JP3373017B2 - A novel gene, a novel yeast having its gene selectively disrupted, and its use - Google Patents

A novel gene, a novel yeast having its gene selectively disrupted, and its use

Info

Publication number
JP3373017B2
JP3373017B2 JP30475693A JP30475693A JP3373017B2 JP 3373017 B2 JP3373017 B2 JP 3373017B2 JP 30475693 A JP30475693 A JP 30475693A JP 30475693 A JP30475693 A JP 30475693A JP 3373017 B2 JP3373017 B2 JP 3373017B2
Authority
JP
Japan
Prior art keywords
ser
asn
lys
leu
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30475693A
Other languages
Japanese (ja)
Other versions
JPH07132089A (en
Inventor
智夫 尾形
康 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP30475693A priority Critical patent/JP3373017B2/en
Publication of JPH07132089A publication Critical patent/JPH07132089A/en
Application granted granted Critical
Publication of JP3373017B2 publication Critical patent/JP3373017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、新規遺伝子NLT1、その遺伝
子がコードする蛋白質およびこの遺伝子が破壊された新
規酵母を用いた酵母エキスと蛋白質の製法に関する。
TECHNICAL FIELD The present invention relates to a novel gene NLT1, a protein encoded by the gene, and a method for producing a yeast extract and a protein using a novel yeast in which the gene is disrupted.

【0002】[0002]

【従来技術】遺伝子組換え技術を用いた異種蛋白の生産
において、糖鎖の付与あるいは正確な折り畳みが困難で
本来の活性を示さない場合が多いことは良く知られてい
る。特に生産する宿主として原核生物である大腸菌を用
いた場合では、糖鎖付与の機能がなくまた折り畳みも本
来のものと異なり、発現した異種蛋白、特に真核生物由
来の蛋白の場合、生物活性がないことが多い。この問題
を解決する一つの方法として真核生物である酵母を用い
ることが試みられ、B型肝炎ワクチンの製造ににおいて
は成功している〔パセク(M.Pasek)ら、ネイチ
ャー(Nature),vol.282,p575〜,
1979〕。また、ダニアレルゲンの一つDer f
Iの場合も大腸菌を宿主として生産させた場合は活性型
が得られなかったが、酵母を宿主とした場合では活性型
が得られている〔チュア(K.Y.Chua)ら、ジャ
ーナル・オブ・アラジー・アンド・クリニカル・イムノ
ロジー(J.Allergy Clin. Immun
ol),vol.89,p95〜,1992〕。前記の
ように、酵母を宿主とすることの有効性が示されたが、
酵母を用いた場合、菌体を破砕して目的物質を回収する
ことは容易でなく種々の工夫が必要であった。その一つ
の方法は目的蛋白を菌体外に分泌させるようにシグナル
ペプチドを付与する方法が考えられているが、あらゆる
蛋白に有効な方法としてはいまだ確立されていない。特
に、分子量の大きい蛋白質を酵母を用いて分泌生産を試
みたところ、強固な細胞壁に蛋白質の分泌が阻害されて
いることが報告されている〔ゼセボ(K.M.Zseb
o)ら、ジャーナル・オブ・バイオロジカル・ケミスト
リー(J.Biol.Chem.)、Vol.261,
p5858〜,1986〕。
2. Description of the Related Art It is well known that, in the production of heterologous proteins using gene recombination technology, it is often difficult to impart sugar chains or fold them correctly, and the original activity is not exhibited in many cases. In particular, when Escherichia coli, which is a prokaryote, is used as a host for production, it has no sugar chain-imparting function and folding is different from the original one. Often not. As one method for solving this problem, it has been attempted to use yeast, which is a eukaryote, and succeeded in producing a hepatitis B vaccine [M. Pasek et al., Nature, vol. . 282, p575-,
1979]. Also, one of the mite allergens, Der f
In the case of I, the active form was not obtained when E. coli was produced as a host, but the active form was obtained when yeast was used as the host [KY Chua et al., Journal of・ Aragy and Clinical Immunology (J. Allergy Clin. Immun
ol), vol. 89, p95-, 1992]. As described above, the effectiveness of using yeast as a host has been shown,
When yeast was used, it was not easy to crush the cells to recover the target substance, and various measures were required. As one of the methods, a method of adding a signal peptide so that the target protein is secreted outside the bacterium is considered, but it has not yet been established as an effective method for all proteins. In particular, when secretory production of a protein having a large molecular weight was attempted using yeast, it was reported that the secretion of the protein was inhibited by a strong cell wall [Zesevo (KM Zseb
o) et al., Journal of Biological Chemistry (J. Biol. Chem.), Vol. 261,
p5858-, 1986].

【0003】これらの問題は、ある条件下で溶解する酵
母が得られれば解決すると考えられる。細胞周期に関連
した研究の結果、レビン(D.E.Levin)らはプ
ロテインキナーゼ(PKC1およびBCK1)の変異に
よって酵母の膨圧に対する耐性が低下し溶菌することを
報告している〔ザ・ジャーナル・オブ・セルビオロジー
(J.Cell Biol.,vol.116,p12
21〜,1992)及びモレキュラ・アンド・セルラー
・ビオロジー(Mol.Cell.Biol.,vo
l.12,p172〜,1992)〕。パラビシーニ
(G.Paravicini)らも同様の報告をしてい
る(モレキュラ・アンド・セルラー・ビオロジー(Mo
l.Cell.Biol.,Vol.12,p4896
〜,1992)。従って、プロテインキナーゼに対する
変異あるいは遺伝子破壊は目的とする酵母を造成する方
法の一つと考えられるが、当該酵素は多くの生体内反応
の鍵となる酵素の一つであり、ここへ変異を導入するこ
とは多くの酵母内反応に影響する可能性が高い。また、
これらのプロテインキナーゼに対する変異あるいは遺伝
子破壊された酵母は、膨圧に対する耐性が低下し、生育
において浸透圧を要求するものがあることが報告されて
おり、目的とする酵母を造成する方法として適しない点
がある。
It is thought that these problems will be solved if yeasts that can be dissolved under certain conditions are obtained. As a result of cell cycle-related studies, DE Levin et al. Reported that mutations in protein kinases (PKC1 and BCK1) reduce yeast resistance to turgor pressure and cause lysis [The Journal].・ Of Cellbiology (J. Cell Biol., Vol.116, p12)
21-1992) and Molecular and Cellular Biology (Mol. Cell. Biol., Vo).
l. 12, p172-1992)]. Similar reports were made by G. Paravicini and others (Molecular and Cellular Biology (Mo.
l. Cell. Biol. , Vol. 12, p4896
,, 1992). Therefore, mutation or gene disruption to protein kinase is considered to be one of the methods for constructing the target yeast, but the enzyme is one of the key enzymes for many in vivo reactions, and mutations are introduced here. This is likely to affect many yeast reactions. Also,
It has been reported that yeasts having mutations or gene disruptions to these protein kinases have reduced resistance to turgor pressure and require osmotic pressure for growth, which is not suitable as a method for constructing the target yeast. There is a point.

【0004】[0004]

【目的】そこで、本発明の第1の目的は酵母の自己溶解
に関してPKC1,BCK1遺伝子とは異なる新規遺伝
子の単離を試み、その遺伝子を解明する点にある。本発
明の第2の目的は、前記遺伝子がコードする蛋白質を解
明する点にある。本発明の第3の目的は、遺伝子工学的
手法を用いて、上記遺伝子が破壊された新規酵母を提供
する点にある。本発明の第4の目的は、前記新規酵母を
用いた酵母エキスの製法を提供する点にある。本発明の
第5の目的は、前記新規酵母を用いた蛋白質類の製法を
提供する点にある。
[Objective] Therefore, a first object of the present invention is to attempt to isolate a novel gene different from the PKC1 and BCK1 genes for yeast autolysis and to elucidate the gene. The second object of the present invention is to elucidate the protein encoded by the gene. A third object of the present invention is to provide a novel yeast in which the above gene is disrupted by using a genetic engineering technique. A fourth object of the present invention is to provide a method for producing a yeast extract using the novel yeast. A fifth object of the present invention is to provide a method for producing proteins using the novel yeast.

【0005】[0005]

【構成】本発明の第1は、酵母自己溶解に関与する新規
遺伝子NLT1に関する。この遺伝子は、温度感受性自
己溶解変異株、サッカロマイセス・セレビシエ〔(Sa
ccharomyces cerevisae)受託番
号FERM P−13410 以下YTS−1株と称す
る〕を用いてこの変異を抑圧する遺伝子の単離すること
によって得た。まず、野生型株のサッカロミセス・セレ
ビシエ X−2180株の染色体DNAをプラスミドY
Ep24に組み込むことで構築されたジーンライブラリ
ーをYTS−1株に導入した。形質転換株をYPD培地
に植え37℃で培養し生育してきたコロニーからプラス
ミドpSLY−1を抽出した。このプラスミドには、約
6KbpのDNA断片が挿入されていた。サブクローニ
ングを行い、制限酵素Kpn IとCla Iで切断さ
れる約3Kbpの断片にYTS−l株の温度感受性自己
溶解変異を抑圧する活性があるものと判断された(図
4)。このYTS−l株の温度感受性を抑圧する遺伝子
をNLT1と命名し、その塩基配列を調べたところ図1
および2に示す塩基配列を有していた(電子出願の都合
上1つの図を図1と図2に分けて示している)。他の遺
伝子との相同性、特に溶解性変異に関連していることが
報告されているプロテインキナーゼとの相同性を調べ
た。その結果、NLT1はこれまで報告されているどの
遺伝子とも相同性が認められず新規な遺伝子であった。
[Structure] The first aspect of the present invention relates to a novel gene NLT1 involved in yeast autolysis. This gene is a temperature-sensitive autolytic mutant, Saccharomyces cerevisiae [(Sa
ccharomyces cerevisiae) Accession No. FERM P-13410 (hereinafter referred to as YTS-1 strain)] was used to isolate a gene that suppresses this mutation. First, the chromosomal DNA of the wild-type strain Saccharomyces cerevisiae X-2180 strain was transformed into plasmid Y.
The gene library constructed by incorporating it into Ep24 was introduced into the YTS-1 strain. The transformant was planted in YPD medium, cultured at 37 ° C., and plasmid pSLY-1 was extracted from the grown colonies. A DNA fragment of about 6 Kbp was inserted into this plasmid. Subcloning was performed, and it was determined that a fragment of about 3 Kbp cut by restriction enzymes Kpn I and Cla I had an activity of suppressing the temperature-sensitive autolytic mutation of the YTS-1 strain (FIG. 4). The gene that suppresses the temperature sensitivity of the YTS-1 strain was named NLT1 and its nucleotide sequence was examined.
And the base sequences shown in 2 (for convenience of electronic filing, one figure is shown separately in FIG. 1 and FIG. 2). We investigated homology with other genes, especially with protein kinases reported to be associated with lytic mutations. As a result, NLT1 was a novel gene with no homology to any previously reported gene.

【0006】本発明の第2は、前記遺伝子NLT1がコ
ードする図3で示されるアミノ酸配列を有する蛋白質に
関する。決定された塩基配列より予想されるNLT1遺
伝子がコードする蛋白質は、493アミノ酸、推定分子
量56000からなるものである。この蛋白質は、酵母
の自己溶解に対して抑制的に作用するものとして利用の
可能性がある。
The second aspect of the present invention relates to a protein having the amino acid sequence shown in FIG. 3 which is encoded by the gene NLT1. The protein encoded by the NLT1 gene predicted from the determined nucleotide sequence has 493 amino acids and an estimated molecular weight of 56000. This protein may be used as an inhibitory agent for yeast autolysis.

【0007】本発明の第3は、前記遺伝子NLT1を酵
母内で遺伝子工学的に破壊することを目的として作成し
たプラスミドをサッカロミセス属の酵母に導入すること
によって、遺伝子改変した温度感受性自己溶解酵母、と
くに、受託番号FERM P−13930で示される酵
母サッカロミセス・セレビシエDLT11−1B株に関
する。遺伝子改変した温度感受性自己溶解酵母は以下の
ようにして得られる。前記の温度感受性自己溶解変異を
抑圧する遺伝子NLT1の配列の中の蛋白質をコードす
る部分を、例えば宿主をウラシル非要求性とする遺伝子
URA3などの遺伝的マーカーに置換したプラスミドを
作成した。このプラスミドを、野生型2倍体であるサッ
カロミセス・セレビシエKA31に導入し、ウラシル非
要求性をマーカーにして形質転換株DLT11株を選択
した。DLT11株を胞子形成することで、NLT1遺
伝子破壊株FERM P−13930(以下 DLT1
1−1B株と称する)を得た。
A third aspect of the present invention is a temperature-sensitive autolytic yeast which is genetically modified by introducing a plasmid prepared for the purpose of genetically disrupting the gene NLT1 into yeast into Saccharomyces yeast. In particular, it relates to the yeast Saccharomyces cerevisiae DLT11-1B strain with the accession number FERM P-13930. The genetically modified temperature-sensitive autolytic yeast is obtained as follows. A plasmid was prepared by substituting the protein-encoding portion in the sequence of the gene NLT1 that suppresses the temperature-sensitive autolytic mutation with a genetic marker such as the gene URA3 that makes the host non-auxiliary. This plasmid was introduced into Saccharomyces cerevisiae KA31 which is a wild type diploid, and a transformant DLT11 strain was selected using uracil non-auxotrophy as a marker. By sporulating the DLT11 strain, the NLT1 gene disrupted strain FERM P-13930 (hereinafter referred to as DLT1
1-1B strain) was obtained.

【0008】本発明の第4は、前記DLT11−1B株
を用いる酵母エキスの製法に関する。具体的には、前記
酵母を培養、集菌、洗浄後、37℃以上で10時間以上
放置し、必要に応じて菌体残渣を除去することによって
酵母エキスを製造する方法である。
The fourth aspect of the present invention relates to a method for producing a yeast extract using the DLT11-1B strain. Specifically, it is a method of producing a yeast extract by culturing, collecting and washing the yeast, leaving it at 37 ° C. or higher for 10 hours or more, and removing the bacterial cell residue if necessary.

【0009】本発明の第5は、前記DLT11−1B株
を用いて蛋白質を製造する方法に関する。具体的には、
その菌体内の蛋白質類が培地中に分泌されるのに適した
温度条件で前記DLT11−1B株を処理することによ
り、蛋白質を製造する方法に関する。
The fifth aspect of the present invention relates to a method for producing a protein using the DLT11-1B strain. In particular,
The present invention relates to a method for producing a protein by treating the DLT11-1B strain under a temperature condition suitable for secreting the intracellular proteins into the medium.

【0010】[0010]

【実施例】【Example】

実施例1(自己溶解に関与する遺伝子NLT1のクロー
ニング) 温度感受性自己溶解変異株YTS−1株(FERM P
−13410)を用いて、自己溶解に関与する遺伝子の
クローニングをおこなった。サッカロマイセス・セレビ
シエ X−2180の染色体DNAを制限酵素Sau3
A−Iで部分分解した断片を、プラスミドYEp24の
BamHI部位に挿入することで作成された遺伝子ライ
ブラリーを、温度感受性自己溶解変異酵母YTS−1株
に形質転換した。ウラシル非要求性で選択された形質転
換株を、YPD培地に植え換え、37℃で培養し生育し
てきたコロニーよりプラスミドpSLY−11を抽出し
た。得られたプラスミドpSLY−11は、約6Kbp
のDNA断片が挿入されていた。サブクローニングの結
果は図4に示した。制限酵素Xba IとClaIで切
断される約3Kbpの断片にYTS−1の温度感受性を
抑圧する遺伝子が存在すると判断された。この遺伝子を
NLT1と命名し、そのDNA塩基配列を決定した。決
定した塩基配列は図1および2に示した。決定された塩
基配列より予想されるNLT1遺伝子のコードする蛋白
質は、493アミノ酸、分子量56000からなるもの
であった。この遺伝子は、報告されている他の遺伝子あ
るいは変異が生じることにより自己溶解性を示す酵母の
遺伝子PKC1,BCK1との相同性は全くなかった。
以上の結果より、今回クローニングされたNLT1遺伝
子は、これまで報告されているどの遺伝子とも異なる全
く新規な遺伝子であった。
Example 1 (Cloning of gene NLT1 involved in autolysis) Temperature-sensitive autolysis mutant YTS-1 strain (FERM P
-13410) was used to clone a gene involved in autolysis. Chromosomal DNA of Saccharomyces cerevisiae X-2180 is a restriction enzyme Sau3
The gene library prepared by inserting the fragment partially digested with AI into the BamHI site of the plasmid YEp24 was transformed into the temperature-sensitive autolytic mutant yeast strain YTS-1. The transformant selected without uracil requirement was replaced with YPD medium, and the plasmid pSLY-11 was extracted from the colonies grown by culturing at 37 ° C. The obtained plasmid pSLY-11 had a size of about 6 Kbp.
DNA fragment was inserted. The results of subcloning are shown in FIG. It was judged that a gene that suppresses the temperature sensitivity of YTS-1 is present in a fragment of about 3 Kbp that is cleaved with the restriction enzymes Xba I and Cla I. This gene was named NLT1 and its DNA base sequence was determined. The determined nucleotide sequences are shown in FIGS. The protein encoded by the NLT1 gene predicted from the determined nucleotide sequence was composed of 493 amino acids and a molecular weight of 56000. This gene had no homology with other reported genes or yeast genes PKC1 and BCK1 which exhibit autolysis due to mutation.
From the above results, the NLT1 gene cloned this time was a completely novel gene different from any of the genes reported so far.

【0011】実施例2(NLT1遺伝子破壊株の造成) 酵母自己溶解に関与する遺伝子NLT1の遺伝子破壊用
プラスミドpDNLT1は、図5に示すように作成し
た。
Example 2 (Construction of NLT1 gene-disrupted strain) A plasmid pDNLT1 for gene disruption of the gene NLT1 involved in yeast autolysis was prepared as shown in FIG.

【0012】プラスミドpUC119の制限酵素Sma
I、Kpn I切断断片に、プラスミドpSLY−1
1のSma I、Kpn Iで切断されたNLT1遺伝
子を含む約3KbpのDNAフラグメントを挿入したプ
ラスミドpSL11−SK2を作成した。プラスミドp
SL11−SK2−Δ36は、pSL11−SK2を、
制限酵素SacI、SmIでで切断した後、核酸分解酵
素ExoIIIで消化し、核酸分解酵素Mung Be
an Nucleaseで処理し、核酸合成酵素Kle
now Fragmentで平滑化した後、ライゲーシ
ョンし、作成されたものである。pSL11−SK2−
Δ36に挿入されたNLT1遺伝子は、図4におけるA
に示される部分である。
Restriction enzyme Sma of plasmid pUC119
I, Kpn I digestion fragment, and plasmid pSLY-1
Plasmid pSL11-SK2 was prepared by inserting a DNA fragment of about 3 Kbp containing the NLT1 gene cleaved with Sma I and Kpn I of 1. Plasmid p
SL11-SK2-Δ36 is the same as pSL11-SK2,
Cleavage with restriction enzymes SacI and SmI, followed by digestion with nucleolytic enzyme ExoIII, nucleolytic enzyme Mung Be
treated with an Nuclease, and the nucleic acid synthase Kle
It is created by smoothing with now Fragment and then ligating. pSL11-SK2-
The NLT1 gene inserted in Δ36 is represented by A in FIG.
Is the part shown in.

【0013】また、プラスミドpBR322の制限酵素
Bam HI、Hind III切断断片に、プラスミ
ドpSLY−11のBam HI、Hind IIIで
切断されたNLT1遺伝子を含む1.9KbpのDNA
フラグメントを挿入したプラスミドpDNLT1−HB
1を作成した。pDNLT1−HB1に挿入されたNL
T1遺伝子は、図4におけるBで示される部分である。
プラスミドpDNLT1−HB1の制限酵素EcoR
I、Hind III切断断片に、プラスミドpSL1
1−SK2−Δ36のEcoRI、Hind IIIで
切断されたNLT1遺伝子を含む約1.3KbpのDN
Aフラグメントを挿入し、プラスミドpDNLT1−E
B1を作成した。pDNLT1−EB1に挿入されたN
LT1遺伝子は図4におけるAとBで示される部分であ
って、Cで示される部分が欠けているものである。さら
に、作成されたプラスミドpDNLT1−EB1のHi
ndIII部位に、プラスミドYEp24の酵母サッカ
ロマイセス・セレビシエのURA3遺伝子を含むHin
d IIIフラグメント1.1Kbpを挿入して、NL
T1遺伝子破壊用プラスミドpDNLT1を作成した。
作成されたNLT1遺伝子破壊用プラスミドpDNLT
1は、図4におけるAとBを含む部分を有し、Cで示さ
れる部分には、酵母サッカロマイセス・セレビシエのu
ra3遺伝子が代わりに挿入されたものである。この結
果、プラスミドpDNLT1を制限酵素Cla Iで処
理したDNA断片を酵母サッカロマイセス・セレビシエ
のura3変異株に導入させることで、相同的なDNA
の組換えが生じ、NLT1遺伝子の蛋白質をコードする
部分が欠失した形質転換株を得ることができた。
A 1.9 Kbp DNA containing the NLT1 gene cleaved with Bam HI and Hind III of the plasmid pSLY-11 in the restriction enzyme Bam HI and Hind III cleaved fragment of the plasmid pBR322.
Plasmid pDNLT1-HB with the fragment inserted
Created 1. NL inserted into pDNLT1-HB1
The T1 gene is the portion indicated by B in FIG.
Restriction enzyme EcoR of plasmid pDNLT1-HB1
I, Hind III cleavage fragment, and plasmid pSL1
1-SK2-Δ36 EcoRI, about 1.3 Kbp DN containing the NLT1 gene cleaved with Hind III
The A fragment was inserted into the plasmid pDNLT1-E
B1 was created. N inserted into pDNLT1-EB1
The LT1 gene is the part shown by A and B in FIG. 4, and the part shown by C is missing. Furthermore, the generated plasmid pDNLT1-EB1 had a Hi
Hin containing the yeast Saccharomyces cerevisiae URA3 gene of the plasmid YEp24 at the ndIII site
The dIII fragment 1.1 Kbp was inserted to insert NL
A plasmid pDNLT1 for T1 gene disruption was prepared.
The created plasmid pDNLT for disrupting the NLT1 gene
1 has a portion containing A and B in FIG. 4, and the portion indicated by C is u of yeast Saccharomyces cerevisiae.
The ra3 gene is inserted instead. As a result, by introducing a DNA fragment obtained by treating the plasmid pDNLT1 with the restriction enzyme Cla I into the ura3 mutant strain of the yeast Saccharomyces cerevisiae, homologous DNA
Was obtained, and a transformant lacking the protein-encoding portion of the NLT1 gene could be obtained.

【0014】そこで、ura3変異をホモに持つ2倍体
の酵母サッカロミセス・セレビシエKA31株にプラス
ミドpDNLT1のCla I処理したDNA断片を挿
入し形質転換した。この形質転換によってウラシル非要
求性株DLT11株を得た。このDLT11株を胞子形
成させて、ウラシル非要求性である1倍体酵母DLT1
1−1B株を選択した。得られたDLT11−1B株は
NLT1遺伝子が破壊されたものである。図6は、NL
T1遺伝子破壊株であるDLT11−1B株とその親株
であるKA311Aの生菌数と時間との関係を示すグラ
フである。縦軸は、37℃温度シフト後の時間、横軸
は、生菌数を対数表示したものである。野生型株である
KA311A株は、37℃温度シフト後も正常に生育す
るのに対し、NLT1遺伝子破壊株であるDLT11−
1B株は、37℃温度シフト後、その生菌数は低下し、
シフト後48時間後には、約1%まで低下した。
Therefore, the Cla I-treated DNA fragment of the plasmid pDNLT1 was inserted into the diploid yeast Saccharomyces cerevisiae KA31 strain homozygous for the ura3 mutation for transformation. By this transformation, the uracil non-auxotrophic strain DLT11 strain was obtained. This DLT11 strain is sporulated to give uracil non-auxotrophic haploid yeast DLT1.
The 1-1B strain was selected. The obtained DLT11-1B strain has the NLT1 gene disrupted. FIG. 6 shows NL
It is a graph which shows the relationship between the viable cell count and time of DLT11-1B strain which is a T1 gene-disrupted strain and its parent strain KA311A. The vertical axis represents the time after the temperature shift of 37 ° C., and the horizontal axis represents the viable cell count in logarithmic form. The wild-type strain KA311A grows normally even after 37 ° C. temperature shift, whereas the NLT1 gene-disrupted strain DLT11-.
The 1B strain had a decreased viable cell count after a temperature shift of 37 ° C.
It decreased to about 1% 48 hours after the shift.

【0015】実施例3(NLT1遺伝子破壊酵母である
DLT11−1B株を用いた酵母エキス製造法) 親株であるKA311A株および、NLT1遺伝子破壊
株であるDLT11−1Bを25℃で2日間培養した
後、集菌洗浄し、蒸留水に懸濁、37℃あるいは52℃
で18時間放置した。その後、遠心分離を行い菌体残渣
を除去し、酵母エキスとした。対照としては、破壊株の
親株であるKA311A株を用いた。エキス抽出率は、
中西らの方法(特願平1−249502号)に従って求
めた。対照であるKA311A株の抽出率は37℃で
は、10.7%、52℃では34.1%であったのに対
し、NLT1遺伝子破壊株DLT11−1B株の抽出率
は37℃では、20.3%、52℃では、50.7%で
あり、NLT1遺伝子破壊によりエキス抽出率の向上が
認められた(表1)。
Example 3 (Yeast extract production method using NLT1 gene-disrupted yeast strain DLT11-1B) After culturing parent strain KA311A strain and NLT1 gene-disrupted strain DLT11-1B at 25 ° C. for 2 days , Collect and wash, suspend in distilled water, 37 ℃ or 52 ℃
Left for 18 hours. Then, centrifugation was performed to remove the bacterial cell residue to obtain a yeast extract. As a control, the KA311A strain, which is the parent strain of the disrupted strain, was used. Extract extraction rate is
It was determined according to the method of Nakanishi et al. (Japanese Patent Application No. 1-249502). The extraction rate of the control KA311A strain was 10.7% at 37 ° C and 34.1% at 52 ° C, whereas the extraction rate of the NLT1 gene-disrupted strain DLT11-1B strain was 20% at 37 ° C. At 3% and 52 ° C., it was 50.7%, and improvement of the extract extraction rate was recognized due to NLT1 gene disruption (Table 1).

【表1】 [Table 1]

【0016】実施例4(NLT1遺伝子破壊酵母である
DLT11−1B株を用いた菌体内蛋白質の分泌生産) 親株であるKA311Aおよび、NLT1遺伝子破壊酵
母であるDLT11−1B株を25℃で2日間培養した
後、集菌洗浄し、蒸留水に懸濁、37℃へ温度を上昇さ
せ、18時間放置した。その後遠心分離し、上清に分泌
された蛋白質含量をローリー(O.H.Lowly)ら
の方法〔ジャーナル・オブ・バイオロジカルケミストリ
ー(J.Biol.Chem.Vo1,193,p26
5〜,1951)〕で測定した。その結果は、表2に示
した。NLT1遺伝子破壊株DLT11−1B株は、乾
燥菌体重量当たり9.32mgの蛋白質の漏出が認めら
れたのに対し、野生型株であるKA311A株は乾燥菌
体重量当たり、2.14mgの蛋白質の漏出が認められ
たの。37℃温度処理によって、NLT1遺伝子破壊株
は、蛋白質漏出量は約4倍程度増加した。
Example 4 (Secreted production of intracellular protein using NLT1 gene-disrupted yeast strain DLT11-1B) Parent strain KA311A and NLT1 gene-disrupted yeast strain DLT11-1B were cultured at 25 ° C. for 2 days. After that, the cells were collected and washed, suspended in distilled water, the temperature was raised to 37 ° C., and left for 18 hours. Then, the mixture was centrifuged, and the protein content secreted in the supernatant was determined by the method of OH Lowly et al. [J. Biol. Chem. Vo1, 193, p26.
5-, 1951)]. The results are shown in Table 2. The NLT1 gene-disrupted strain DLT11-1B strain was found to leak 9.32 mg of protein per dry cell weight, whereas the wild-type strain KA311A strain contained 2.14 mg of protein per dry cell weight. A leak was noted. By the temperature treatment at 37 ° C., the protein leakage amount of the NLT1 gene-disrupted strain increased by about 4-fold.

【表2】 [Table 2]

【0017】[0017]

【効果】【effect】

(1)本発明は37℃で酵母が溶解するのを阻害する働
きをしている遺伝子を見出しその塩基配列を確認した。 (2)前記遺伝子を遺伝子工学的に破壊した新規酵母を
造成した。 (3)この酵母の使用により効率的な酵母エキスの製造
を可能とした。
(1) In the present invention, a gene that functions to inhibit yeast dissolution at 37 ° C was found, and its nucleotide sequence was confirmed. (2) A novel yeast in which the above gene was disrupted by genetic engineering was created. (3) Use of this yeast enables efficient production of yeast extract.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の遺伝子NLT1の塩基配列の1部を示
す。
FIG. 1 shows a part of the nucleotide sequence of the gene NLT1 of the present invention.

【図2】本発明の遺伝子NLT1の塩基配列の1部を示
し、図1の続きである。
FIG. 2 shows a part of the nucleotide sequence of the gene NLT1 of the present invention, which is a continuation of FIG. 1.

【図3】本発明の遺伝子NLT1がコードする蛋白質の
アミノ酸配列を示す。
FIG. 3 shows the amino acid sequence of the protein encoded by the gene NLT1 of the present invention.

【図4】クローニングされた本発明の遺伝子NLT1の
サブクローニングの過程でのプラスミドの作成過程を示
す。
FIG. 4 shows a process of constructing a plasmid in the process of subcloning the cloned gene NLT1 of the present invention.

【図5】実施例2における本発明酵母作成のためのプラ
スミド作成過程を示す。
FIG. 5 shows a process for preparing a plasmid for preparing the yeast of the present invention in Example 2.

【図6】本発明の温度感受性酵母DLT11−1B株の
37℃に温度シフトした後の時間に対する生菌数の変化
を示すグラフである。横軸は、温度シフト後の時間、縦
軸は、生菌数を対数表示したものである。
FIG. 6 is a graph showing changes in the viable cell count of the temperature-sensitive yeast DLT11-1B strain of the present invention with respect to time after temperature shift to 37 ° C. The horizontal axis represents the time after the temperature shift, and the vertical axis represents the viable cell count in logarithmic form.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI //(C12N 1/19 C12P 21/02 C12R 1:865) C12N 15/00 ZNAA (C12P 21/02 C12R 1:865) (58)調査した分野(Int.Cl.7,DB名) EUROPAT(QUESTEL) BIOSIS/WPI(DIALOG) PubMed SwissProt/PIR/GeneS eq GenBank/EMBL/DDBJ/G eneSeq─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // (C12N 1/19 C12P 21/02 C12R 1: 865) C12N 15/00 ZNAA (C12P 21/02 C12R 1: 865) ( 58) Fields surveyed (Int.Cl. 7 , DB name) EUROPAT (QUESTEL) BIOSIS / WPI (DIALOG) PubMed SwissProt / PIR / GeneS eq GenBank / EMBL / DDBJ / GeneSeq

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記塩基配列を有する遺伝子。 ATG AGT GAC GAA AAT CCT TCG AAA AGA ACT ACA TTT GGC CGC ATT CTG TTC AAT AAT TTT GAA GAT GTT AAT AAA GTA TAC AGA AAG AAG ACT AAA AAA GTA TCA GAA TCA GAA GCC ATA TCG GAG AGA TTT CAA GAG CAG GGA GTA TTT AAT GAA ATA CTA GTC AAT GAA ATT GAA AAA ATA AAG AGG GAA GCC AGA AAA TTA GAG GTT TTA CTC GAT CAA GAA AAG ATC TTG AAG AAC TCT GCT GCT TTA CAT CAG GCC GTT CCG AAA AAG AAT AGG AAG TCT GTT ATT ATC TCA GGT ACT CAT AGT GAC AAC GAT CAT AGC TAT AAT ATC AAT AAG AAC ACC GGT CAA ACG CCT TCT CTA GGT AGT GTT ATG GAA AGC AAT AAT TCA GCA AGG AAT AGA AGA GAT TCA AGG GCC TCC TTT TCC ACA AAT AGA TCA TCA GTA GTG TCA AAT TCC AGC CAT AAT GGT GTT AGT AAA AAA ATA GGT GGA TTT TTC AGA AGA CCA TTT TCA ATC GGT GGA TTC AAC ACA TCC AGT TCT AAT TAT TCA CTC AAC AGT ATA TTA TCG CAA GAA GTT TCA AGT AAC AAA TCC ATT CTA CCA AGT ATA CTT CCA GAG GTT GAT TCC ATG CAA CTA CAC GAC TTA AAA CCT AGT TAT AGT TTG AAG ACC TTT GAA ATC AAG TCA ATA ATG GAA ATA ATC AAT CAC AGA AAC ATT CCG GCT TAC TAC TAT GCG TTC AAG ATA GTT ATG CAA AAT GGC CAT GAA TAT CTG ATT CAA ACG GCT AGT TCT AGT GAC CTC ACA GAA TGG ATA AAA ATG ATC AAG ACT TCC AAG AGA TTT TCA TTC CAT TCG AAA AAA TAT AAA GGT AAA ACT CAT AAT AAG ATA TTT GGG GTA CCA GAA GAC GTT TGT GAA AGA GAG AAT ACC TTG CTA CCT ACA ATT GTT GTG AAA TTG CTG GAA GAG ATT GAG CTG CGT GGG CTA GAT GAA GTG GGA TTG TAC AGA ATT CCT GGG TCC ATC GGC AGT ATA AAT GCA CTA AAG AAC GCA TTT GAC GAA GAA GGT GCA ACA GCT AAT TCC TTT ACA TTA GAG GAC GAT AGA TGG TTT GAA GTG AAT GCG ATC GCA GGC TGT TTT AAG ATG TAT TTA AGA GAG TTA CCA GAT TCT TTA TTT TCT CAT GCT ATG GTG AAC GAC TTT ACC GAT TTG GCG ATT AAG TAT AAA GCA CAT GCA ATG GTA AAT GAA GAA TAC AAG AGA ATG ATG AAT GAG TTA CTC CAA AAG TTA CCT ACA TGC TAT TAC CAA ACT TTG AAA AGA ATT GTA TTT CAT TTG AAT AAA GTA CAT CAG CAT GTT GTA AAT AAT AAA ATG GAC GCA TCA AAC TTG GCT ATT GTA TTT TCC ATG AGT TTT ATA AAC CAA GAA GAC TTA GCC AAC AGC ATG GGG TCC AGA TTA GGT GCA GTT CAG ACA ATC CTG CAA GAT TTT ATT AAG AAT CCA AAT GAT TAT TTC AAG CAA TAA1. A gene having the following base sequence. ATG AGT GAC GAA AAT CCT TCG AAA AGA ACT ACA TTT GGC CGC ATT CTG TTC AAT AAT TTT GAA GAT GTT AAT AAA GTA TAC AGA AAG AAG ACT AAA AAA GTA TCA GAA TCA GAA GCC ATA TCG GAG AGA TTT CAA GAG CAG GGA GTA TTT AAT GAA ATA CTA GTC AAT GAA ATT GAA AAA ATA AAG AGG GAA GCC AGA AAA TTA GAG GTT TTA CTC GAT CAA GAA AAG ATC TTG AAG AAC TCT GCT GCT TTA CAT CAG GCC GTT CCG AAA AAG AAT AGG AAG TCT GTT ATT ATC TCA GGT ACT CAT AGT GAC AAC GAT CAT AGC TAT AAT ATC AAT AAG AAC ACC GGT CAA ACG CCT TCT CTA GGT AGT GTT ATG GAA AGC AAT AAT TCA GCA AGG AAT AGA AGA GAT TCA AGG GCC TCC TTT TCC ACA AAT AGA TCA TCA GTA GTG TCA AAT TCC AGC CAT AAT GGT GTT AGT AAA AAA ATA GGT GGA TTT TTC AGA AGA CCA TTT TCA ATC GGT GGA TTC AAC ACA TCC AGT TCT AAT TAT TCA CTC AAC AGT ATA TTA TCG CAA GAA GTT TCA AGT AAC AAA TCC ATT CTA CCA AGT ATA CTT CCA GAG GTT GAT TCC ATG CAA CTA CAC GAC TTA AAA CCT AGT TAT AGT TTG AAG ACC TTT GAA ATC AAG TCA ATA ATG GAA ATA ATC AAT CAC AGA AAC ATT CCG GCT TAC TAC TAT GCG TTC AAG ATA GTT ATG CAA AAT GGC CAT GAA TAT CTG ATT CAA ACG GCT AGT TCT AGT GAC CTC ACA GAA TGG ATA AAA ATG ATC AAG ACT TCC AAG AGA TTT TCA TTC CAT TCG AAA AAA TAT AAA GGT AAA ACT CAT AAT AAG ATA TTT GGG GTA CCA GAA GAC GTT TGT GAA AGA GAG AAT ACC TTG CTA CCT ACA ATT GTT GTG AAA TTG CTG GAA GAG ATT GAG CTG CGT GGG CTA GAT GAA GTG GGA TTG TAC AGA ATT CCT GGG TCC ATC GGC AGT ATA AAT GCA CTA AAG AAC GCA TTT GAC GAA GAA GGT GCA ACA GCT AAT TCC TTT ACA TTA GAG GAC GAT AGA TGG TTT GAA GTG AAT GCG ATC GCA GGC TGT TTT AAG ATG TAT TTA AGA GAG TTA CCA GAT TCT TTA TTT TCT CAT GCT ATG GTG AAC GAC TTT ACC GAT TTG GCG ATT AAG TAT AAA GCA CAT GCA ATG GTA AAT GAA GAA TAC AAG AGA ATG ATG AAT GAG TTA CTC CAA AAG TTA CCT ACA TGC TAT TAC CAA ACT TTG AAA AGA ATT GTA TTT CAT TTG AAT AAA GTA CAT CAG CAT GTT GTA AAT AAT AAA ATG GAC GCA TCA AAC TTG GCT ATT GTA TTT TCC ATG AGT TTT ATA AAC CAA GAA GAC TTA GCC AAC AGC ATG GGG TCC AGA TTA GGT GCA GTT CAG ACA ATC CTG CAA GAT TTT ATT AAG AAT CCA AAT GAT TAT TTC AAG CAA TAA 【請求項2】 請求項1記載の遺伝子がコードする、下
記アミノ酸配列を有する蛋白質。 Met Ser Asp Glu Asn Pro Ser Lys Arg Thr Thr Phe Gly Arg Ile Leu Phe Asn Asn Phe Glu Asp Val Asn Lys Val Tyr Arg Lys Lys Thr Lys Lys Val Ser Glu Ser Glu Ala Ile Ser Glu Arg Phe Gln Glu Gln Gly Val Phe Asn Glu Ile Leu Val Asn Glu Ile Glu Lys Ile Lys Arg Glu Ala Arg Lys Leu Glu Val Leu Leu Asp Gln Glu Lys Ile Leu Lys Asn Ser Ala Ala Leu His Gln Ala Val Pro Lys Lys Asn Arg Lys Ser Val Ile Ile Ser Gly Thr His Ser Asp Asn Asp His Ser Tyr Asn Ile Asn Lys Asn Thr Gly Gln Thr Pro Ser Leu Gly Ser Val Met Glu Ser Asn Asn Ser Ala Arg Asn Arg Arg Asp Ser Arg Ala Ser Phe Ser Thr Asn Arg Ser Ser Val Val Ser Asn Ser Ser His Asn Gly Val Ser Lys Lys Ile Gly Gly Phe Phe Arg Arg Pro Phe Ser Ile Gly Gly Phe Asn Thr Ser Ser Ser Asn Tyr Ser Leu Asn Ser Ile Leu Ser Gln Glu Val Ser Ser Asn Lys Ser Ile Leu Pro Ser Ile Leu Pro Glu Val Asp Ser Met Gln Leu His Asp Leu Lys Pro Ser Tyr Ser Leu Lys Thr Phe Glu Ile Lys Ser Ile Met Glu Ile Ile Asn His Arg Asn Ile Pro Ala Tyr Tyr Tyr Ala Phe Lys Ile Val Met Gln Asn Gly His Glu Tyr Leu Ile Gln Thr Ala Ser Ser Ser Asp Leu Thr Glu Trp Ile Lys Met Ile Lys Thr Ser Lys Arg Phe Ser Phe His Ser Lys Lys Tyr Lys Gly Lys Thr His Asn Lys Ile Phe Gly Val Pro Glu Asp Val Cys Glu Arg Glu Asn Thr Leu Leu Pro Thr Ile Val Val Lys Leu Leu Glu Glu Ile Glu Leu Arg Gly Leu Asp Glu Val Gly Leu Tyr Arg Ile Pro Gly Ser Ile Gly Ser Ile Asn Ala Leu Lys Asn Ala Phe Asp Glu Glu Gly Ala Thr Ala Asn Ser Phe Thr Leu Glu Asp Asp Arg Trp Phe Glu Val Asn Ala Ile Ala Gly Cys Phe Lys Met Tyr Leu Arg Glu Leu Pro Asp Ser Leu Phe Ser His Ala Met Val Asn Asp Phe Thr Asp Leu Ala Ile Lys Tyr Lys Ala His Ala Met Val Asn Glu Glu Tyr Lys Arg Met Met Asn Glu Leu Leu Gln Lys Leu Pro Thr Cys Tyr Tyr Gln Thr Leu Lys Arg Ile Val Phe His Leu Asn Lys Val His Gln His Val Val Asn Asn Lys Met Asp Ala Ser Asn Leu Ala Ile Val Phe Ser Met Ser Phe Ile Asn Gln Glu Asp Leu Ala Asn Ser Met Gly Ser Arg Leu Gly Ala Val Gln Thr Ile Leu Gln Asp Phe Ile Lys Asn Pro Asn Asp Tyr Phe Lys Gln
2. A protein encoded by the gene according to claim 1 having the following amino acid sequence. Met Ser Asp Glu Asn Pro Ser Lys Arg Thr Thr Phe Gly Arg Ile Leu Phe Asn Asn Phe Glu Asp Val Asn Lys Val Tyr Arg Lys Lys Thr Lys Lys Val Ser Glu Ser Glu Ala Ile Ser Glu Arg Phe Gln Glu Gln Gly Val Phe Asn Glu Ile Leu Val Asn Glu Ile Glu Lys Ile Lys Arg Glu Ala Arg Lys Leu Glu Val Leu Leu Asp Gln Glu Lys Ile Leu Lys Asn Ser Ala Ala Leu His Gln Ala Val Pro Lys Lys Asn Arg Lys Ser Val Ile Ile Ser Gly Thr His Ser Asp Asn Asp His Ser Tyr Asn Ile Asn Lys Asn Thr Gly Gln Thr Pro Ser Leu Gly Ser Val Met Glu Ser Asn Asn Ser Ala Arg Asn Arg Arg Asp Ser Arg Ala Ser Phe Ser Thr Asn Arg Ser Ser Val Val Ser Asn Ser Ser His Asn Gly Val Ser Lys Lys Ile Gly Gly Phe Phe Arg Arg Pro Phe Ser Ile Gly Gly Phe Asn Thr Ser Ser Ser Asn Tyr Ser Leu Asn Ser Ile Leu Ser Gln Glu Val Ser Ser Asn Lys Ser Ile Leu Pro Ser Ile Leu Pro Glu Val Asp Ser Met Gln Leu His Asp Leu Lys Pro Ser Tyr Ser Leu Lys Thr Phe Glu Ile Lys Ser Ile Met Glu Ile Ile Asn His Arg Asn Ile Pro Ala Tyr Tyr Tyr Ala Phe Lys Ile Val Met Gln Asn Gly His Glu Tyr Leu Ile Gln Thr Ala Ser Ser Ser Asp Leu Thr Glu Trp Ile Lys Met Ile Lys Thr Ser Lys Arg Phe Ser Phe His Ser Lys Lys Tyr Lys Gly Lys Thr His Asn Lys Ile Phe Gly Val Pro Glu Asp Val Cys Glu Arg Glu Asn Thr Leu Leu Pro Thr Ile Val Val Lys Leu Leu Glu Glu Ile Glu Leu Arg Gly Leu Asp Glu Val Gly Leu Tyr Arg Ile Pro Gly Ser Ile Gly Ser Ile Asn Ala Leu Lys Asn Ala Phe Asp Glu Glu Gly Ala Thr Ala Asn Ser Phe Thr Leu Glu Asp Asp Arg Trp Phe Glu Val Asn Ala Ile Ala Gly Cys Phe Lys Met Tyr Leu Arg Glu Leu Pro Asp Ser Leu Phe Ser His Ala Met Val Asn Asp Phe Thr Asp Leu Ala Ile Lys Tyr Lys Ala His Ala Met Val Asn Glu Glu Tyr Lys Arg Met Met Asn Glu Leu Leu Gln Lys Leu Pro Thr Cys Tyr Tyr Gln Thr Leu Lys Arg Ile Val Phe His Leu Asn Lys Val His Gln His Val Val Asn Asn Lys Met Asp Ala Ser Asn Leu Ala Ile Val Phe Ser Met Ser Phe Ile Asn Gln Glu Asp Leu Ala Asn Ser Met Gly Ser Arg Leu Gly Ala Val Gln Thr Ile Leu Gln Asp Phe Ile Lys Asn Pro Asn Asp Tyr Phe Lys Gln
【請求項3】 サッカロミセス・セレビシエDLT11
−1B(受託番号FERM P−13930)である酵
母。
3. Saccharomyces cerevisiae DLT11
-1B (accession number FERM P-13930).
【請求項4】 請求項3記載の酵母を用いる酵母エキス
の製造法。
4. A method for producing a yeast extract using the yeast according to claim 3.
【請求項5】 請求項3記載の酵母を用いる蛋白質の製
造法。
5. A method for producing a protein using the yeast according to claim 3.
JP30475693A 1993-11-10 1993-11-10 A novel gene, a novel yeast having its gene selectively disrupted, and its use Expired - Fee Related JP3373017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30475693A JP3373017B2 (en) 1993-11-10 1993-11-10 A novel gene, a novel yeast having its gene selectively disrupted, and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30475693A JP3373017B2 (en) 1993-11-10 1993-11-10 A novel gene, a novel yeast having its gene selectively disrupted, and its use

Publications (2)

Publication Number Publication Date
JPH07132089A JPH07132089A (en) 1995-05-23
JP3373017B2 true JP3373017B2 (en) 2003-02-04

Family

ID=17936854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30475693A Expired - Fee Related JP3373017B2 (en) 1993-11-10 1993-11-10 A novel gene, a novel yeast having its gene selectively disrupted, and its use

Country Status (1)

Country Link
JP (1) JP3373017B2 (en)

Also Published As

Publication number Publication date
JPH07132089A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
KR930001117B1 (en) Method for production of polypeptide
CA2168037C (en) Transformation systems for the yeast candida utilis and the expression of heterologous genes therewith
CA1339099C (en) Yeast vector
JP2552809B2 (en) DNA fragment having autonomously replicating sequence, hybrid plasmid containing the same, Escherichia coli transformed with the hybrid plasmid, and method for producing the DNA fragment
EP3199632A1 (en) Temperature-inducible crispr/cas system
Nagasu et al. Isolation of new temperature‐sensitive mutants of Saccharomyces cerevisiae deficient in mannose outer chain elongation
GB2091271A (en) Recombinant dna
JP2002514049A (en) Production of auxotrophic mutants of Pichia methanolica
JPH09168388A (en) Dna fragment containing functional gene
HU204097B (en) Process for producing cloning system relating to kluyveromyces species
CN111534527B (en) Application of gene FoPao in regulation and control of pathogenicity of banana vascular wilt
FI85987B (en) FOERFARANDE FOER TRANSFORMERING AV YARROW LIPOLYTICA.
PT86684B (en) PROCESS FOR THE PREPARATION OF NEW EXPRESSION SYSTEMS
AU744698B2 (en) Candida utilis transformation system
JP3009679B2 (en) Pectin lyase expression system
JP3373017B2 (en) A novel gene, a novel yeast having its gene selectively disrupted, and its use
JPH08336387A (en) Sugar chain-extended protein derived from pichia yeast and dna of the protein
Kawahata et al. A positive selection for plasmid loss in Saccharomyces cerevisiae using galactose‐inducible growth inhibitory sequences
CN113249241B (en) Construction and application of saccharomyces cerevisiae protease deletion strain
JPH06189769A (en) Variant aox2 promoter, vector carrying the promoter, transformant and production of foreign protein
Sanglard et al. DNA transformations of Candida tropicalis with replicating and integrative vectors
EP0134773A1 (en) Yeast copper-metallothionein gene
JPH09261A (en) Production of glycoprotein
JP4330452B2 (en) Selectable marker gene
JP2004538004A (en) Vectors for site-specific integration of heterologous DNA sequences into rDNA sites of methylotrophic yeast

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees