JP3370027B2 - 2-stage compression type rotary compressor - Google Patents

2-stage compression type rotary compressor

Info

Publication number
JP3370027B2
JP3370027B2 JP25618599A JP25618599A JP3370027B2 JP 3370027 B2 JP3370027 B2 JP 3370027B2 JP 25618599 A JP25618599 A JP 25618599A JP 25618599 A JP25618599 A JP 25618599A JP 3370027 B2 JP3370027 B2 JP 3370027B2
Authority
JP
Japan
Prior art keywords
refrigerant
stage compression
compression element
stage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25618599A
Other languages
Japanese (ja)
Other versions
JP2001082369A (en
Inventor
昌也 只野
淳志 小田
俊行 江原
貴志 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25618599A priority Critical patent/JP3370027B2/en
Publication of JP2001082369A publication Critical patent/JP2001082369A/en
Application granted granted Critical
Publication of JP3370027B2 publication Critical patent/JP3370027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2段圧縮式ロータ
リコンプレッサに関し、詳しくは二酸化炭素冷媒を用い
た2段圧縮式ロータリコンプレッサに関する。
TECHNICAL FIELD The present invention relates to a two-stage compression rotary compressor, and more particularly to a two-stage compression rotary compressor using a carbon dioxide refrigerant.

【0002】[0002]

【従来の技術】従来、密閉容器内に電動要素と、この電
動要素に連結されるクランク軸により駆動される2個の
回転圧縮要素を配置収納し、密閉容器内部を中間圧とし
た2段圧縮式ロータリコンプレッサが提案されている。
2. Description of the Related Art Conventionally, a two-stage compression system in which an electric element and two rotary compression elements driven by a crankshaft connected to the electric element are arranged and housed in an airtight container, and the airtight inside of the airtight container has an intermediate pressure Rotary compressors have been proposed.

【0003】具体的には、図3及び図4に示すように、
密閉容器1003内の上部に駆動電動機1005を、下
部に駆動電動機1005の回転軸1005cに連結し、
且つ上下2段に形成された回転圧縮機構(上部は低圧圧
縮機構1007,下部は高圧圧縮機構1009)を、底
部に油溜を配置し、低圧圧縮機構1007、高圧圧縮機
構1009の各シリンダを吸入室と圧縮室とに区画する
ベーン1007c(1009c)の背面が密閉容器10
03の内部空間に通じており、ベーン1007c(10
09c)への背圧付勢力をバネ装置の反力と密閉容器1
003内圧力とで形成している。
Specifically, as shown in FIGS. 3 and 4,
A drive motor 1005 is connected to an upper part of the closed container 1003, and a rotating shaft 1005c of the drive motor 1005 is connected to a lower part of the closed container 1003.
In addition, a rotary compression mechanism (a low pressure compression mechanism 1007 in the upper part and a high pressure compression mechanism 1009 in the lower part) formed in upper and lower two stages and an oil sump at the bottom are arranged to suck the cylinders of the low pressure compression mechanism 1007 and the high pressure compression mechanism 1009. The back of the vane 1007c (1009c) that divides the chamber and the compression chamber is the closed container 10.
03 open to the interior space of vane 1007c (10
09c) back pressure biasing force to the reaction force of the spring device and the closed container 1
It is formed by the internal pressure of 003.

【0004】そして、低圧圧縮機構1007の吐出冷媒
ガスは、吐出管1007eを介して外部の気液分離器1
017に接続され、連通管1009d’を介して再び密
閉容器1003の内部空間に流入して駆動電動機100
5を冷却する。
The refrigerant gas discharged from the low-pressure compression mechanism 1007 is discharged to the external gas-liquid separator 1 via the discharge pipe 1007e.
017 is connected to the driving electric motor 100 through the communication pipe 1009d ′ into the internal space of the closed container 1003 again.
Cool 5

【0005】その後、密閉容器1003に流入した冷媒
ガスは、吸入管1009dを介して高圧圧縮機構100
9に導入される。
After that, the refrigerant gas flowing into the closed container 1003 is introduced into the high pressure compression mechanism 100 through the suction pipe 1009d.
Introduced in 9.

【0006】高圧圧縮機構1009で再圧縮された吐出
冷媒ガスは、吐出管1009eを介して外部の凝縮器1
013に送出され、膨張弁1015、気液分離器101
7、蒸発器1021を順次経由して、吸入管1007d
を通じて再び低圧圧縮機構に戻り、蒸気圧縮式冷凍サイ
クルを実現している。
The discharged refrigerant gas recompressed by the high-pressure compression mechanism 1009 is discharged through the discharge pipe 1009e to the external condenser 1
013, expansion valve 1015, gas-liquid separator 101
7 and an evaporator 1021, and then a suction pipe 1007d.
Returning to the low-pressure compression mechanism again, the vapor compression refrigeration cycle is realized.

【0007】[0007]

【発明が解決しようとする課題】そして、上記した従来
装置では、低圧圧縮機構1007及び高圧圧縮機構10
09の吸入側に冷媒を供給する吸入管1007d,10
09dと、吐出側から冷媒を吐出する吐出管1007
e,1009eとが、各シリンダに夫々接続されてい
る。
In the above-mentioned conventional device, the low pressure compression mechanism 1007 and the high pressure compression mechanism 10 are used.
Suction pipes 1007d, 1010 for supplying the refrigerant to the suction side of 09
09d and a discharge pipe 1007 for discharging the refrigerant from the discharge side
e and 1009e are connected to the respective cylinders.

【0008】一方、最近では地球環境問題の観点から、
環境に与える影響の少ない自然冷媒を用いた冷凍サイク
ルの研究が行われており、この中でも可燃性や毒性のな
い二酸化炭素冷媒を用いた圧縮機の開発が切望されてい
る。
On the other hand, recently, from the viewpoint of global environmental problems,
The refrigeration cycle using a natural refrigerant that has little influence on the environment is being researched, and among these, the development of a compressor using a carbon dioxide refrigerant that is neither flammable nor toxic is earnestly desired.

【0009】しかし、二酸化炭素を冷媒として採用した
場合、二酸化炭素自体の熱力学的特性から、従来の凝縮
過程において超臨界条件下となるように蒸気圧縮サイク
ルを運転させる場合があり、斯かる場合には、冷媒圧力
は高圧側で約8〜10MPaにも達し、低圧側では約3
〜4MPaとなる。この様に、従来、冷媒として用いら
れているフロン系冷媒に比較して冷媒圧力が高く、その
差圧も大きいものとなる。
However, when carbon dioxide is used as a refrigerant, the vapor compression cycle may be operated under supercritical conditions in the conventional condensation process due to the thermodynamic characteristics of carbon dioxide itself. The refrigerant pressure reaches about 8 to 10 MPa on the high pressure side and about 3 MPa on the low pressure side.
~ 4 MPa. As described above, the refrigerant pressure is higher and the differential pressure thereof is also larger than that of the fluorocarbon refrigerant conventionally used as the refrigerant.

【0010】さらに、二酸化炭素冷媒は従来のフロン系
冷媒に比較して、ガス密度が高いことから冷媒の体積流
量が小さくても充分な冷凍能力が得られ、圧縮機の排除
容積が非常に小さくなるため、圧縮効率悪化防止及び軸
受け負荷軽減の点から従来装置に比べてシリンダの厚み
(回転軸方向のシリンダの高さ)を薄くする必要があっ
た。
Further, since the carbon dioxide refrigerant has a higher gas density than the conventional CFC refrigerant, sufficient refrigerating capacity can be obtained even when the volume flow rate of the refrigerant is small, and the displacement volume of the compressor is very small. Therefore, it is necessary to reduce the thickness of the cylinder (the height of the cylinder in the rotation axis direction) as compared with the conventional device from the viewpoint of preventing deterioration of compression efficiency and reducing bearing load.

【0011】このため、上記従来の圧縮機を二酸化炭素
冷媒を用いた冷凍サイクルに使用した場合、上記した様
にシリンダに接続孔が設けられ、シリンダに直接吸入管
及び吐出管が接続されているが、上記したようにシリン
ダの厚みが薄いため、耐圧の点から吸入管及び吐出管を
小径にしなければならなかった。
Therefore, when the conventional compressor is used in a refrigeration cycle using a carbon dioxide refrigerant, the cylinder is provided with the connection hole as described above, and the suction pipe and the discharge pipe are directly connected to the cylinder. However, since the thickness of the cylinder is thin as described above, the suction pipe and the discharge pipe have to be made small in diameter in terms of pressure resistance.

【0012】従って、冷媒通路断面積が小さくなり、従
来装置に比較して圧力損失が大きくなり、その結果、圧
縮機効率が低下するという問題があった。
Therefore, there is a problem in that the cross-sectional area of the refrigerant passage becomes small and the pressure loss becomes large as compared with the conventional device, resulting in a decrease in compressor efficiency.

【0013】本発明は斯かる点に鑑みてなされたもので
あって、圧力損失を極力抑制し装置全体の圧縮効率を向
上させた2段圧縮式ロータリコンプレッサを提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a two-stage compression type rotary compressor in which the pressure loss is suppressed as much as possible and the compression efficiency of the entire apparatus is improved.

【0014】[0014]

【課題を解決するための手段】本発明は、密閉容器の内
部に電動要素と、該電動要素に連結される駆動軸により
駆動される低段圧縮要素及び高段圧縮要素からなる回転
圧縮要素とを配置し、前記低段圧縮要素の吐出側と前記
高段圧縮要素の吸入側とを連通管を介して直列接続した
2段圧縮機構を形成する2段圧縮式ロータリコンプレッ
サであって、前記低段圧縮要素及び高段圧縮要素は上下
面にそれぞれ開口部を有し、前記低段圧縮要素と高段圧
縮要素の間に配置され、該各圧縮要素の一方の開口部を
閉塞する中間仕切板と、前記低段圧縮要素の他方の開口
部を閉塞すると共に、前記駆動軸の軸受部を兼用する第
一支持部材と、前記高段圧縮要素の他方の開口部を閉塞
すると共に、前記駆動軸の軸受部を兼用する第二支持部
材とを備え、前記各支持部材と前記各圧縮要素と前記中
間仕切板とを軸方向に締結する締結手段を有し、冷媒と
して二酸化炭素を用い、前記低段圧縮要素の吸入側に冷
媒を導入する低段側冷媒導入管と、吐出側から圧縮冷媒
を吐出する低段側冷媒吐出管とが、前記第一支持部材に
接続され、前記高段圧縮要素の吸入側に冷媒を導入する
高段側冷媒導入管と、吐出側から圧縮冷媒を吐出する高
段側冷媒吐出管とが、前記第二支持部材に接続されてい
ることを特徴とする。
According to the present invention, an electric element is provided inside a closed container, and a rotary compression element composed of a low-stage compression element and a high-stage compression element driven by a drive shaft connected to the electric element. And a discharge side of the low-stage compression element and a suction side of the high-stage compression element are connected in series via a communication pipe to form a two-stage compression mechanism. Stage compression element and high stage compression element are up and down
Each has an opening in the surface, and the low-stage compression element and the high-stage pressure
Is arranged between the compression elements and one opening of each compression element is
Intermediate partition plate to be closed and the other opening of the low-stage compression element
That also serves as the bearing part of the drive shaft while closing the part
Closing one support member and the other opening of the high-stage compression element
And a second support portion that also serves as a bearing portion of the drive shaft.
And a member, the support member, the compression element, and the middle member.
It has a fastening means to fasten it to the partition plate in the axial direction, uses carbon dioxide as a refrigerant , and cools the suction side of the low-stage compression element.
Compressed refrigerant from the discharge side and the low-stage side refrigerant introduction pipe that introduces the medium
A low-stage side refrigerant discharge pipe for discharging the
Connected to introduce refrigerant to the suction side of the high-stage compression element
High-stage side refrigerant introduction pipe and high-pressure side that discharges compressed refrigerant from the discharge side
The stage side refrigerant discharge pipe is connected to the second support member .

【0015】この構成を用いることにより、シリンダの
厚みに関係なく冷媒導入管及び冷媒吐出管の内径を設定
することができる。
By using this structure, the inner diameters of the refrigerant introduction pipe and the refrigerant discharge pipe can be set regardless of the thickness of the cylinder.

【0016】そして具体的には、前記第一支持部材及び
第二支持部材には、前記冷媒導入管からの冷媒を前記
各圧縮要素の吸入側に供給する吸込通路と、前記各圧縮
要素の吐出側からの冷媒を前記冷媒吐出管に吐出する
吐出通路とが形成されている構成としても良い。
More specifically, the first support member and
The second support member, for discharging said a suction passage for supplying to the suction side of the refrigerant the respective compression element from the refrigerant introducing pipe, the said respective refrigerant discharge pipe refrigerant from the discharge side of the compression element discharge It may be configured such that a passage is formed.

【0017】さらに、冷媒を超臨界圧力以上まで圧縮す
る構成としても良い。
Further, the refrigerant may be compressed to a pressure higher than the supercritical pressure.

【0018】また、高段圧縮要素の吸入側に供給される
冷媒を冷却する冷却手段を備えた構成としても良い。こ
の構成を用いることにより、高段圧縮要素の吸入側に供
給される冷媒ガスを冷却させることができる。
Further, the cooling means may be provided for cooling the refrigerant supplied to the suction side of the high-stage compression element. By using this configuration, the refrigerant gas supplied to the suction side of the high-stage compression element can be cooled.

【0019】[0019]

【発明の実施の形態】以下、本発明の熱交換器の一実施
形態例について、以下に示す図面に基づいて説明する。
図1は、本発明の一実施形態例である内部低圧型2段圧
縮式ロータリコンプレッサの要部縦断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a heat exchanger according to the present invention will be described below with reference to the drawings shown below.
FIG. 1 is a longitudinal sectional view of a main part of an internal low pressure two-stage compression rotary compressor which is an embodiment of the present invention.

【0020】図1において、本実施の形態例の2段圧縮
式ロータリコンプレッサ10は、鋼板からなる円筒状密
閉容器12、この密閉容器12内の上部空間に配置され
た電動要素としての駆動電動機14、及び電動機14の
下部空間に配置され、且つこの電動機14に連結される
クランク軸(駆動軸)16により駆動される圧縮要素と
しての回転圧縮機構18を含む。
Referring to FIG. 1, a two-stage compression rotary compressor 10 of the present embodiment comprises a cylindrical hermetic container 12 made of a steel plate, and a drive motor 14 as an electric element arranged in an upper space of the hermetic container 12. , And a rotary compression mechanism 18 as a compression element that is disposed in a lower space of the electric motor 14 and is driven by a crank shaft (drive shaft) 16 connected to the electric motor 14.

【0021】また、密閉容器12は底部をオイル溜と
し、電動機14及び回転圧縮機構18を収容する12A
と、この容器本体12Aの上部開口を密閉する蓋体12
Bとの2部材で構成され、蓋体12Bには電動機14に
外部電力を供給するターミナル端子(給電配線は省略)
20が取り付けてられている。
Further, the closed container 12 has an oil reservoir at the bottom thereof, and houses the electric motor 14 and the rotary compression mechanism 12A.
And a lid 12 for sealing the upper opening of the container body 12A
A terminal terminal for supplying external electric power to the electric motor 14 on the lid 12B, which is composed of two members B (power supply wiring is omitted).
Twenty is attached.

【0022】電動機14は、密閉容器12の上部空間の
内周に沿って環状に取り付けられたステータ22と、こ
のステータ22の内側に若干の間隙を設けて配置された
ロータ24とからなる。このロータ24には、その中心
を通り鉛直方向に延びるクランク軸16が一体に設けら
れている。
The electric motor 14 comprises a stator 22 which is annularly mounted along the inner circumference of the upper space of the closed container 12, and a rotor 24 which is arranged inside the stator 22 with a slight gap. The rotor 24 is integrally provided with a crankshaft 16 that extends vertically through the center of the rotor 24.

【0023】ステータ22は、リング状の電磁鋼板を積
層した積層体26と、この積層体26に巻装された複数
のコイル28を有している。また、ロータ24もステー
タ22と同じように電磁鋼板の積層体30で構成されて
いる。本実施の形態例では、電動機14として交流モー
タを用いているが、永久磁石を埋装しDCモータとする
場合もある。
The stator 22 has a laminated body 26 in which ring-shaped electromagnetic steel sheets are laminated, and a plurality of coils 28 wound around the laminated body 26. Further, the rotor 24 is also composed of a laminated body 30 of electromagnetic steel plates, like the stator 22. Although an AC motor is used as the electric motor 14 in the present embodiment, a permanent magnet may be embedded to form a DC motor.

【0024】回転圧縮機構18は、低段圧縮要素32と
高段圧縮要素34を含む。すなわち、中間仕切板36
と、この中間仕切板36の上下に設けられた上下シリン
ダ38,40と、この上下シリンダ38,40内をクラ
ンク軸16に設けた上下偏心部42,44に連結されて
回転する上下ローラ46,48と、この上下ローラ4
6,48に当接して上下各シリンダ38,40内を吸入
室(吸入側)と圧縮室(吐出側)に区画する上下ベーン
50,52と、上下シリンダ38,40の各開口面を閉
塞するクランク軸16の各軸受部を兼用する上部支持部
材54と下部支持部材56とで構成される。
The rotary compression mechanism 18 includes a low stage compression element 32 and a high stage compression element 34. That is, the intermediate partition plate 36
And upper and lower cylinders 38, 40 provided above and below the intermediate partition plate 36, and upper and lower rollers 46, 46 connected to the upper and lower eccentric portions 42, 44 provided on the crankshaft 16 to rotate. 48 and the upper and lower rollers 4
The upper and lower vanes 50 and 52 that contact the upper and lower cylinders 38 and 40 by partitioning the upper and lower cylinders 38 and 40 into a suction chamber (suction side) and a compression chamber (discharge side), and the opening surfaces of the upper and lower cylinders 38 and 40 are closed. The crankshaft 16 is composed of an upper support member 54 and a lower support member 56 that also serve as the bearings of the crankshaft 16.

【0025】また、上部支持部材54及び下部支持部材
56には、図示しない弁装置を介して上下シリンダ3
8,40と適宜連通する吐出消音室58,60が形成さ
れると共に、これらの各吐出消音室等の開口部は上部プ
レート62と下部プレート64で閉塞されている。
The upper and lower support members 54 and 56 are connected to the upper and lower cylinders 3 through a valve device (not shown).
The discharge muffling chambers 58, 60 are formed so as to communicate with the discharge muffling chambers 8, 40, and the openings of these discharge muffling chambers are closed by an upper plate 62 and a lower plate 64.

【0026】また、上下ベーン50,52は、上下シリ
ンダ38,40のシリンダ壁に形成された半径方向の案
内溝66,68に摺動可能に配置され、且つスプリング
70,72により上下ローラ46,48に常時当接する
ように付勢されている。
The upper and lower vanes 50, 52 are slidably disposed in radial guide grooves 66, 68 formed in the cylinder walls of the upper and lower cylinders 38, 40, and are springs 70, 72 by means of springs 70, 72. It is biased so as to always come into contact with 48.

【0027】そして、上シリンダ38では1段目(低段
側)の圧縮作用が行われ、下シリンダ40では上シリン
ダ38で圧縮された冷媒ガスを更に圧縮する2段目(高
段側)の圧縮作用が行われる。
In the upper cylinder 38, the first stage (lower stage side) compression action is performed, and in the lower cylinder 40, the second stage (high stage side) that further compresses the refrigerant gas compressed by the upper cylinder 38. A compression action is performed.

【0028】そして、上述の回転圧縮機構18を構成す
る上部支持部材54、上シリンダ38、中間仕切板3
6、下シリンダ40及び下部支持部材56は、この順に
配置され上部プレート62及び下部プレート64と共に
複数本の取付ボルト74を用いて連結固定させれてい
る。
Then, the upper support member 54, the upper cylinder 38, and the intermediate partition plate 3 which constitute the rotary compression mechanism 18 described above.
6, the lower cylinder 40 and the lower support member 56 are arranged in this order, and are connected and fixed together with the upper plate 62 and the lower plate 64 using a plurality of mounting bolts 74.

【0029】また、クランク軸16には軸中心にストレ
ートのオイル孔76とこの孔76に横方向の給油孔7
8,80を介して連なる螺旋状給油溝82,84を外周
面に形成して、軸受け及び各摺動部にオイルを供給する
ようにしている。
Further, the crankshaft 16 has a straight oil hole 76 centered on the shaft and a lateral oil supply hole 7 in the hole 76.
Spiral oil supply grooves 82, 84 which are continuous with each other via 8, 80 are formed on the outer peripheral surface to supply oil to the bearing and each sliding portion.

【0030】この実施形態例では、冷媒として地球環
境、可燃性及び毒性等を配慮して自然冷媒である二酸化
炭素(CO2)を使用し、また、潤滑油としてのオイル
は、例えば鉱物油(ミネラルオイル)、アルキルベンゼ
ン油、PAGオイル(ポリアルキレングリコール系オイ
ル)、エーテル油、エステル油等既存のオイルが使用し
ている。
In this embodiment, carbon dioxide (CO 2 ) which is a natural refrigerant is used as the refrigerant in consideration of the global environment, flammability, toxicity and the like, and the oil as the lubricating oil is, for example, mineral oil ( Existing oils such as mineral oil), alkylbenzene oil, PAG oil (polyalkylene glycol oil), ether oil, ester oil are used.

【0031】そして、上述の回転圧縮機構18におい
て、二酸化炭素冷媒を超臨界圧力(7.39MPa)以
上まで圧縮して吐出している。具体的には、低段圧縮要
素32では、吸入側冷媒圧力が3MPaであり、吐出側
冷媒圧力が7.5MPaである。そして、高段圧縮要素
34では、吸入側冷媒圧力が7.5MPaであり、吐出
側冷媒圧力が8MPaである。
In the rotary compression mechanism 18, the carbon dioxide refrigerant is compressed to a supercritical pressure (7.39 MPa) or higher and then discharged. Specifically, in the low-stage compression element 32, the suction side refrigerant pressure is 3 MPa and the discharge side refrigerant pressure is 7.5 MPa. In the high-stage compression element 34, the suction side refrigerant pressure is 7.5 MPa and the discharge side refrigerant pressure is 8 MPa.

【0032】ここで、超臨界条件下における蒸気圧縮サ
イクルの運転は、従来の蒸気圧縮サイクルが蒸発及び凝
縮を臨界未満圧力において運転されているのに対し、冷
凍サイクルの高サイドにおいて超臨界圧力で運転される
ものであり、従来システムでの凝縮器に対応する熱交換
器において、冷媒ガスは凝縮はされないが冷媒温度が低
下することとなる。このため、斯かる超臨界サイクルで
は従来の臨界未満圧力サイクルの凝縮器とは区別して冷
却装置としている。
Here, the operation of the vapor compression cycle under the supercritical condition is performed at the supercritical pressure on the high side of the refrigeration cycle, while the conventional vapor compression cycle operates the evaporation and the condensation at a subcritical pressure. In the heat exchanger corresponding to the condenser in the conventional system, the refrigerant gas is not condensed but the refrigerant temperature is lowered. For this reason, in such a supercritical cycle, a cooling device is distinguished from a conventional condenser of a subcritical pressure cycle.

【0033】また、上部支持部材54及び下部支持部材
56には、上下シリンダ38,40に冷媒を導入する上
下冷媒吸込通路と、圧縮された冷媒を吐出消音室58,
60を経由して吐出する上下冷媒吐出通路86,88と
が設けられている。そして、この各冷媒吸込通路と冷媒
吐出通路86,88には、密閉容器12に固定される接
続管90,92,94,96を介して冷媒配管98,1
00,102,104が接続される。
The upper support member 54 and the lower support member 56 have upper and lower refrigerant suction passages for introducing refrigerant into the upper and lower cylinders 38, 40, and a silencer chamber 58 for discharging compressed refrigerant.
Upper and lower refrigerant discharge passages 86, 88 for discharging via 60 are provided. The refrigerant suction passages and the refrigerant discharge passages 86, 88 are connected to the refrigerant pipes 98, 1 via connection pipes 90, 92, 94, 96 fixed to the closed container 12.
00, 102, 104 are connected.

【0034】この様に、各圧縮要素32,34の吸入側
に冷媒を導入する冷媒導入管としての冷媒配管98,1
02と、各圧縮要素32,34の吐出側から圧縮冷媒を
吐出する冷媒吐出管としての冷媒配管100,104と
が、コンプレッサ10の上下シリンダ38,40に直接
接続されるのではなく、上部支持部材54及び下部支持
部材56に夫々接続されているので、シリンダの厚みに
関係なく上記冷媒配管98,100,102,104の
内径を設定することができる。このため、二酸化炭素冷
媒を用いた冷凍サイクルに使用する場合においても、冷
媒通路断面積が小さくなることなく、圧力損失を低減さ
せて圧縮効率を向上させることができる。
In this way, the refrigerant pipes 98, 1 as the refrigerant introducing pipes for introducing the refrigerant into the suction sides of the respective compression elements 32, 34.
02 and the refrigerant pipes 100 and 104 as the refrigerant discharge pipes for discharging the compressed refrigerant from the discharge sides of the respective compression elements 32 and 34 are not directly connected to the upper and lower cylinders 38 and 40 of the compressor 10, but are supported on the upper side. Since they are respectively connected to the member 54 and the lower support member 56, the inner diameters of the refrigerant pipes 98, 100, 102, 104 can be set regardless of the thickness of the cylinder. Therefore, even when used in a refrigeration cycle using a carbon dioxide refrigerant, it is possible to reduce the pressure loss and improve the compression efficiency without reducing the refrigerant passage cross-sectional area.

【0035】また、冷媒配管100及び102の間に
は、気液分離器として作用するサクションマフラー10
6が接続されている。
Further, a suction muffler 10 acting as a gas-liquid separator is provided between the refrigerant pipes 100 and 102.
6 is connected.

【0036】このサクションマフラー106には、コン
プレッサ10の外部に設けられ、コンプレッサ10から
の吐出冷媒の温度を超臨界条件下にて低下させる冷却装
置として作用(通常条件下では凝縮器として作用)する
熱交換器(図示せず)において、熱交換された後の冷媒
の一部を膨張弁などの減圧手段(図示せず)にて減圧さ
せ、その冷媒を冷媒配管201を介して合流させてい
る。
The suction muffler 106 is provided outside the compressor 10 and acts as a cooling device for lowering the temperature of the refrigerant discharged from the compressor 10 under supercritical conditions (acting as a condenser under normal conditions). In a heat exchanger (not shown), a part of the refrigerant after heat exchange is decompressed by decompression means (not shown) such as an expansion valve, and the refrigerant is joined via a refrigerant pipe 201. .

【0037】ここで、上記減圧手段では低段圧縮要素3
2の吐出側冷媒圧力と等しい圧力(=7.5MPa)ま
で減圧している。
Here, in the pressure reducing means, the low-stage compression element 3 is used.
The pressure is reduced to a pressure equal to the discharge side refrigerant pressure of 2 (= 7.5 MPa).

【0038】これにより、このサクションマフラー10
6において、冷媒配管100を介して流入する低段圧縮
要素32の高温の吐出冷媒が、冷媒配管201を介して
流入する上記減圧手段からの低温冷媒により冷却され、
冷媒配管102を介して高段圧縮要素34の吸入側に供
給される冷媒が、低段圧縮要素32の吐出冷媒より低温
となる。このサクションマフラー106が、高段圧縮要
素34の吸入側に供給される冷媒を冷却する冷却手段と
して機能している。
As a result, this suction muffler 10
6, the high-temperature discharge refrigerant of the low-stage compression element 32 that flows in via the refrigerant pipe 100 is cooled by the low-temperature refrigerant from the pressure reducing means that flows in via the refrigerant pipe 201,
The refrigerant supplied to the suction side of the high-stage compression element 34 via the refrigerant pipe 102 has a lower temperature than the refrigerant discharged from the low-stage compression element 32. The suction muffler 106 functions as a cooling unit that cools the refrigerant supplied to the suction side of the high-stage compression element 34.

【0039】次に、上述した図1の2段圧縮式ロータリ
コンプレッサ10の動作概要について説明する。
Next, an outline of the operation of the above-described two-stage compression rotary compressor 10 shown in FIG. 1 will be described.

【0040】まず、ターミナル端子20及び給電配線
(図示せず)を介して電動機14のコイル28に給電す
ると、ロータ24が回転しそれに固定されたクランク軸
16が回転する。この回転によりクランク軸16と一体
的に設けられた上下偏心部42,44に連結された上下
ローラ46,48が上下シリンダ38,40内を偏心回
転する。これにより、冷媒配管98、冷媒吸込通路を経
由して、図2に示すように吸入ポート114から上シリ
ンダ38の吸入室38aに吸入された冷媒ガスは、上ロ
ーラ46と上ベーン50の動作により1段目の圧縮が行
われる。そして、圧縮室38bより吐出ポート116を
経由して上部支持部材54の吐出消音室58に吐出され
た中間圧の冷媒ガスは、上シリンダ38の冷媒吐出通路
86を通り冷媒配管100に送出される。
First, when power is supplied to the coil 28 of the electric motor 14 through the terminal terminal 20 and the power supply wiring (not shown), the rotor 24 rotates and the crankshaft 16 fixed thereto rotates. By this rotation, the upper and lower rollers 46, 48 connected to the upper and lower eccentric parts 42, 44 integrally provided with the crankshaft 16 eccentrically rotate in the upper and lower cylinders 38, 40. As a result, the refrigerant gas sucked from the suction port 114 into the suction chamber 38a of the upper cylinder 38 via the refrigerant pipe 98 and the refrigerant suction passage is moved by the operation of the upper roller 46 and the upper vane 50 as shown in FIG. The first stage compression is performed. The intermediate-pressure refrigerant gas discharged from the compression chamber 38b to the discharge muffling chamber 58 of the upper support member 54 via the discharge port 116 is delivered to the refrigerant pipe 100 through the refrigerant discharge passage 86 of the upper cylinder 38. .

【0041】次に、冷媒配管100からの冷媒ガスはサ
クションマフラー106を経由して冷媒配管102及び
図示されない冷媒吸込通路を経由して図2に示す吸込ポ
ート118から下シリンダ40の低圧室40aに吸入さ
れた中間圧の冷媒ガスは、下ローラ48と下ベーン52
の動作により2段目の圧縮が行われる。そして、下シリ
ンダ40の圧縮室40bより吐出ポート120を経由し
て下部支持部材56の吐出消音室60に吐出された高圧
冷媒ガスは、冷媒吐出通路88から冷媒配管104を通
り蒸気圧縮式冷凍サイクルを構成する外部冷媒回路(図
示せず)に送出される。以後同様の経路で、冷媒ガスの
吸入→圧縮→吐出が行われる。
Next, the refrigerant gas from the refrigerant pipe 100 passes through the suction muffler 106, the refrigerant pipe 102, and the refrigerant suction passage (not shown), and from the suction port 118 shown in FIG. 2 to the low pressure chamber 40a of the lower cylinder 40. The sucked intermediate-pressure refrigerant gas is transferred to the lower roller 48 and the lower vane 52.
The second stage compression is performed by the operation of. The high-pressure refrigerant gas discharged from the compression chamber 40b of the lower cylinder 40 to the discharge muffling chamber 60 of the lower support member 56 via the discharge port 120 passes from the refrigerant discharge passage 88 through the refrigerant pipe 104 to the vapor compression refrigeration cycle. Is sent to an external refrigerant circuit (not shown) constituting the. After that, the suction, compression, and discharge of the refrigerant gas are performed by the same route.

【0042】また、クランク軸16の回転により、密閉
容器12の底部に貯溜されている潤滑油はクランク軸1
6の軸中心に形成された鉛直方向のオイル孔76を上昇
しその途中に設けた横方向の給油孔78,80より外周
面に形成した螺旋状給油溝82,84に流出する。これ
により、クランク軸16の軸受け及び上下ローラ46,
48と上下偏心部42,44の各摺動部に対する給油が
良好に行われ、その結果、クランク軸16及び上下偏心
部42,44は円滑な回転を行うことができる。
Further, due to the rotation of the crankshaft 16, the lubricating oil stored in the bottom portion of the hermetically sealed container 12 can be removed from the crankshaft 1.
A vertical oil hole 76 formed in the center of the shaft 6 is lifted and flows out from horizontal oil supply holes 78, 80 provided in the middle thereof into spiral oil supply grooves 82, 84 formed on the outer peripheral surface. As a result, the bearing of the crankshaft 16 and the upper and lower rollers 46,
Oil is satisfactorily supplied to the respective sliding portions of the 48 and the vertical eccentric portions 42 and 44, and as a result, the crankshaft 16 and the vertical eccentric portions 42 and 44 can smoothly rotate.

【0043】尚、上記実施の形態の説明は、本発明を説
明するためのものであって、特許請求の範囲に記載の発
明を限定し、或は範囲を減縮する様に解すべきではな
い。又、本発明の各部構成は上記実施の形態に限らず、
特許請求の範囲に記載の技術的範囲内で種々の変形が可
能であることは勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope. Further, the configuration of each part of the present invention is not limited to the above embodiment,
It goes without saying that various modifications can be made within the technical scope described in the claims.

【0044】上記実施形態例では内部低圧型2段圧縮式
ロータリコンプレッサについて説明したが、本発明はこ
れに限らず、例えば、密閉容器12内部を低段圧縮要素
32の吐出圧縮冷媒の圧力にする内部中間圧型2段圧縮
式ロータリコンプレッサについても適用可能である。但
しこの場合には、低段圧縮要素32の圧縮冷媒ガスの一
部を密閉容器12内に直接吐出するための吐出管を別途
設け、密閉容器12の冷媒を冷媒配管100に合流させ
て高段圧縮要素34の吸入側に供給させる構成にする必
要がある。この場合には、電動機14の冷却効果が期待
できると共に、低段圧縮要素32の吐出冷媒ガスの一部
を密閉容器12内に一旦吐出させた後、高段圧縮要素3
4の吸入側に供給しているので、密閉容器12の内部空
間が冷媒ガスの吐出脈動を減少させる役割を果たすこと
になる。
Although the internal low-pressure two-stage compression rotary compressor has been described in the above embodiment, the present invention is not limited to this. For example, the pressure inside the closed container 12 is the pressure of the compressed refrigerant discharged from the low-stage compression element 32. It is also applicable to an internal intermediate pressure type two-stage compression rotary compressor. However, in this case, a separate discharge pipe for directly discharging a part of the compressed refrigerant gas of the low-stage compression element 32 into the closed container 12 is provided, and the refrigerant in the closed container 12 is joined to the refrigerant pipe 100 to make a high-stage discharge. It is necessary to supply the compression element 34 to the suction side. In this case, the cooling effect of the electric motor 14 can be expected, and a part of the refrigerant gas discharged from the low-stage compression element 32 is once discharged into the closed container 12, and then the high-stage compression element 3 is discharged.
Since it is supplied to the suction side of No. 4, the internal space of the closed container 12 serves to reduce the discharge pulsation of the refrigerant gas.

【0045】[0045]

【発明の効果】以上述べたとおり本発明によれば、シリ
ンダの厚みに関係なく冷媒導入管及び冷媒吐出管である
冷媒配管の内径を設定することができ、二酸化炭素冷媒
を用いた冷凍サイクルに使用する場合においても、冷媒
通路断面積が小さくなることなく、圧力損失を低減させ
て圧縮効率を向上させることができる。
As described above, according to the present invention, it is possible to set the inner diameters of the refrigerant pipes, which are the refrigerant introduction pipe and the refrigerant discharge pipe, regardless of the thickness of the cylinder. Even when used, it is possible to reduce the pressure loss and improve the compression efficiency without reducing the refrigerant passage cross-sectional area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態例である内部中間圧型2段
圧縮式ロータリコンプレッサの要部縦断面図である。
FIG. 1 is a longitudinal sectional view of a main part of an internal intermediate pressure type two-stage compression rotary compressor which is an embodiment of the present invention.

【図2】図1における各圧縮要素の要部構成を示す概略
平面図である。
FIG. 2 is a schematic plan view showing a main configuration of each compression element in FIG.

【図3】従来の2段圧縮式ロータリコンプレッサを使用
した冷凍サイクルの配管系統図である。
FIG. 3 is a piping system diagram of a refrigeration cycle using a conventional two-stage compression rotary compressor.

【図4】図3におけるコンプレッサの圧縮機構の概略平
面図である。
FIG. 4 is a schematic plan view of a compression mechanism of the compressor in FIG.

【符号の説明】[Explanation of symbols]

10 内部中間圧型2段圧縮式ロータリコンプレッサ 12 円筒状密閉容器 14 駆動電動機(電動要素) 16 クランク軸 18 回転圧縮機構(回転圧縮要素) 32 低段圧縮要素 34 高段圧縮要素 36 中間仕切板 38,40 上下シリンダ 42,44 上下偏心部 46,48 上下ローラ 50,52 上下ベーン 54 上部支持部材 56 下部支持部材 82,84 オイル溝 10 Internal intermediate pressure type two-stage compression rotary compressor 12 Cylindrical closed container 14 Drive motor (electric element) 16 crankshaft 18 Rotary compression mechanism (rotary compression element) 32 Low-stage compression element 34 High-stage compression element 36 Intermediate partition plate 38, 40 upper and lower cylinders 42,44 Vertical eccentric part 46, 48 upper and lower rollers 50,52 upper and lower vanes 54 Upper support member 56 Lower support member 82,84 oil groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 貴志 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平11−241682(JP,A) 特開 平3−81592(JP,A) 特開 平8−247061(JP,A) 特開 平6−17756(JP,A) 実開 昭47−26412(JP,U) (58)調査した分野(Int.Cl.7,DB名) F04C 23/00 F04C 18/356 F04C 29/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Yamakawa 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-11-241682 (JP, A) JP HEI 3-81592 (JP, A) JP-A-8-247061 (JP, A) JP-A-6-17756 (JP, A) Actual development Sho-47-26412 (JP, U) (58) Fields investigated (Int .Cl. 7 , DB name) F04C 23/00 F04C 18/356 F04C 29/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】密閉容器の内部に電動要素と、 該電動要素に連結される駆動軸により駆動され、上下面
にそれぞれ開口部を有する低段圧縮要素及び高段圧縮要
素からなる回転圧縮要素とを配置し、 前記低段圧縮要素の吐出側と前記高段圧縮要素の吸入側
とを連通管を介して直列接続した2段圧縮機構を形成
し、 冷媒として二酸化炭素を用いる 2段圧縮式ロータリコン
プレッサであって、前記低段圧縮要素と高段圧縮要素の間に配置され、該各
圧縮要素の一方の開口部を閉塞する中間仕切板と、 前記低段圧縮要素の他方の開口部を閉塞すると共に、前
記駆動軸の軸受部を兼用する第一支持部材と、 前記高段圧縮要素の他方の開口部を閉塞すると共に、前
記駆動軸の軸受部を兼用する第二支持部材と、 前記各支持部材と前記各圧縮要素と前記中間仕切板とを
軸方向に締結する締結手段と、 前記第一支持部材に接続され、前記低段圧縮要素の吸入
側に冷媒を導入する低段側冷媒導入管と、 前記第一支持部材に接続され、前記低段圧縮要素の吐出
側から圧縮冷媒を吐出する低段側冷媒吐出管と、 前記第二支持部材に接続され、前記高段圧縮要素の吸入
側に冷媒を導入する高段側冷媒導入管と、 前記第二支持部材に接続され、前記高段圧縮要素の吐出
側から圧縮冷媒を吐出する高段側冷媒吐出管とを備える
こと を特徴とする2段圧縮式ロータリコンプレッサ。
1. An electric element inside a closed container, and an upper and lower surface driven by a drive shaft connected to the electric element.
A rotary compression element including a low-stage compression element and a high-stage compression element each having an opening, and the discharge side of the low-stage compression element and the suction side of the high-stage compression element are connected in series via a communication pipe. Form a connected two-stage compression mechanism
And a two-stage compression rotary compressor that uses carbon dioxide as a refrigerant , which is arranged between the low-stage compression element and the high-stage compression element.
An intermediate partition plate for closing one opening of the compression element, and another opening for closing the other opening of the low-stage compression element, and
The first support member that also serves as the bearing portion of the drive shaft and the other opening of the high-stage compression element are closed, and
The second support member that also serves as the bearing portion of the drive shaft, the support members, the compression elements, and the intermediate partition plate
A fastening means for fastening in the axial direction and a suction of the low-stage compression element, which is connected to the first support member.
The low-stage side refrigerant introduction pipe for introducing the refrigerant to the side, and the discharge of the low-stage compression element connected to the first support member
And a low-stage side refrigerant discharge pipe for discharging compressed refrigerant from the side , and suction of the high- stage compression element connected to the second support member.
High-stage side refrigerant introduction pipe for introducing refrigerant to the side, and discharge of the high-stage compression element connected to the second support member
A high-stage side refrigerant discharge pipe that discharges the compressed refrigerant from the side
2-stage compression type rotary compressor, characterized in that.
【請求項2】前記第一支持部材及び第二支持部材には、
前記冷媒導入管からの冷媒を前記各圧縮要素の吸入側
に供給する吸込通路と、前記各圧縮要素の吐出側からの
冷媒を前記冷媒吐出管に吐出する吐出通路とが形成さ
れていることを特徴とする請求項1記載の2段圧縮式ロ
ータリコンプレッサ。
2. The first support member and the second support member,
A suction passage that supplies the refrigerant from each refrigerant introduction pipe to the suction side of each compression element and a discharge passage that discharges the refrigerant from the discharge side of each compression element to each refrigerant discharge pipe are formed. The two-stage compression type rotary compressor according to claim 1.
【請求項3】前記冷媒を超臨界圧力まで圧縮することを
特徴とする請求項1又は2に記載の2段圧縮式ロータリ
コンプレッサ。
3. The two-stage compression rotary compressor according to claim 1, wherein the refrigerant is compressed to a supercritical pressure.
【請求項4】前記高段圧縮要素の吸入側に供給される冷
媒を冷却する冷却手段を備えていることを特徴とする請
求項1乃至3のいずれかに記載の2段圧縮式ロータリコ
ンプレッサ。
4. The two-stage compression rotary compressor according to claim 1, further comprising cooling means for cooling the refrigerant supplied to the suction side of the high-stage compression element.
JP25618599A 1999-09-09 1999-09-09 2-stage compression type rotary compressor Expired - Fee Related JP3370027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25618599A JP3370027B2 (en) 1999-09-09 1999-09-09 2-stage compression type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25618599A JP3370027B2 (en) 1999-09-09 1999-09-09 2-stage compression type rotary compressor

Publications (2)

Publication Number Publication Date
JP2001082369A JP2001082369A (en) 2001-03-27
JP3370027B2 true JP3370027B2 (en) 2003-01-27

Family

ID=17289095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25618599A Expired - Fee Related JP3370027B2 (en) 1999-09-09 1999-09-09 2-stage compression type rotary compressor

Country Status (1)

Country Link
JP (1) JP3370027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256223A (en) * 2012-02-17 2013-08-21 珠海格力节能环保制冷技术研究中心有限公司 Variable volume compressor and control method thereof, air conditioner having variable volume compressor, and heat pump water heater having variable volume compressor
CN104428535A (en) * 2012-06-26 2015-03-18 松下知识产权经营株式会社 Rotary compressor
CN104989644A (en) * 2015-07-03 2015-10-21 广东美芝制冷设备有限公司 Compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003274750A1 (en) 2002-10-24 2004-05-13 Showa Denko K.K. Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
JP2008095585A (en) * 2006-10-11 2008-04-24 Daikin Ind Ltd Rotary compressor
JP2010084662A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Rotary compressor
JP6176577B2 (en) * 2012-05-29 2017-08-09 パナソニックIpマネジメント株式会社 Compressor
CN105443383B (en) * 2014-09-01 2018-01-19 珠海格力节能环保制冷技术研究中心有限公司 Pump body structure, double-stage compressor and air-conditioning system
WO2023181364A1 (en) * 2022-03-25 2023-09-28 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256223A (en) * 2012-02-17 2013-08-21 珠海格力节能环保制冷技术研究中心有限公司 Variable volume compressor and control method thereof, air conditioner having variable volume compressor, and heat pump water heater having variable volume compressor
CN104428535A (en) * 2012-06-26 2015-03-18 松下知识产权经营株式会社 Rotary compressor
CN104428535B (en) * 2012-06-26 2016-09-28 松下知识产权经营株式会社 Rotary compressor
CN104989644A (en) * 2015-07-03 2015-10-21 广东美芝制冷设备有限公司 Compressor
CN104989644B (en) * 2015-07-03 2017-05-31 广东美芝制冷设备有限公司 Compressor

Also Published As

Publication number Publication date
JP2001082369A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP3389539B2 (en) Internal intermediate pressure type two-stage compression type rotary compressor
JP2001091071A (en) Multi-stage compression refrigerating machine
JP3291484B2 (en) 2-stage compression type rotary compressor
JP3370027B2 (en) 2-stage compression type rotary compressor
JP4039921B2 (en) Transcritical refrigerant cycle equipment
WO2001016485A1 (en) Closed motor-driven compressor
JP2000097177A (en) Rotary compressor and refrigerating circuit
JP3370026B2 (en) 2-stage compression type rotary compressor
JP2001153476A (en) Refrigerating plant
JP2001153076A (en) Two-stage compression rotary compressor
JP3291469B2 (en) Rotary compressor
JP2003161280A (en) Rotary compressor
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP3291472B2 (en) Rotary compressor
JP2001271776A (en) Rotary compressor
JP3291470B2 (en) Rotary compressor
JP3469832B2 (en) Multi-stage compression refrigeration equipment
JP2000104690A (en) Rotary compressor
JP3579323B2 (en) 2-cylinder 2-stage compression rotary compressor
JP3695963B2 (en) Rotary compressor
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP4169620B2 (en) Refrigerant cycle equipment
JP3370041B2 (en) Rotary compressor
JP2003106276A (en) Two-stage compression type rotary compressor
JP2004309012A (en) Refrigerant cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees