト類微粒子
に吸着させた後、水のほぼ完全な除去が行われる。水の
除去は、好ましくは加熱および撹拌条件下でエマルジョ
ンを形成させた系を、そのまま水の沸点以上の温度、一
般には約110℃以上に加熱し、留去することによって行
われる。その際、トルエン、キシレンなどが併用された
場合には、これらは水と共沸して留去され、水の留去速
度を高める働きをする。 【0016】水のほぼ完全な除去により、溶液の色は例
えばこげ茶色から黒褐色となる。その後、窒素気流中、
一般には窒素ガスを導入、バブリングしながら約180℃
以上、一般には約200〜350℃で約30〜90分間熱処理す
る。熱処理後放冷し、残渣の溶液に用いられた炭化水素
溶媒と相溶性のあるアセトン、メチルエチルケトン、メ
タノール、エタノールなどを添加すると、これらはN-ポ
リアルキレンポリアミン置換アルケニルコハク酸イミド
吸着フェライト類微粒子の凝集溶媒として作用し、この
ような微粒子を凝集させる。その際、磁石上などに放置
し、沈降してきた微粒子を回収する。あるいは、約500
〜1000Gの遠心分離を行うと、分散不良の微粒子が容易
に沈降し、それを除去することもできる。 【0017】このような窒素気流中での熱処理は、磁性
流体の飽和磁化を向上せしめるものの、それの粘性を増
加させるという問題も発生させる。この問題の解決のた
めには、残渣の炭化水素溶液に凝集溶媒を加えた後、分
離された微粒子を芳香族炭化水素中に分散させ、その上
澄液から回収するという工程をとると有効である。 【0018】より具体的には、凝集微粒子を磁石上など
に放置し、沈降してきた微粒子から炭化水素溶媒をデカ
ンテーションで分離した後、残渣の微粒子をベンゼン、
トルエン、キシレン等の芳香族炭化水素中に分散させ、
遠心分離してその上澄液から微粒子を回収することが行
われ、その後トルエン-アセトン(1:1)混合溶媒による
洗浄および回収が行われる。 【0019】回収された微粒子は、トルエン-アセト
ン、トルエン-メタノール、n-ヘキサン-アセトン、イソ
オクタン-アセトンなどの混合溶媒、一般には等量混合
溶媒で洗浄される。このような洗浄により、磁性流体に
調製したときに粘度を増大させたり、あるいはフェライ
ト類微粒子の分散濃度低下の原因となる余分のN-ポリア
ルキレンポリアミン置換アルケニルコハク酸イミドを除
去する。洗浄後は、フェライト類微粒子は、必要に応じ
て乾燥させる。 【0020】このようにして得られたN-ポリアルキレン
ポリアミン置換アルケニルコハク酸イミドで被覆された
フェライト類微粒子は、そこに低蒸気圧基油を添加して
分散処理されるが、それの低蒸気圧基油への分散性は良
好な状態となっている。 【0021】低蒸気圧基油としては、25℃において0.1m
mHg以下、好ましくは0.01mmHg以下の蒸気圧を有する液
体、例えば天然油であるホワイトオイル(流動パラフィ
ン)、鉱油、スピンドル油など、あるいは合成油である
高級アルキルベンゼン、高級アルキルナフタレン、ポリ
ブテン(分子量約300〜2000)など、更に酸化防止剤、耐
摩耗剤、油性剤、清浄分散剤などのいわゆる潤滑添加剤
を含んだ潤滑油が、最終的に得られる磁性流体中のフェ
ライト類微粒子の分散濃度が約10〜50重量%となるよう
な割合で用いられる。 【0022】低蒸気圧基油を添加しての分散処理は、常
法での如く、ホモジナイザ、超音波、振動ミルなどの少
なくとも一種を用いて行われる。分散処理後は、遠心分
離あるいは磁場勾配中への静置による精製が行われる。
吸着処理および洗浄後に乾燥工程を経ずに分散処理する
こともでき、その場合には磁性流体の分散濃度や蒸発成
分の制御などの観点から、得られた磁性流体を減圧下で
加熱処理し、低沸点成分を留去することが好ましい。 【0023】 【発明の効果】フェライト類微粒子の水性サスペンショ
ンに、N-ポリアルキレンポリアミン置換アルケニルコハ
ク酸イミドを水より高沸点の炭化水素溶媒の溶液として
添加し、N-ポリアルキレンポリアミン置換アルケニルコ
ハク酸イミドをフェライト類微粒子に吸着させた後、水
をほぼ完全に除去し、残渣の炭化水素溶液に凝集溶媒を
加えて回収したN-ポリアルキレンポリアミン置換アルケ
ニルコハク酸イミド吸着フェライト類微粒子を、25℃に
おいて0.1 mmHg以下の蒸気圧を有する低蒸気圧基油中に
分散させて磁性流体を製造するに際し、水をほぼ完全に
除去した後、窒素気流中で約180℃以上で熱処理を施す
工程を挿入すると、得られる磁性流体の飽和磁化を一段
と向上させることができる。しかも、約40〜50重量%の
高濃度で磁性微粒子を低蒸気圧基油中に分散させた磁性
流体の飽和磁化は、例えば遠心力の厳しい条件下で遠心
分離してもその値の低下はわずかであり、このことは得
られた磁性流体の分散安定性が著しくすぐれていること
を実証している。 【0024】さらに、残渣の炭化水素溶液に凝集溶媒を
加えた後、分離された微粒子を芳香族炭化水素中に分散
させ、その上澄液から回収する工程を挿入すると、窒素
気流中での熱処理により上昇した粘性を低下させること
ができる。 【0025】 【実施例】次に、実施例について本発明を説明する。 【0026】比較例1 FeCl2・4H2O 184gおよびFeCl3・6H2O 500gを溶解させた水
溶液1850mlに、撹拌しながら6N NaOH水溶液をpHが11に
なる迄滴下し、その後80℃で30分間熟成、冷却し、塩を
デカンテーションで除去して、マグネタイトのサスペン
ション(マグネタイト濃度30重量%)を得た。 【0027】このサスペンション15mlに、0.1モル濃度
のポリブテニルコハク酸イミドテトラエチレンペンタミ
ン-ドデシルベンゼン溶液100mlを加え、60℃で60分間、
容量300mlの丸底セパラブルフラスコ中において50mm径
のプロペラを用いて800rpmで撹拌してエマルジョンを形
成させた。 【0028】その後、130℃に油浴を保ち、撹拌下のま
ま水を留去し、そのまま60分間放置した。溶液の色がこ
げ茶色から黒褐色になった時点で水がほぼ完全になくな
り、ドデシルベンゼンだけの溶液になったと判断された
後、窒素気流中で油浴温度を280℃に上げ、この温度を6
0分間保ち、熱処理を施した。 【0029】これに、200mlのアセトンを加えると、分
散していた微粒子が凝集してくるので磁石上に放置し、
微粒子を沈降させた後、ドデシルベンゼンをデカンテー
ションで除去した。残渣のマグネタイト微粒子をトルエ
ン-アセトン(1:1)混合溶媒で5回洗浄して乾燥させた。 【0030】得られたポリブテニルコハク酸イミドテト
ラエチレンペンタミン被覆マグネタイト3.0gに、アルキ
ルナフタレン5.0gを加えた後、ホモジナイザ(日本精機
製作所製エクセルオートホモジナイザ DX型)を用いて撹
拌(10000rpm、60分間)し、更に12時間超音波による分散
処理を行ない、遠心分離(5000G、30分間)して沈降物を
除去し、飽和磁化(16K Oe)420G、粘性率650mPa・sの磁
性流体を得た。 【0031】比較例2比較 例1において、熱処理温度を200℃に変更すると、
得られた磁性流体の飽和磁化は410G、粘性率620mPa・s
であった。 【0032】比較例 比較 例1において、水がほぼ完全になくなり、ドデシル
ベンゼンだけの溶液になったと判断された後の熱処理を
行わないと、得られた磁性流体の飽和磁化は370G、粘性
率600mPa・sであった。 【0033】実施例 比較 例1において、磁石上に沈降させた微粒子からドデ
シルベンゼンを除去した後、残渣の微粒子をトルエン中
に分散させ、遠心分離(5000G、30分間)してその上澄液
から微粒子を回収し、トルエン-アセトン混合溶媒で洗
浄、乾燥したものを用いると、得られた磁性流体の飽和
磁化は420Gで、粘性率は400mPa・sであった。 【0034】実施例 実施例において、トルエンの代わりにベンゼンを用い
ると、得られた磁性流体の飽和磁化は400Gで、粘性率は
410mPa・sであった。 【0035】実施例 実施例において、トルエンの代わりにキシレンを用い
ると、得られた磁性流体の飽和磁化は420Gで、粘性率は
450mPa・sであった。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic fluid. More specifically, the present invention relates to a method for producing a low-viscosity magnetic fluid in which ferrite fine particles are stably dispersed at a high concentration in a low vapor pressure base oil to thereby improve saturation magnetization. [0002] Ferrite fine particles are produced by a pulverization method, a coprecipitation method, a vapor deposition method, and the like. Among these methods, generally, from the viewpoints of purity, particle size control, and productivity, etc. The coprecipitation method is used. By the way, since the coprecipitation method is a precipitation reaction from an aqueous solution containing iron ions, the generated magnetic fine particles are obtained in a state of an aqueous suspension suspended in the aqueous solution. On the other hand, it is desirable that the magnetic fine particles for a magnetic fluid be dispersed one by one without being aggregated. Therefore, in the case of the coprecipitation method magnetic fine particles, without going through a drying step including a risk of sticking and aggregation of fine particles,
It is necessary to adsorb a surfactant for preventing sticking and coagulation on the surface of the fine particles in the state of a dispersion, and accordingly, a water-soluble surfactant is used. [0004] In the magnetic fluid in which the magnetic fine particles on which the water-soluble surfactant is adsorbed are dispersed, the dispersed base oil is limited to a relatively volatile solvent such as kerosene and toluene. When a magnetic fluid is used for sealing a magnetic fluid, polishing a magnetic fluid, or the like, evaporation of the base oil is regarded as an important problem that impairs the function itself of the magnetic fluid. [0005] The magnetic fluid is generally obtained by dispersing ferrite fine particles in a base oil using a dispersant such as a higher fatty acid salt or sorbitan ester. However, simply dispersing ferrite fine particles in a base oil having a low vapor pressure does not provide high dispersibility, and is not very practical. [0006] In such a dispersion in a low vapor pressure base oil, even if excellent dispersibility is obtained, the low vapor pressure base oil shows a kinematic viscosity (40 ° C) of less than 1 cSt for a general organic solvent or water. However, since it has a high kinematic viscosity of about 8 to 50 cSt (40 ° C.), it takes a very long time to form a uniform suspension. In addition, not all ferrite fine particles to be dispersed form a stable suspension, but a considerable proportion of ferrite fine particles are removed during purification such as centrifugation, resulting in a problem that the efficiency is very poor. The applicant of the present invention has previously proposed an aqueous suspension of ferrite fine particles in order to efficiently produce a magnetic fluid in which ferrite fine particles are dispersed stably and at a high concentration in a low vapor pressure base oil. The N-polyalkylene polyamine-substituted alkenyl succinimide is added as a solution of a hydrocarbon solvent having a higher boiling point than water, and the N-polyalkylene polyamine-substituted alkenyl succinimide is adsorbed on the ferrite fine particles. The N-polyalkylenepolyamine-substituted alkenylsuccinimide-adsorbed ferrite fine particles recovered by adding a flocculating solvent to the hydrocarbon solution of the residue are removed into a low-vapor-pressure base oil having a vapor pressure of 0.1 mmHg or less at 25 ° C. A method of manufacturing a magnetic fluid by dispersing the magnetic fluid has been proposed (Japanese Patent Application Laid-Open No. 4-221809). Although the proposed method was satisfactory in terms of lower viscosity, longer life and improved performance of the magnetic fluid than the conventional method, there was room for further improvement in terms of saturation magnetization. [0008] An object of the present invention is to further improve the dispersion stability and saturation magnetization of the magnetic fluid obtained in the above-mentioned proposed method. [0009] The object of the present invention is as follows.
In the above proposed method, a step of performing a heat treatment at about 180 ° C. or more in a nitrogen gas stream after almost completely removing water.
Separation after adding coagulation solvent to hydrocarbon solution of residue and residue
The dispersed fine particles are dispersed in an aromatic hydrocarbon, and the supernatant
This is achieved by inserting a step of recovering from the liquid . As the ferrite fine particles, those produced by a coprecipitation method, which is advantageous in terms of purity, particle size control and, above all, productivity, are used in the form of an aqueous suspension as it is. That is, the formation of the aqueous suspension by the coprecipitation method is performed through a series of steps of dropping of an aqueous NaOH solution to the aqueous solution of the iron salt mixture, aging, cooling and decanting of the salt, where the particle size is about 50 to 50. 30
0 °, preferably about 70-120 ° ferrites for about 0.1-5
A suspension dispersed at a concentration of 0% by weight, preferably about 1 to 30% by weight, is obtained. The following are used as the N-polyalkylenepolyamine-substituted alkenyl succinimide. R: a hydrocarbon group having 12 to 24 carbon atoms, a polybutenyl group having a molecular weight of about 300 to 2,000 R ': when two or more alkylene groups R' having 1 to 6 carbon atoms are repeated, they may be the same or different n: 1 to 5 m: 0 to 4 N-polyalkylenepolyamine-substituted alkenyl succinimide is prepared by converting it into a solution of a hydrocarbon solvent having a boiling point higher than that of water, preferably about 150 ° C. or higher, and which does not azeotrope with water. Is added to an aqueous suspension of ferrite fine particles. As such a hydrocarbon solvent, for example, n-decane, n-dodecane, 1-decene, n-hexadecane, mesitylene, diethylbenzene, tetralin, decalin, dodecylbenzene, toluene, xylene and the like are used as a single solvent or a mixed solvent. Can be When a solvent that does not azeotrope with water is used among these solvents, it can be used together with toluene, xylene, or the like, which azeotropes with water. These hydrocarbon solutions are generally used in a volume ratio of about 0.01 to 100, preferably about 1 to 100, with respect to the aqueous suspension. The mixing of the two is performed using a homogenizer or the like under stirring conditions such that an emulsion is formed. By stirring under such stirring conditions, the N-polyalkylenepolyamine-substituted alkenyl succinimide is adsorbed on the ferrite fine particles at the interface of the emulsion. It is desirable to carry out stirring treatment under a temperature condition of 90 ° C., and such treatment is carried out for about 30 minutes.
Done for ~ 60 minutes. After the N-polyalkylenepolyamine-substituted alkenyl succinimide is adsorbed on the ferrite fine particles, water is almost completely removed. The removal of water is preferably carried out by heating the system in which an emulsion has been formed under heating and stirring conditions to a temperature higher than the boiling point of water, generally about 110 ° C. or higher, and distilling off. At this time, when toluene, xylene, or the like is used in combination, these are distilled off azeotropically with water, which serves to increase the rate of water distillation. Due to the almost complete removal of water, the color of the solution changes, for example, from dark brown to dark brown. Then, in a nitrogen stream,
Generally, nitrogen gas is introduced and bubbling is about 180 ° C
As described above, the heat treatment is generally performed at about 200 to 350 ° C. for about 30 to 90 minutes. After heat treatment, it is allowed to cool, and acetone, methyl ethyl ketone, methanol, ethanol, etc., which are compatible with the hydrocarbon solvent used for the residue solution, are added.These are N-polyalkylene polyamine-substituted alkenyl succinimide-adsorbed ferrite fine particles. It acts as an aggregating solvent and agglomerates such fine particles. At this time, the particles are left on a magnet or the like to collect the precipitated fine particles. Or about 500
By centrifuging at ~ 1000G, fine particles with poor dispersion easily settle out and can be removed. Although such a heat treatment in a nitrogen stream improves the saturation magnetization of the magnetic fluid, it also causes a problem of increasing the viscosity of the magnetic fluid. In order to solve this problem, it is effective to add a flocculating solvent to the residual hydrocarbon solution, then disperse the separated fine particles in the aromatic hydrocarbon, and recover the fine particles from the supernatant. is there. More specifically, the aggregated fine particles are left on a magnet or the like, and the hydrocarbon solvent is separated from the settled fine particles by decantation.
Dispersed in aromatic hydrocarbons such as toluene and xylene,
The microparticles are collected from the supernatant by centrifugation, followed by washing and recovery with a toluene-acetone (1: 1) mixed solvent. The collected fine particles are washed with a mixed solvent of toluene-acetone, toluene-methanol, n-hexane-acetone, isooctane-acetone, etc., generally with an equal amount of a mixed solvent. By such washing, excess N-polyalkylenepolyamine-substituted alkenyl succinimide which increases the viscosity when prepared into a magnetic fluid or lowers the dispersion concentration of ferrite fine particles is removed. After washing, the ferrite fine particles are dried if necessary. The ferrite fine particles coated with the N-polyalkylene polyamine-substituted alkenyl succinimide thus obtained are dispersed by adding a low vapor pressure base oil thereto. The dispersibility in pressurized base oil is in a good state. As a low vapor pressure base oil, 0.1 m at 25 ° C.
Liquid having a vapor pressure of mHg or less, preferably 0.01 mmHg or less, such as natural oils such as white oil (liquid paraffin), mineral oil, spindle oil and the like, or synthetic oils such as higher alkylbenzene, higher alkylnaphthalene, and polybutene (molecular weight of about 300 Lubricating oils containing so-called lubricating additives such as antioxidants, antiwear agents, oil agents, detergent dispersants, etc., when the dispersion concentration of ferrite fine particles in the finally obtained magnetic fluid is about It is used in such a ratio that it becomes 10 to 50% by weight. The dispersion treatment with the addition of the base oil having a low vapor pressure is carried out by using at least one of a homogenizer, an ultrasonic wave, a vibration mill and the like as in a conventional method. After the dispersion treatment, purification is performed by centrifugation or standing in a magnetic field gradient.
Dispersion treatment can be performed without passing through a drying step after the adsorption treatment and washing.In this case, from the viewpoint of controlling the dispersion concentration of the magnetic fluid and the evaporation component, the obtained magnetic fluid is subjected to a heat treatment under reduced pressure, It is preferable to distill low boiling components. The N-polyalkylene polyamine-substituted alkenyl succinic imide is added to an aqueous suspension of ferrite fine particles as a solution of a hydrocarbon solvent having a higher boiling point than water. After the imide is adsorbed on the ferrite fine particles, water is almost completely removed, and the N-polyalkylene polyamine-substituted alkenyl succinimide-adsorbed ferrite fine particles collected by adding a flocculating solvent to the residual hydrocarbon solution are subjected to 25 ° C. In producing a magnetic fluid by dispersing in a low vapor pressure base oil having a vapor pressure of 0.1 mmHg or less, a step of performing a heat treatment at about 180 ° C or higher in a nitrogen stream after almost completely removing water is inserted. Then, the saturation magnetization of the obtained magnetic fluid can be further improved. Moreover, the saturation magnetization of a magnetic fluid in which magnetic particles are dispersed in a low-vapor-pressure base oil at a high concentration of about 40 to 50% by weight does not decrease even when centrifuged under severe conditions of centrifugal force, for example. This is slight, demonstrating that the obtained magnetic fluid has remarkably excellent dispersion stability. Further, after adding a flocculating solvent to the residual hydrocarbon solution, a step of dispersing the separated fine particles in the aromatic hydrocarbon and recovering the fine particles from the supernatant is inserted. Can reduce the increased viscosity. Next, the present invention will be described with reference to examples. Comparative Example 1 To 1850 ml of an aqueous solution in which 184 g of FeCl 2 .4H 2 O and 500 g of FeCl 3 .6H 2 O were dissolved, a 6N NaOH aqueous solution was added dropwise with stirring until the pH reached 11, and then at 80 ° C. After aging for minutes, the salt was removed by decantation to obtain a magnetite suspension (magnetite concentration 30% by weight). To 15 ml of this suspension was added 100 ml of a 0.1 molar polybutenylsuccinimide tetraethylenepentamine-dodecylbenzene solution, and the mixture was added at 60 ° C. for 60 minutes.
The emulsion was formed by stirring at 800 rpm using a 50 mm propeller in a round bottom separable flask having a capacity of 300 ml. Thereafter, the oil bath was kept at 130 ° C., water was distilled off with stirring, and the mixture was left as it was for 60 minutes. When the color of the solution turned from dark brown to dark brown, water was almost completely gone, and it was determined that the solution had only dodecylbenzene.Then, the oil bath temperature was raised to 280 ° C in a nitrogen stream, and the temperature was raised to 6 ° C.
It was kept for 0 minutes and heat-treated. When 200 ml of acetone is added to the mixture, the dispersed fine particles are aggregated.
After sedimentation of the fine particles, dodecylbenzene was removed by decantation. The residual magnetite fine particles were washed five times with a toluene-acetone (1: 1) mixed solvent and dried. After adding 5.0 g of alkylnaphthalene to 3.0 g of the obtained polybutenylsuccinimide tetraethylenepentamine-coated magnetite, the mixture was stirred using a homogenizer (Excel automatic homogenizer DX, manufactured by Nippon Seiki Seisaku-sho, Ltd.) (10000 rpm, (60 minutes), further disperse by ultrasonic wave for 12 hours, centrifuge (5000G, 30 minutes) to remove sediment, obtain magnetic fluid with saturation magnetization (16K Oe) 420G, viscosity 650mPas Was. Comparative Example 2 In Comparative Example 1, when the heat treatment temperature was changed to 200 ° C.,
The obtained magnetic fluid has a saturation magnetization of 410 G and a viscosity of 620 mPas.
Met. Comparative Example 3 In Comparative Example 1, if the heat treatment was not performed after it was determined that water had almost completely disappeared and a solution containing only dodecylbenzene had been obtained, the resulting magnetic fluid had a saturation magnetization of 370 G and a viscosity of 370 G. It was 600 mPa · s. Example 1 In Comparative Example 1, after removing dodecylbenzene from the fine particles settled on a magnet, the residual fine particles were dispersed in toluene, centrifuged (5000 G, 30 minutes), and the supernatant was obtained. Fine particles were recovered from the mixture, washed and dried with a mixed solvent of toluene and acetone, and the obtained magnetic fluid had a saturation magnetization of 420 G and a viscosity of 400 mPa · s. Example 2 In Example 1 , when benzene was used instead of toluene, the resulting magnetic fluid had a saturation magnetization of 400 G and a viscosity of
410 mPa · s. Example 3 In Example 1 , when xylene was used in place of toluene, the obtained magnetic fluid had a saturation magnetization of 420 G and a viscosity of 420 G.
450 mPa · s.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C10M 125:10 C10M 133:16 133:16 133:56 133:56) C10M 149:02 (C10M 161/00 149:22 125:10 C10N 10:16 149:02 20:00 A 149:22) 20:06 Z C10N 10:16 40:14 20:00 70:00 20:06 40:14 70:00 (56)参考文献 特開 平4−221809(JP,A) 特開 平1−228536(JP,A) 特開 平1−254243(JP,A) 特開 平1−184908(JP,A) 特開 平1−231933(JP,A) 特開 平4−122793(JP,A) 特開 平4−249594(JP,A) 特開 平5−239488(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/34 H01F 1/44 C10M 125/10 C10M 133/16 C10M 133/56 C10M 141/06 C10M 149/02 C10M 149/22 C10M 161/00 C10M 177/00 C10N 10:16 C10N 20:00 C10N 20:06 C10N 40:14 C10N 70:00 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C10M 125: 10 C10M 133: 16 133: 16 133: 56 133: 56) C10M 149: 02 (C10M 161/00 149: 22 125: 10 C10N 10:16 149: 02 20:00 A 149: 22) 20:06 Z C10N 10:16 40:14 20:00 70:00 20:06 40:14 70:00 (56) References JP-A-1-221536 (JP, A) JP-A-1-228536 (JP, A) JP-A-1-254243 (JP, A) JP-A-1-184908 (JP, A) JP-A-1-231933 (JP, A A) JP-A-4-122793 (JP, A) JP-A-4-249594 (JP, A) JP-A-5-239488 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01F 1/34 H01F 1/44 C10M 125/10 C10M 133/16 C10M 133/56 C10M 141/06 C10M 149/02 C10M 149/22 C10M 161/00 C10M 177/00 C10N 10:16 C10N 20:00 C10N 20:06 C10N 40:14 C10N 70:00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 フェライト類微粒子の水性サスペンショ
ンに、N-ポリアルキレンポリアミン置換アルケニルコハ
ク酸イミドを水より高沸点の炭化水素溶媒の溶液として
添加し、N-ポリアルキレンポリアミン置換アルケニルコ
ハク酸イミドをフェライト類微粒子に吸着させた後、水
をほぼ完全に除去し、残渣の炭化水素溶液に凝集溶媒を
加えて回収したN-ポリアルキレンポリアミン置換アルケ
ニルコハク酸イミド吸着フェライト類微粒子を、25℃に
おいて0.1 mmHg以下の蒸気圧を有する低蒸気圧基油中に
分散させて磁性流体を製造するに際し、水をほぼ完全に
除去した後、窒素気流中で180℃以上で熱処理を施す工
および残渣の炭化水素溶液に凝集溶媒を加えた後、分
離された微粒子を芳香族炭化水素中に分散させ、その上
澄液から回収する工程を挿入することを特徴とする磁性
流体の製造方法。
(57) [Claim 1] N-polyalkylenepolyamine-substituted alkenyl succinimide is added to an aqueous suspension of ferrite fine particles as a solution of a hydrocarbon solvent having a boiling point higher than that of water. After adsorbing the alkylene polyamine-substituted alkenyl succinimide to the ferrite fine particles, water is almost completely removed, and the N-polyalkylene polyamine-substituted alkenyl succinimide-adsorbed ferrite recovered by adding a flocculating solvent to the residual hydrocarbon solution. When manufacturing magnetic fluid by dispersing microparticles in low-vapor-pressure base oil having a vapor pressure of 0.1 mmHg or less at 25 ° C, water is almost completely removed, and then heat-treated at 180 ° C or higher in a nitrogen stream. And adding the flocculating solvent to the residual hydrocarbon solution,
The separated fine particles are dispersed in an aromatic hydrocarbon, and
A method for producing a magnetic fluid, comprising a step of recovering from a supernatant .
JP19185693A 1992-11-18 1993-07-07 Manufacturing method of magnetic fluid Expired - Lifetime JP3374451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19185693A JP3374451B2 (en) 1992-11-18 1993-07-07 Manufacturing method of magnetic fluid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-332388 1992-11-18
JP33238892 1992-11-18
JP19185693A JP3374451B2 (en) 1992-11-18 1993-07-07 Manufacturing method of magnetic fluid

Publications (2)

Publication Number Publication Date
JPH06207190A JPH06207190A (en) 1994-07-26
JP3374451B2 true JP3374451B2 (en) 2003-02-04

Family

ID=26506943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19185693A Expired - Lifetime JP3374451B2 (en) 1992-11-18 1993-07-07 Manufacturing method of magnetic fluid

Country Status (1)

Country Link
JP (1) JP3374451B2 (en)

Also Published As

Publication number Publication date
JPH06207190A (en) 1994-07-26

Similar Documents

Publication Publication Date Title
JPS6313304A (en) Ferrofluid compound and manufacture and application of the same
JP4869527B2 (en) Improved magnetic fluid composition and manufacturing method
JP2725015B2 (en) Manufacturing method of magnetic fluid
US5085789A (en) Ferrofluid compositions
US5851416A (en) Stable polysiloxane ferrofluid compositions and method of making same
US4956113A (en) Process for preparing a magnetic fluid
US6068785A (en) Method for manufacturing oil-based ferrofluid
JP3374451B2 (en) Manufacturing method of magnetic fluid
JPH0413842B2 (en)
JP3097133B2 (en) Manufacturing method of magnetic fluid
US5240628A (en) Process for producing magnetic fluid
JP3321964B2 (en) Manufacturing method of magnetic fluid
JP3331764B2 (en) Manufacturing method of magnetic fluid
JP3768564B2 (en) Silicone oil-based magnetic fluid and process for producing the same
JP3045182B2 (en) Manufacturing method of magnetic fluid
JP2956219B2 (en) Manufacturing method of magnetic fluid
JP3341344B2 (en) Manufacturing method of magnetic fluid
JP3106637B2 (en) Manufacturing method of magnetic fluid
JP3106577B2 (en) Manufacturing method of magnetic fluid
JP2800179B2 (en) Manufacturing method of magnetic fluid
JP3045183B2 (en) Manufacturing method of magnetic fluid
JP3045181B2 (en) Manufacturing method of magnetic fluid
EP0579229B1 (en) Fluid having magnetic and electrorheological effects simultaneously
JP2995868B2 (en) Manufacturing method of magnetic fluid
JP3106597B2 (en) Manufacturing method of magnetic fluid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

EXPY Cancellation because of completion of term