JP3370509B2 - Channel steel with excellent member strength - Google Patents

Channel steel with excellent member strength

Info

Publication number
JP3370509B2
JP3370509B2 JP08012896A JP8012896A JP3370509B2 JP 3370509 B2 JP3370509 B2 JP 3370509B2 JP 08012896 A JP08012896 A JP 08012896A JP 8012896 A JP8012896 A JP 8012896A JP 3370509 B2 JP3370509 B2 JP 3370509B2
Authority
JP
Japan
Prior art keywords
channel steel
width
web
steel
overhang
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08012896A
Other languages
Japanese (ja)
Other versions
JPH09268701A (en
Inventor
公司 半谷
良一 菅野
良道 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08012896A priority Critical patent/JP3370509B2/en
Publication of JPH09268701A publication Critical patent/JPH09268701A/en
Application granted granted Critical
Publication of JP3370509B2 publication Critical patent/JP3370509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は建築部材としての梁
材、母屋、あるいは鋼部材と木質部材との合成パネルの
芯材として使用される曲げ力を受ける鋼製溝形鋼に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel channel steel subjected to a bending force, which is used as a beam material as a building member, a purlin, or a core material of a composite panel of a steel member and a wood member.

【0002】[0002]

【従来の技術】従来、建築材料として例えばプレハブパ
ネルの枠材として合成パネルが使用されている。合成パ
ネルは一般に木質合板、石膏ボード、パーティクルボー
ド、鉄板などの板材に、芯材として軽溝形鋼やリップ付
溝形鋼がスクリュー、釘、接着剤などの接合部材によっ
て接合されている。
2. Description of the Related Art Conventionally, synthetic panels have been used as building materials, for example, as frame materials for prefabricated panels. In general, a synthetic panel is made of wood plywood, gypsum board, particle board, iron plate or the like, and light groove steel or grooved lip steel as a core material is joined by a joining member such as a screw, a nail or an adhesive.

【0003】前記合成パネルの一例を図9に示す。合成
パネル1は並列した複数の芯材2の上に板材3を載置
し、接合部材7によって両者を接合して構成されてい
る。芯材2は図10(1)に示すようにウエブ部4とフ
ランジ部5からなる軽溝形鋼、または図10(2)に示
すようにフランジ部の先端にリップ6を形成したリップ
付溝形鋼などで構成されており、前記板材3は前記フラ
ンジ部5に載置接合される。
An example of the composite panel is shown in FIG. The composite panel 1 is configured by placing a plate member 3 on a plurality of core members 2 arranged in parallel and joining them by a joining member 7. The core material 2 is a light channel steel consisting of a web portion 4 and a flange portion 5 as shown in FIG. 10 (1), or a lip groove having a lip 6 formed at the tip of the flange portion as shown in FIG. 10 (2). It is made of shaped steel or the like, and the plate member 3 is placed and joined to the flange portion 5.

【0004】かゝる合成パネルには積雪などによって板
材表面方向から荷重がかゝり、その結果、図11に示す
ように曲げ応力がパネル断面内に生じ芯材2が座屈する
場合がある。溝形鋼が単独で梁材として用いられた場合
にも、大きな荷重がかゝると曲げ応力が梁材断面内に生
じて座屈する。
A load is applied to such a synthetic panel from the surface direction of the plate material due to snow or the like, and as a result, bending stress may occur in the panel cross section as shown in FIG. 11 and the core material 2 may buckle. Even when the channel steel is used alone as a beam material, if a large load is applied, bending stress is generated in the beam material cross section and buckling occurs.

【0005】建築材料としてこのような曲げ応力によっ
て芯材などの溝形鋼が座屈しないようにする必要があ
る。鋼製溝形鋼の部材耐力は座屈によって決定される。
図11に示すようにリップ溝形鋼2に曲げ応力Fを作用
させた場合の座屈長さ(部材長さ相当)と座屈発生時の
曲げモーメントとの関係を図12に示す。図12のカー
ブAに示すように、リップ付溝形鋼が曲げを受けたとき
に発生し得る座屈モードは3種類あり、かゝる座屈モー
ドは断面形状、座屈長さに関連して変化する。図12は
同一断面形状の各種溝形鋼における座屈長さおよび部材
耐力との関係を見たものである。
As a building material, it is necessary to prevent the channel steel such as the core material from buckling due to such bending stress. The yield strength of steel channel steel is determined by buckling.
FIG. 12 shows the relationship between the buckling length (corresponding to the member length) when the bending stress F is applied to the lip channel steel 2 as shown in FIG. 11 and the bending moment when the buckling occurs. As shown by the curve A in FIG. 12, there are three types of buckling modes that can occur when the grooved steel with lip is bent, and such buckling modes are related to the cross-sectional shape and buckling length. Change. FIG. 12 shows the relationship between the buckling length and the proof stress of members in various channel steels having the same cross-sectional shape.

【0006】図において、モード1は局部座屈であり、
モード2はフランジの曲げねじり座屈であり、またモー
ド3はウエブの曲げねじり座屈である。図で示すよう
に、リップ付溝形鋼2Dの場合はカーブAで示すように
約7KNmm/mm2 の部材耐力で各座屈モードを形成して
いる。このような軽溝形鋼またはリップ付溝形鋼を用い
た合成パネル1は前述のように曲げ応力を受けると、座
屈が早期に発生してしまい、溝形鋼がもつ強度を十分に
発揮する前の早い段階で破壊してしまう。
In the figure, mode 1 is local buckling,
Mode 2 is flange bending-torsional buckling, and mode 3 is web bending-torsional buckling. As shown in the figure, in the case of the grooved steel with a lip 2D, as shown by the curve A, each buckling mode is formed with a member proof stress of about 7 KN mm / mm 2 . When the composite panel 1 using such light grooved steel or grooved steel with a lip is subjected to bending stress as described above, buckling occurs early and the strength of the grooved steel is fully exerted. It will be destroyed at an early stage before doing.

【0007】そこで部材耐力を上昇するために図13
(1)〜(4)で示すように、ウエブ5またはフランジ
部4の内側方向に突出部を形成した断面形状、すなわち
内方補リブ7,7−1,8,8−1を設けた溝形鋼が
提案され、商品化されている。しかしながら、溝形鋼の
ウエブまたはフランジの内方に補剛リブを設けた場合に
は、局部部材耐力(モード1の部材耐力)およびフラン
ジ曲げねじり部材耐力(モード2の部材耐力)を上昇さ
せることができるが、ウエブの曲げねじり部材耐力(モ
ード3の部材耐力)の低下を引起こすことが判明した。
Therefore, in order to increase the proof stress of the members, FIG.
(1) As shown by - (4), cross-sectional shape forming a projecting portion on the inner side direction of the web 5 or the flange portion 4, i.e. the inner Stiffened ribs 7,7-1,8,8-1 provided Channel steel has been proposed and commercialized. However, when stiffening ribs are provided on the inside of the channel steel or flange, the local member proof stress (mode 1 member proof stress) and flange bending torsion member proof strength (mode 2 member proof stress) must be increased. However, it has been found that the bending and twisting member yield strength of the web (member yield strength in mode 3) is reduced.

【0008】すなわち、図12のカーブBで示すよう
に、図13(4)の内方補剛リブ8−1を設けた溝形鋼
2E4 はリップ付溝形鋼2Dに比べモード1及びモード
2の部材耐力は上昇しているが、モード3のウエブ曲げ
ねじり部材耐力は、リップ付溝形鋼のそれより下回って
いる。部材の耐力は、ある座屈長さ以内で発生する座屈
モードのうちの最小の耐力を与えるモードによって決定
されるので、カーブBの部材耐力はモード3座屈の耐力
で決定される。したがって、内方補剛リブ8−1付溝形
鋼2E4 はその耐力最小値がリップ付溝形鋼2Dの耐力
最小値を下回り、図14に示すようにリップ付溝形鋼2
Dの単位面積当りの部材耐力を基準値1にしたときのウ
エブ内方補剛リブ付溝形鋼2E4 の部材耐力比が1以下
になり、断面性能がリップ付溝形鋼2Dより低下してい
る。
That is, as shown by the curve B in FIG. 12, the channel steel 2E 4 provided with the inward stiffening rib 8-1 in FIG. 13 (4) has modes 1 and 2 as compared with the channel steel 2D with lip. Although the member yield strength of No. 2 is increased, the web bending torsion member yield strength of Mode 3 is lower than that of the grooved steel with lip. Since the proof stress of the member is determined by the mode that gives the minimum proof stress among the buckling modes that occur within a certain buckling length, the proof stress of the member of curve B is determined by the proof stress of mode 3 buckling. Therefore, the minimum yield strength of the inner stiffening rib 8-1 grooved steel 2E 4 is lower than the minimum yield strength of the lip grooved steel 2D, and as shown in FIG.
When the member proof stress per unit area of D is set to the standard value of 1, the member proof stress ratio of the web inner stiffening rib grooved steel 2E 4 becomes 1 or less, and the cross-sectional performance is lower than that of the lip grooved steel 2D. ing.

【0009】また、フランジ内方補剛リブ付溝形鋼2E
1 の部材耐力比は1.13でリブ付溝形鋼2Dより上回
っているがその上昇幅は少い。なお、図10および図1
3で用いた溝形鋼は板厚0.8mm、ウエブ幅90mm、フ
ランジ幅25mmであった。
Further, the grooved steel 2E with stiffening ribs on the inside of the flange is used.
The member yield strength ratio of 1 is 1.13, which is higher than that of ribbed channel steel 2D, but its rise width is small. Note that FIG. 10 and FIG.
The channel steel used in Example 3 had a plate thickness of 0.8 mm, a web width of 90 mm, and a flange width of 25 mm.

【0010】[0010]

【発明が解決しようとする課題】前述のように内方補剛
リブ付溝形鋼は従来の溝形鋼に比べ部材耐力が下回る
か、また補剛リブの形成位置によって上回ったにしても
その差は僅かであり、部材耐力の向上効果は余り得られ
ていない。本発明はこのような内方補剛リブ付溝形鋼で
は得られない高い部材耐力を有する溝形鋼を供給するこ
とを課題とする。
As described above, the grooved steel with inward stiffening ribs has a lower member yield strength than the conventional grooved steels, or even if the stiffening ribs have a higher yield strength than the conventional grooved steel. The difference is slight, and the effect of improving the proof stress of the member has not been obtained so much. An object of the present invention is to supply a channel steel having a high member yield strength that cannot be obtained by such a channel steel with inner stiffening ribs.

【0011】[0011]

【課題を解決するための手段】前記課題を解決する本発
明の溝形鋼は、該形鋼の面内曲げ力を受けるウェブ部
に、該ウェブ部のウェブから直角方向に延長されるフラ
ンジと対向する方向に最大張出し長さがフランジ部の
幅の60%以下の張出し部(補剛リブ)を形成し、曲げ
力により生じる座屈の強度を効果的に向上させる断面形
状を有することを特徴とする。すなわち、ウェブ部の断
面のせん断中心を図心(重心)から遠ざかる方向に補剛
リブ(外方補剛リブ)を設ける。
The channel steel of the present invention for solving the above-mentioned problems is a flare extending from the web of the web portion at a right angle to the web portion which receives the in- plane bending force of the shape steel.
In the direction Nji facing, maximum projecting length to form more than 60% of the extending portion of the width of the flange portion (stiffening ribs), bending
It is characterized by having a cross-sectional shape that effectively improves the strength of buckling caused by force . That is, stiffening ribs (outer stiffening ribs) are provided in a direction away from the center of gravity (center of gravity) of the cross section of the web portion.

【0012】溝形鋼がかゝる断面形状を有することによ
り、従来技術で使用されている内方補剛リブを設けた溝
形鋼に比べモード1の単位断面積当りの部材耐力が上昇
するとともに、モード3の部材耐力も内方補剛リブをも
たない従来の溝形鋼に比べて上昇する。その結果、本発
明の溝形鋼は部材の部材耐力を大幅に上昇せしめること
ができたのである。
Since the channel steel has such a cross-sectional shape, the member yield per unit cross-sectional area of mode 1 is increased as compared with the channel steel provided with the inner stiffening rib used in the prior art. At the same time, the proof stress of the member in Mode 3 is also increased as compared with the conventional channel steel having no inward stiffening rib. As a result, the channel steel of the present invention was able to significantly increase the member yield strength of the member.

【0013】[0013]

【発明の実施の形態】本発明の溝形鋼は図1(1)に示
すように、ウエブ部4の中央部にウエブ部の外側方向に
張出し部9を最大張出し長さlで張出させた断面形状を
有する溝形鋼2F1 である。他の実施例として、ウエブ
4の上下の任意個所に円形の突出部9−1を張出させた
溝形鋼2F2 (図1(2))または頂面偏平な突出部9
−2を張出させた溝形鋼2F3 (図1(3))、ウエブ
とフランジの境界線よりウエブ中心部に向って直線状に
最大張出し長さlで張出させた断面三角形状9−3の溝
形鋼2F4 (図1(4))、前記三角形状断面の頂点を
偏平9−4にした溝形鋼2F5 (図1(5))、あるい
は、ウエブ4と張出し部9−5の隣接部を弯曲させた溝
形鋼2F6 (図1(6))などがある。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1 (1), the channel steel of the present invention has a bulging portion 9 in the central portion of a web portion 4 in the outward direction of the web portion, with a maximum bulging length l. It is a channel steel 2F 1 having a different cross-sectional shape. As another embodiment, a grooved steel 2F 2 (FIG. 1 (2)) in which circular protrusions 9-1 are projected at arbitrary places above and below the web 4 or a protrusion 9 having a flat top surface.
-2 channel steel 2F 3 (Fig. 1 (3)) overhanging, a triangular cross-section overhanging linearly from the boundary line between the web and the flange toward the center of the web with the maximum overhang length l 9 -3 channel steel 2F 4 (Fig. 1 (4)), channel steel 2F 5 (Fig. 1 (5)) in which the apex of the triangular cross section is flat 9-4, or the web 4 and the overhanging portion 9 There is a channel steel 2F 6 (Fig. 1 (6)) in which the adjacent portion of -5 is curved.

【0014】こゝで本発明の溝形鋼の断面性能を溝形鋼
2F1で検証する。図1(1)で示す溝形鋼2F1は厚さ
0.8mm、フランジ幅25mm、補剛リブの張出し長さ5
mm(フランジ幅の20%)、ウェブ幅90mmの形状を有
する。上記溝形鋼2F1の座屈長さと単位断面積当りの
部材耐力の関係を図12のカーブCで示す。図中、モー
ド1および2において溝形鋼2F1は溝形鋼2E4より部
材耐力は高く、更にモード3において溝形鋼2F1は溝
形鋼2Dおよび2E4より部材耐力は高い。したがっ
て、図14で示すように、溝形鋼2F1は単位断面積当
りの部材耐力比が1.36と高く、断面性能が突出して
いることが分る。
Here, the sectional performance of the channel steel of the present invention is verified with the channel steel 2F 1 . The channel steel 2F 1 shown in FIG. 1 (1) has a thickness of 0.8 mm, a flange width of 25 mm, and a stiffening rib overhang length of 5
mm (20% of flange width), web width 90 mm. The curve C in FIG. 12 shows the relationship between the buckling length of the channel steel 2F 1 and the member proof stress per unit cross-sectional area. In the figure, in modes 1 and 2, the channel steel 2F 1 has a higher member strength than the channel steel 2E 4 , and in mode 3, the channel steel 2F 1 has a higher member strength than the channel steels 2D and 2E 4 . Therefore, as shown in FIG. 14, it can be seen that the channel steel 2F 1 has a high member strength ratio per unit cross-sectional area of 1.36, and the cross-sectional performance is outstanding.

【0015】次に本発明の溝形鋼の最適なウエブ張出し
長さを各断面形状の溝形鋼において調査した。先ず溝形
鋼2F1 を図2(1)に示すように、板厚0.8mm、ウ
エブ幅90mm、フランジ幅25mm、リップ幅10mmのリ
ップ付溝形鋼2Dを基準として、ウエブ外方へ5mm間隔
で25mmまで張出し、またウエブ内方へ5mm間隔で10
mmまで張出し、それぞれの単位断面積当りの部材耐力を
調べ、図2(2)に示した。
Next, the optimum web overhang length of the channel steel of the present invention was investigated for the channel steels of each cross-sectional shape. First, as shown in Fig. 2 (1), the grooved steel 2F 1 is 5 mm outwardly from the web with a lip-shaped grooved steel 2D having a plate thickness of 0.8 mm, a web width of 90 mm, a flange width of 25 mm and a lip width of 10 mm as a reference. Overhang up to 25 mm at intervals, and inward of the web at intervals of 5 mm for 10
The proof stress of each member per unit cross-sectional area was investigated by projecting up to mm, and the results are shown in Fig. 2 (2).

【0016】ウエブ部の外方張出し長さの増加に伴い、
図心せん断中心間距離は増加し、その部材耐力も図2
(2)に示すように増加した。しかし、部材耐力は9K
Nmm/mm2 以上でピークを迎え、その後は減少する傾向
を示す。すなわち、外方張出し長さが15mm、すなわち
フランジ幅25mmの60%に達すると部材耐力のピーク
を迎えた。したがって、少くともフランジ幅の60%以
内の長さを外方へ張出せば部材耐力の向上を得ることが
できる。フランジ幅の60%超の長さを張出すと基準溝
形鋼2Dに比べて部材耐力は上昇するが、張出し長さが
大きくなり過ぎて溝形鋼としての施行性が低下するので
好ましくない。
With the increase in the outward extension of the web,
The distance between the center of shear and the center of shear increases, and the proof stress of the member also increases.
It increased as shown in (2). However, the member yield strength is 9K
It peaks at Nmm / mm 2 or more and then tends to decrease. That is, when the outward overhang length reached 15 mm, that is, 60% of the flange width 25 mm, the peak of the member yield strength was reached. Therefore, if the length of at least 60% of the flange width is extended outward, the member yield strength can be improved. If the length over 60% of the flange width is extended, the member yield strength is increased as compared with the reference grooved steel 2D, but the overhang length becomes too large and the workability as grooved steel is reduced, which is not preferable.

【0017】また、ウエブ内方へ張出すと、張出し長さ
の増加に伴って部材耐力は低下した。次に溝形鋼2F4
を溝形鋼2F1 と同様にリップ付溝形鋼2Dを基準にし
て図3(1)に示すようにウエブ外方へ5mm間隔で25
mmまでウエブ中心部を張出すと、図3(2)に示すよう
に張出し長さ15mmのところで部材耐力のピークを迎え
た。したがってこの場合も、少くともフランジ幅の60
%以内の長さを外方へ張出せば部材耐力の向上を得るこ
とができる。
Further, when the web was bulged inward, the proof stress of the member decreased as the bulge length increased. Next, channel steel 2F 4
As in the case of the channel steel 2F 1 , the grooved steel 2D with a lip is used as a reference, and as shown in FIG.
When the central portion of the web was overhanged to mm, the peak of the member yield strength was reached at the overhang length of 15 mm as shown in Fig. 3 (2). Therefore, in this case as well, at least the flange width of 60
If the length within% is extended outwardly, the member yield strength can be improved.

【0018】また、ウエブ内方へ張出すと、図3(2)
に示すように溝形鋼2E5 −1の場合は溝形鋼2Dに比
べ部材耐力が上昇するが、その差は微々たるものに過ぎ
ず、更に張出して溝形鋼2E5 −2の場合になると溝形
鋼2Dよりも部材耐力が低下した。したがって内方張出
しの効果はほとんどなかった。また、溝形鋼2F5 の場
合は図4(1)に示すようにウエブ外方への張出し偏平
部分9−4の幅を同一にしてこの偏部部分とフランジ5
の境界との間の傾斜部分を張出すことによって、5mm間
隔で25mmまでの張出し長さを付与した。
Further, when the web is extended inward, FIG. 3 (2)
As shown in Fig. 2, in the case of the channel steel 2E 5 -1, the member proof strength is higher than that of the channel steel 2D, but the difference is only slight, and in the case of the channel steel 2E 5 -2, it is further extended. Then, the member yield strength was lower than that of the channel steel 2D. Therefore, there was almost no effect of inward overhang. Further, in the case of the channel steel 2F 5 , as shown in FIG. 4 (1), the width of the flattened flat portion 9-4 extending outward of the web is made the same, and the flat portion and the flange 5 are formed.
Overhanging lengths of up to 25 mm were provided at intervals of 5 mm by overhanging the sloped portion between the boundary and.

【0019】この場合は図4(2)で示すように溝形鋼
2F5 −2すなわち張出し長さ10mmのところで部材耐
力のピークを迎えた。したがって、少くともフランジ幅
の40%以内の長さを外方へ張出せば部材耐力の向上を
得ることができる。なお、張出し長さが15mm(フラン
ジ幅の60%)の場合は9KNmm/mm2 以上の部材耐力
を得ることができるので、この張出し長さまで本発明の
範囲に含める。勿論40%以内が最も好ましい範囲とな
る。
In this case, as shown in FIG. 4 (2), the peak of the member yield strength was reached at the channel steel 2F 5 -2, that is, at the overhang length of 10 mm. Therefore, if the length of at least 40% of the flange width is extended outward, the member yield strength can be improved. When the overhang length is 15 mm (60% of the flange width), a member proof stress of 9 KN mm / mm 2 or more can be obtained, so this overhang length is also included in the scope of the present invention. Of course, the most preferable range is within 40%.

【0020】また、ウエブ内方へ張出すと、張出し長さ
の増加に伴って部材耐力は大幅に低下した。前述の溝形
鋼2F5 の場合は偏平部分の幅を一定にし、傾斜部分の
みを張出すことによって部材耐力を上昇せしめたが、偏
平部分の幅を減少することによって張出し長さを所定量
付与するようにしてもよい。
When the web was stretched inward, the proof stress of the member was significantly reduced as the stretch length was increased. If the aforementioned channel steel 2F 5 and a constant width of the flat portion has been raised a member strength by issuing only inclined portion Zhang, a predetermined amount impart projecting length by reducing the width of the flat portion You may do it.

【0021】以上のように、溝形鋼のウエブ部を外方
へ、フランジ幅の60%以内の張出し長さで張出して外
方補剛リブを形成することによって溝形鋼の部材耐力を
著るしく向上することができた。次に溝形鋼2F1 の場
合の基準溝形鋼2Dのウエブ幅、フランジ幅、リップ幅
および板厚をそれぞれ変えて、図2と同様の張出し長さ
と単位断面積当りの部材耐力との関係を求め、この結果
を図5〜図6で示した。
As described above, the member strength of the channel steel is determined by forming the outer stiffening rib by projecting the web portion of the channel steel outwardly with the overhanging length within 60% of the flange width. I was able to improve it. Next, in the case of the channel steel 2F 1 , the web width, flange width, lip width, and plate thickness of the reference channel steel 2D are changed, respectively, and the relationship between the overhang length and the member proof stress per unit cross-sectional area as in FIG. Was obtained and the results are shown in FIGS.

【0022】図5において、板厚1mm、ウエブ幅60m
m、フランジ幅30mm、リップ幅10mmのリップ付溝形
鋼2Dを基準として、ウエブ外方へ溝形鋼2F1 −3′
まで5mm間隔で15mmまで張出し、次いで3mm間隔(溝
形鋼2F1 −4′)および2mm間隔で張出して張出し長
さ20mmの溝形鋼2F1 −5′を形成した。それぞれの
単位断面積当りの部材耐力は図5(2)で示すとおりで
あった。
In FIG. 5, the plate thickness is 1 mm and the web width is 60 m.
m, flange width 30 mm, lip width 10 mm with lip grooved steel 2D as a reference, outward grooved steel 2F 1 -3 '
Overhang at 5mm intervals to 15mm until, then forming a 3mm spacing (Mizokatachiko 2F 1 -4 ') and overhangs Te flared at 2mm intervals 20mm long channel steel 2F 1 -5 of'. The member proof stress per unit cross-sectional area was as shown in FIG. 5 (2).

【0023】すなわち、外方張出し長さが18mm、すな
わちフランジ幅30mmの60%に達するまで、基準溝形
鋼2Dの部材耐力より上昇した部材耐力が得られた。ま
た、ウエブ内方へ張出すと、溝形鋼2E4 −1′(5m
m)の場合は溝形鋼2Dとほゞ同一の部材耐力が得られ
たが溝形鋼2E4 −2′(10mm)の場合は急激に部材
耐力が低下し、内方張出しの効果は得られなかった。
That is, the member yield strength higher than the member yield strength of the standard channel steel 2D was obtained until the outward overhang length reached 18 mm, that is, 60% of the flange width 30 mm. In addition, when it is projected inward of the web, the channel steel 2E 4 -1 '(5 m
In the case of m), the member yield strength was almost the same as that of the channel steel 2D, but in the case of the channel steel 2E 4 -2 '(10 mm), the member yield decreased sharply and the effect of inward overhanging was obtained. I couldn't do it.

【0024】また、図6において、板厚2mm、ウエブ幅
125mm、フランジ幅50mm、リップ幅20mmのリップ
付溝形鋼2Dを基準として、ウエブ外方へ5mm間隔で3
5mmまで張出し(溝形鋼2F1 −7″)、それぞれの単
位断面積当りの部材耐力を調べ、図6(2)に示した。
ウエブ部の外方張出し長さがフランジ部の幅の60%
(+30mm)までは基準溝形鋼2Dより大きい部材耐力
が得られた。
Further, referring to FIG. 6, the grooved steel 2D with a lip having a plate thickness of 2 mm, a web width of 125 mm, a flange width of 50 mm, and a lip width of 20 mm is used as a reference, and the outer side of the web is separated by 5 mm at intervals of 3 mm.
Overhang to 5 mm (Mizokatachiko 2F 1 -7 "), examines the member strength per each unit cross-sectional area, as shown in FIG. 6 (2).
Outer extension of web is 60% of flange width
Up to (+30 mm), a member yield strength larger than that of the standard channel steel 2D was obtained.

【0025】また、ウエブ部の内方へ張出すと張出し長
さの増加に伴って部材耐力は低下した。以上の実験結果
から、基準溝形鋼の形状の如何を問わずウエブ部を外方
へ、最大張出し長さとしてフランジ部の幅の60%まで
張出すことによって部材耐力を向上することが可能であ
ることが確認された。
Further, when the web portion was bulged inward, the proof stress of the member decreased as the bulge length increased. From the above experimental results, it is possible to improve the member proof strength by bulging the web portion outward regardless of the shape of the standard channel steel up to 60% of the width of the flange portion as the maximum bulge length. It was confirmed that there is.

【0026】なお、上記ウエブ部の最大張出し長さの下
限はウエブ部の幅に対する張出し幅を特定することによ
って定まる。すなわち、図7に示すように溝形鋼2F1
のウエブ部幅aに対する張出し幅はbであり、溝形鋼2
3 の張出し幅はb1 +b2 であり、また溝形鋼2F4
の張出し幅はb(=a)である。
The lower limit of the maximum overhang length of the web portion is determined by specifying the overhang width with respect to the width of the web portion. That is, as shown in FIG. 7, the channel steel 2F 1
The overhang width is b with respect to the web width a of
The overhang width of F 3 is b 1 + b 2 , and the channel steel 2F 4
The overhang width is b (= a).

【0027】こゝで基準溝形鋼2D(ウエブ部幅90m
m、フランジ部幅25mm)と溝形鋼2F1 との断面性能
(張出し部分の全くない溝形鋼の部材耐力を1とした場
合の各断面を有する溝形鋼の部材耐力の比。この比が大
きいほど座屈抵抗性能が良い)の関係を図8に示す。図
8(1)は基準溝形鋼のウエブ部中央部から一定の張出
し長さlで張出させ、その張出し幅bを順次大きくして
張出し幅bがウエブ部幅aの10〜20%になるように
形成した溝形鋼2F1 を示している。
This is the standard channel steel 2D (web width 90 m
m, flange width 25 mm) and cross-sectional performance of channel steel 2F 1 (ratio of channel strength of channel steel having each cross section when the channel strength of channel steel without any overhang is 1). The larger the value is, the better the buckling resistance performance is). In FIG. 8 (1), the reference channel steel is bulged from the central portion of the web portion with a constant bulging length l, and the bulging width b is gradually increased so that the bulging width b becomes 10 to 20% of the web portion width a. The channel steel 2F 1 formed so as to have the shape shown in FIG.

【0028】図8(2)は上記ウエブ部幅に対する張出
し幅の割合(%)と断面性能との関係を示したもので、
この図からウエブ幅に対する張出し幅の割合(a/b)
が10%以上になると断面性能が明らかに向上し、座屈
抵抗性能を2割以上上昇(工業的に見て十分な上昇)さ
せるためには、上記割合を30%以上にする必要がある
ことが分かる。
FIG. 8 (2) shows the relationship between the ratio (%) of the overhang width to the width of the web and the cross-sectional performance.
From this figure, the ratio of the overhang width to the web width (a / b)
Is 10% or more, the cross-sectional performance is obviously improved, and in order to increase the buckling resistance performance by 20% or more (a sufficient increase from an industrial viewpoint), the above ratio must be 30% or more. I understand.

【0029】したがって、少くとも上記割合が10%以
上になるようにウエブ部を張出させれば、その張出し長
さlの値がどのように小さくても本発明の範囲内に入
る。勿論、ウエブ部の張出し長さがフランジ部幅の60
%前後で、かつその張出し幅がウエブ部幅に対し30%
以上であれば最も部材耐力が大となる。
Therefore, if the web portion is bulged so that the above ratio is at least 10% or more, the value of the bulging length l is within the scope of the present invention. Of course, the overhang length of the web portion is 60 times the flange width.
%, And the overhang width is 30% of the web width
If it is more than the above, the proof stress of the member becomes the largest.

【0030】[0030]

【発明の効果】本発明は上記したように溝形鋼のウエブ
部を外方へ張出すことによって溝形鋼の部材耐力を向上
することができるので、かゝる溝形鋼を芯材として使用
する合成パネルの強度を容易かつ大幅に向上することが
でき、これにより建築業界に多大な貢献をもたらすこと
ができる。
As described above, according to the present invention, since the member yield strength of the channel steel can be improved by outwardly projecting the web portion of the channel steel, such channel steel is used as a core material. The strength of the composite panel used can be easily and significantly increased, which can make a great contribution to the construction industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溝形鋼の各断面を示す図である。FIG. 1 is a view showing each cross section of a channel steel of the present invention.

【図2】本発明の溝形鋼2F1 の張出し形状(同図
(1))と各形状の張出し長さおよび単位断面積当りの
部材耐力の関係(同図(2))を示す図である。
FIG. 2 is a diagram showing an overhang shape of the channel steel 2F 1 of the present invention (FIG. 1) and a relationship between the overhang length of each shape and the member proof strength per unit cross-sectional area (FIG. 2). is there.

【図3】本発明の溝形鋼2F4 の張出し形状(同図
(1))と各形状の張出し長さおよび単位断面積当りの
部材耐力の関係(同図(2))を示す図である。
FIG. 3 is a diagram showing an overhanging shape of the channel steel 2F 4 of the present invention (FIG. 1 (1)) and a relationship between an overhanging length of each shape and a member proof stress per unit cross-sectional area (FIG. 2 (2)). is there.

【図4】本発明の溝形鋼2F5 の張出し形状(同図
(1))と各形状の張出し長さおよび単位断面積当りの
部材耐力の関係(同図(2))を示す図である。
FIG. 4 is a diagram showing the overhang shape of the channel steel 2F 5 of the present invention (FIG. 1 (1)) and the relationship between the overhang length of each shape and the member strength per unit cross-sectional area (FIG. 2 (2)). is there.

【図5】本発明の溝形鋼2F1 の他の実施例の張出し形
状(同図(1))と各形状の張出し長さおよび単位面積
当りの部材耐力の関係(同図(2))を示す図である。
FIG. 5 shows the relationship between the overhang shape of another embodiment of the channel steel 2F 1 of the present invention (FIG. 1) and the overhang length of each shape and the member yield strength per unit area (FIG. 2). FIG.

【図6】本発明の溝形鋼2F1 の他の実施例の張出し形
状(同図(1))と各形状の張出し長さおよび単位面積
当りの部材耐力の関係(同図(2))を示す図である。
FIG. 6 shows the relationship between the overhang shape of another embodiment of the channel steel 2F 1 of the present invention (FIG. 1) and the overhang length of each shape and the member proof stress per unit area (FIG. 2). FIG.

【図7】各溝形鋼のウエブ部幅と張出し幅との関係を示
す図である。
FIG. 7 is a diagram showing the relationship between the web width and the overhang width of each channel steel.

【図8】本発明の溝形鋼2F1 における張出し形状(同
図(1))と各形状のウエブ部幅に対する張出し幅の割
合と断面性能との関係(同図(2))を示す図である。
FIG. 8 is a diagram showing an overhanging shape (FIG. 1 (1)) of the channel steel 2F 1 of the present invention and a relationship between the ratio of the overhanging width to the web width of each shape and the cross-sectional performance (FIG. 2 (2)). Is.

【図9】従来の合成パネルの一部断面斜視図である。FIG. 9 is a partial cross-sectional perspective view of a conventional composite panel.

【図10】従来の溝形鋼の断面を示し、同図(1)は軽
溝形鋼の、同図(2)はリップ付溝形鋼の断面をそれぞ
れ示す。
FIG. 10 shows a cross section of a conventional channel steel, FIG. 1 (1) shows a cross section of a light channel steel, and FIG. 10 (2) shows a cross section of a channel steel with a lip.

【図11】合成パネルに負曲げ応力が加えられたときの
芯材に生じた応力の状態を示す斜視図である。
FIG. 11 is a perspective view showing a state of stress generated in the core material when negative bending stress is applied to the composite panel.

【図12】本発明および従来の溝形鋼の座屈長さと単位
面積当りの部材耐力との関係を示す図である。
FIG. 12 is a diagram showing the relationship between the buckling length of the present invention and the conventional channel steel and the member proof stress per unit area.

【図13】従来の内方補剛リブ付リップ溝形鋼の断面を
示す図である。
FIG. 13 is a view showing a cross section of a conventional lip channel steel with an inward stiffening rib.

【図14】本発明および従来の溝形鋼の単位断面積当り
の部材耐力比を示す図である。
FIG. 14 is a view showing a member proof stress ratio per unit cross-sectional area of the present invention and the conventional channel steel.

【符号の説明】[Explanation of symbols]

1…合成パネル 2…溝形鋼 3…板材 4…ウエブ部 5…フランジ部 6…リップ 7,7−1,8,8−1…内方補剛リブ 9,9−1,9−2,9−3,9−4…外方補剛リブ 1. Synthetic panel 2 ... Channel steel 3 ... Plate material 4 ... Web part 5 ... Flange 6 ... Lip 7,7-1,8,8-1 ... Inward stiffening rib 9, 9-1, 9-2, 9-3, 9-4 ... Outer stiffening rib

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭60−29831(JP,U) 実開 昭57−97018(JP,U) 実公 昭35−21851(JP,Y1) 実公 昭56−48809(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) E04C 3/00 - 3/46 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Shown 60-29831 (JP, U) Shown 57-97018 (JP, U) Shown 35-21851 (JP, Y1) Shown 56- 48809 (JP, Y1) (58) Fields investigated (Int.Cl. 7 , DB name) E04C 3/00-3/46

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 曲げ力を受ける溝形鋼が、該形鋼の面内
曲げ力を受けるウェブ部に、該ウェブ部のウェブから直
角方向に延長されるフランジと対向する方向に最大張
出し長さがフランジ部の幅の60%以下である張出し部
を形成し、曲げ力により生じる座屈の強度を効果的に向
上させる断面形状を有することを特徴とする部材耐力の
優れた溝形鋼。
1. A channel steel subjected to bending force is in- plane of the steel .
Directly apply the bending force to the web part
The flange opposite to the direction of extending angularly, the maximum projecting length to form an overhang portion is 60% or less of the width of the flange portion, the strength of the buckling effectively caused by bending forces directed
A channel steel with excellent member strength characterized by having a cross-sectional shape to be raised.
【請求項2】 曲げ力を受ける溝形鋼が、該形鋼の面内
曲げ力を受けるウェブ部に、該ウェブ部のウェブから直
角方向に延長されるフランジと対向する方向に最大張
出し長さがフランジ部の幅の60%以下であり、かつ
張出し幅が前記ウェブ幅の10%以上である張出し部を
形成し、曲げ力により生じる座屈の強度を効果的に向上
させる断面形状を有することを特徴とする部材耐力の優
れた溝形鋼。
2. A grooved steel subjected to bending force is in- plane of the shaped steel .
Directly apply the bending force to the web part
The flange opposite to the direction of extending angularly, the maximum projecting length is not more than 60% of the width of the flange portion, and,
The overhang width is 10% or more of the web width to form the overhang portion, and the buckling strength caused by the bending force is effectively improved.
A channel steel with excellent member yield strength characterized by having a cross-sectional shape that allows
【請求項3】 前記張出し幅が前記ウェブの幅30%
以上である請求項2記載の溝形鋼。
3. The overhang width is 30% of the width of the web.
The channel steel according to claim 2, which is the above.
JP08012896A 1996-04-02 1996-04-02 Channel steel with excellent member strength Expired - Fee Related JP3370509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08012896A JP3370509B2 (en) 1996-04-02 1996-04-02 Channel steel with excellent member strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08012896A JP3370509B2 (en) 1996-04-02 1996-04-02 Channel steel with excellent member strength

Publications (2)

Publication Number Publication Date
JPH09268701A JPH09268701A (en) 1997-10-14
JP3370509B2 true JP3370509B2 (en) 2003-01-27

Family

ID=13709592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08012896A Expired - Fee Related JP3370509B2 (en) 1996-04-02 1996-04-02 Channel steel with excellent member strength

Country Status (1)

Country Link
JP (1) JP3370509B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018664A (en) * 2014-06-25 2014-09-03 成都缘丰科技材料有限公司 Composite building supporting structural member and manufacturing method thereof
CN104018663A (en) * 2014-06-25 2014-09-03 成都缘丰科技材料有限公司 Composite building supporting piece and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ052199A0 (en) * 1999-05-21 1999-06-17 Wiltin Pty Ltd Joining arrangements for structural members
US20060283130A1 (en) 2005-06-07 2006-12-21 William Andrews Structural members with gripping features and joining arrangements therefor
FR2952948A1 (en) * 2009-11-24 2011-05-27 Lafarge Gypsum Int ACOUSTIC AMOUNT OF CLOISON
CN103328742A (en) * 2011-02-23 2013-09-25 日新制钢株式会社 Steel single-lip channel bar
JP6638577B2 (en) * 2016-06-28 2020-01-29 日本製鉄株式会社 Buckling stiffening structure and section steel
JP6848272B2 (en) * 2016-09-02 2021-03-24 日本製鉄株式会社 Shaped steel, diagonal support structure using it, and manufacturing method of shaped steel
CN112357354A (en) * 2020-11-26 2021-02-12 童丹桂 Section bar packaging method
CN112357357A (en) * 2020-11-26 2021-02-12 童丹桂 Section bar is unloaded and is tied up mechanism
CN112357356A (en) * 2020-11-26 2021-02-12 童丹桂 Section bar packing plant
CN112357355A (en) * 2020-11-26 2021-02-12 童丹桂 Section bar material arranging mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018664A (en) * 2014-06-25 2014-09-03 成都缘丰科技材料有限公司 Composite building supporting structural member and manufacturing method thereof
CN104018663A (en) * 2014-06-25 2014-09-03 成都缘丰科技材料有限公司 Composite building supporting piece and manufacturing method thereof
CN104018664B (en) * 2014-06-25 2016-11-09 成都缘丰科技材料有限公司 A kind of complex building supporting structure and manufacture method thereof
CN104018663B (en) * 2014-06-25 2016-11-16 成都缘丰科技材料有限公司 A kind of complex building support member and manufacture method thereof

Also Published As

Publication number Publication date
JPH09268701A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
JP3370509B2 (en) Channel steel with excellent member strength
US4144369A (en) Composite deck panel
US3214875A (en) Wall supporting and fastening means
US5566522A (en) Ribbed plate for a composite slab
US6363676B1 (en) Siding having double thick nail hem
JPH0321750A (en) Building unit for molding metallic sheet and manufacture thereof
KR20070085344A (en) Building panel and building structure
US5979136A (en) Prefabricated structure panel
US5491946A (en) Wide decking structure
US20010018816A1 (en) Strip-shaped connection element for a steel-concrete connection
TW531588B (en) Metal decking
AU2002223268A1 (en) Metal decking
AU627245B2 (en) Profiled steel sheet
US1419709A (en) Expanded metal structure
US1176080A (en) Sheet-iron for building purposes.
JP2020117868A (en) Folded-plate structure and roof material
CN210068205U (en) Stretch-proofing steel limit waterstop
JP2020153163A (en) Roof structure
JPS6016173Y2 (en) Curved construction board
JP2600382Y2 (en) Scaffold for construction site
US20110047933A1 (en) Profiled steel deck
US1134513A (en) Metal fabric.
JP6855051B2 (en) Architectural panel
GB2270706A (en) Light weight metal beam
JPS5856281Y2 (en) Replus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees