JP3368344B2 - Semiconductor strain gauge and strain measurement method using the same - Google Patents

Semiconductor strain gauge and strain measurement method using the same

Info

Publication number
JP3368344B2
JP3368344B2 JP33313898A JP33313898A JP3368344B2 JP 3368344 B2 JP3368344 B2 JP 3368344B2 JP 33313898 A JP33313898 A JP 33313898A JP 33313898 A JP33313898 A JP 33313898A JP 3368344 B2 JP3368344 B2 JP 3368344B2
Authority
JP
Japan
Prior art keywords
strain
strain gauge
counter electrodes
semiconductor
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33313898A
Other languages
Japanese (ja)
Other versions
JP2000162056A (en
Inventor
進 杉山
寿之 鳥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP33313898A priority Critical patent/JP3368344B2/en
Publication of JP2000162056A publication Critical patent/JP2000162056A/en
Application granted granted Critical
Publication of JP3368344B2 publication Critical patent/JP3368344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、平面ひずみの3成
分を測定することのできる半導体ひずみゲージ及びそれ
を用いたひずみ測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor strain gauge capable of measuring three components of plane strain and a strain measuring method using the same.

【0002】[0002]

【従来の技術】半導体ひずみゲージは、半導体のピエゾ
抵抗効果を応用して電気量と機械量の変換を行う変換器
である。ピエゾ抵抗効果とは、半導体ピエゾ抵抗素子に
ひずみが作用するときにその電気抵抗が変化する現象で
ある。図18に示すように、垂直ひずみを測定するため
の従来の半導体ひずみゲージ1は、長方形状の平面形状
をなす半導体ピエゾ抵抗素子2の両端部に1対の対向電
極3、4を配置している。図18を含む各図中の1,
2,3軸は、各々直交座標系のx,y,z軸に相当す
る。
2. Description of the Related Art A semiconductor strain gauge is a converter for converting an electric quantity and a mechanical quantity by applying a piezoresistance effect of a semiconductor. The piezoresistive effect is a phenomenon in which the electrical resistance of a semiconductor piezoresistive element changes when strain acts on it. As shown in FIG. 18, a conventional semiconductor strain gauge 1 for measuring vertical strain has a pair of counter electrodes 3 and 4 arranged at both ends of a semiconductor piezoresistive element 2 having a rectangular planar shape. There is. 1, in each figure including FIG.
The 2nd and 3rd axes respectively correspond to the x, y and z axes of the Cartesian coordinate system.

【0003】図18の半導体ひずみゲージ1では、半導
体ピエゾ抵抗素子2に作用する電場E1 と電流J1 は同
一方向である。この場合、半導体ピエゾ抵抗素子2に作
用するひずみεと電極3、4間の1軸方向の抵抗変化の
割合ΔR1 /R1 との関係は、次式(1)で与えられ
る。 ΔR1 /R1 =m11ε1 +m12ε2 +m13ε3 +m14ε4 +m15ε5 +m16ε6 ……(1)
In the semiconductor strain gauge 1 of FIG. 18, the electric field E 1 acting on the semiconductor piezoresistive element 2 and the current J 1 are in the same direction. In this case, the relationship between the strain ε acting on the semiconductor piezoresistive element 2 and the rate of uniaxial resistance change ΔR 1 / R 1 between the electrodes 3 and 4 is given by the following equation (1). ΔR 1 / R 1 = m 11 ε 1 + m 12 ε 2 + m 13 ε 3 + m 14 ε 4 + m 15 ε 5 + m 16 ε 6 …… (1)

【0004】ここで、ε1 、ε2 、ε3 は垂直ひずみ成
分、ε4 、ε5 、ε6 はせん断ひずみ成分を表す。ま
た、m11、m12、m13は垂直ひずみに関係するひずみ−
抵抗係数、m14、m15、m16はせん断ひずみに関係する
ひずみ−抵抗係数である。一般にシリコンなどの単結晶
半導体のひずみ−抵抗係数は異方性を有する。すなわ
ち、ひずみ−抵抗係数が結晶方位に依存して変化する。
Here, ε 1 , ε 2 and ε 3 represent vertical strain components, and ε 4 , ε 5 and ε 6 represent shear strain components. In addition, m 11 , m 12 , and m 13 are strains related to vertical strain −
The resistance coefficients, m 14 , m 15 and m 16 are strain-resistance coefficients related to shear strain. Generally, the strain-resistance coefficient of a single crystal semiconductor such as silicon has anisotropy. That is, the strain-resistance coefficient changes depending on the crystal orientation.

【0005】例えば、半導体ピエゾ抵抗素子2がp型シ
リコンの(100)基板からなり、結晶方位の〔10
0〕方向が図18の3軸方向(矢印3の方向)と一致す
る場合、結晶方位の〔011〕方向を図18の1軸方向
(矢印1の方向)に、〔0−11〕方向を図18の2軸
方向(矢印2の方向)に一致させることにより、半導体
ひずみゲージ1は単軸(1軸方向)の垂直ひずみε1
みに感度を有するものとなる。
For example, the semiconductor piezoresistive element 2 is made of a p-type silicon (100) substrate and has a crystal orientation of [10].
When the [0] direction coincides with the three-axis direction of FIG. 18 (direction of arrow 3), the [011] direction of the crystal orientation is the one-axis direction of FIG. 18 (direction of arrow 1) and the [0-11] direction is The semiconductor strain gauge 1 has sensitivity only to the uniaxial (uniaxial direction) vertical strain ε 1 by making it coincide with the biaxial direction (direction of arrow 2) in FIG. 18.

【0006】すなわち、発明の詳細な説明の欄の末尾に
添付した表1、表2中の従来例1の欄に示すように、1
軸、2軸方向を各々〔011〕方向、〔0−11〕方向
とすると、ひずみ−抵抗係数のm11乃至m16の内、m13
乃至m16は、m11及びm12に比べて絶対値が相対的に極
めて小さいか、“0”となるため、実質的にはm11及び
12のみを考慮すればよい。さらに、半導体ピエゾ抵抗
素子2を長方形状に形成して、図18の2軸方向の寸法
を1軸方向の寸法に比べて十分小さくすることにより、
2軸方向のひずみ−抵抗係数m12も“0”と近似するこ
とができる。
That is, as shown in the column of Conventional Example 1 in Tables 1 and 2 attached at the end of the detailed description of the invention, 1
When the axial and biaxial directions are the [011] direction and the [0-11] direction, respectively, m 13 out of m 11 to m 16 of strain-resistance coefficient
Since the absolute values of m to m 16 are relatively smaller than those of m 11 and m 12 , or are “0”, substantially only m 11 and m 12 need be considered. Furthermore, by forming the semiconductor piezoresistive element 2 in a rectangular shape and making the dimension in the biaxial direction of FIG. 18 sufficiently smaller than the dimension in the uniaxial direction,
The strain-resistance coefficient m 12 in the biaxial directions can also be approximated to “0”.

【0007】この場合、半導体ひずみゲージ1に作用す
る垂直ひずみε1 と電極3、4間の1軸方向の抵抗変化
の割合ΔR1 /R1 との関係は次式(2)で与えられ
る。 ΔR1 /R1 =m11ε1 ……(2)
In this case, the relationship between the vertical strain ε 1 acting on the semiconductor strain gauge 1 and the rate of uniaxial resistance change ΔR 1 / R 1 between the electrodes 3 and 4 is given by the following equation (2). ΔR 1 / R 1 = m 11 ε 1 (2)

【0008】なお、段落番号0006中の〔0−11〕
に含まれる“−1”は、表1、表2等から明らかなよう
に、実際には、数字“1”の上部に上線(バー)を付し
て示すのが一般的であるが、明細書中では係る表示が困
難であるので、表1、表2中を除く本明細書(特許請求
の範囲の欄を含む)中では、便宜上、上線付の“1”を
“−1”で代用する。すなわち、〔0−11〕や以下で
使用する〔0−12〕なる明細書中の表記と、表中や添
付図面中で使用する通常の表記との間には、次の数1で
示す関係がある。
[0-11] in paragraph number 0006
As is clear from Tables 1 and 2 and the like, "-1" included in is generally shown by adding an overline (bar) to the upper part of the numeral "1", but Since such a display is difficult in the text, in this specification (including the section of the claims) except Tables 1 and 2, for convenience, the overlined "1" is replaced by "-1". To do. That is, the relation expressed by the following formula 1 is used between [0-11] and the notation in the specification [0-12] used below and the ordinary notation used in the table and the accompanying drawings. There is.

【0009】[0009]

【数1】 [Equation 1]

【0010】次に図19にせん断ひずみを測定するため
に用いられる従来の半導体ひずみゲージ5を示す。この
半導体ひずみゲージ5に用いられた半導体ピエゾ抵抗素
子6は平面形状が正方形状であり、図19中1軸方向に
沿って1対の電極7、8を、2軸方向に沿って他の1対
の電極9、10を配置している。この場合、電場E1
電流J2 とを直交させることができる。
Next, FIG. 19 shows a conventional semiconductor strain gauge 5 used for measuring shear strain. The semiconductor piezoresistive element 6 used in this semiconductor strain gauge 5 has a square planar shape, and has a pair of electrodes 7 and 8 along the uniaxial direction in FIG. 19 and the other one along the biaxial direction. A pair of electrodes 9 and 10 are arranged. In this case, the electric field E 1 and the current J 2 can be made orthogonal to each other.

【0011】この半導体ひずみゲージ5における半導体
ピエゾ抵抗効果は、電極7、8間の電場E1 と、電極
9、10間の電流J2 と、半導体ピエゾ抵抗素子6の比
抵抗ρを用いて次式(3)のように与えられる。 E1 =ρJ2(m61ε1 +m62ε2 +m63ε3 +m64ε4 +m65ε5 +m66ε6) ……(3) ここで、電場E1 と電流J2 とが直交する場合、m61
62、m63は垂直ひずみに、m64、m65、m66はせん断
ひずみに関係するひずみ−抵抗係数である。
The semiconductor piezoresistive effect in the semiconductor strain gauge 5 is calculated by using the electric field E 1 between the electrodes 7 and 8, the current J 2 between the electrodes 9 and 10, and the specific resistance ρ of the semiconductor piezoresistive element 6. It is given as in equation (3). E 1 = ρJ 2 (m 61 ε 1 + m 62 ε 2 + m 63 ε 3 + m 64 ε 4 + m 65 ε 5 + m 66 ε 6 ) (3) where the electric field E 1 and the current J 2 are orthogonal to each other If m 61 ,
m 62 and m 63 are vertical strains, and m 64 , m 65 and m 66 are strain-resistance coefficients related to shear strain.

【0012】ここで、半導体ひずみゲージ5に作用する
電場E1 と電流J2 とが一様であると仮定すれば、E1
=Vout 、ρJ2 =Vinと置くことができる。この場
合、式(3)は次式(4)のように表される。 Vout /Vin=m61ε1 +m62ε2 +m63ε3 +m64ε4 +m65ε5 +m66ε6 ……(4)
Assuming that the electric field E 1 acting on the semiconductor strain gauge 5 and the current J 2 are uniform, E 1
= V out , ρJ 2 = V in . In this case, the equation (3) is expressed as the following equation (4). V out / V in = m 61 ε 1 + m 62 ε 2 + m 63 ε 3 + m 64 ε 4 + m 65 ε 5 + m 66 ε 6 (4)

【0013】ところで、半導体ピエゾ抵抗素子6が、例
えば、p型シリコンの(100)基板からなる場合、表
1、表2の従来例2の欄に示したように、図19中の1
軸方向を結晶方位の〔010〕方向、図19中の2軸方
向を〔001〕方向とすると、ひずみ−抵抗係数m61
至m66の内、m66以外のものは、m66に比べて絶対値が
相対的に極めて小さいか、“0”であるため、半導体ひ
ずみゲージ5は実質的にせん断ひずみε6 のみに感度を
有することとなる。この場合、式(4)のm61乃至m65
を“0”とすることにより次式(5)が成立し、直交す
る電圧の入力V in(2軸方向)と出力Vout (1軸方
向)との比を求めれば、半導体ひずみゲージ5に作用す
るせん断ひずみε6 が決定できる。 Vout /Vin=m66ε6 ……(5)
By the way, the semiconductor piezoresistive element 6 is an example.
For example, in the case of a (100) substrate of p-type silicon,
1. As shown in the column of Conventional Example 2 in Table 2, 1 in FIG.
The axial direction is the [010] direction of the crystal orientation, and the two axial directions in FIG.
If the direction is the [001] direction, strain-resistance coefficient m61No
To m66Of which, m66Other than m66Absolute value compared to
Since it is relatively extremely small or "0", the semiconductor
The strain gauge 5 is substantially shear strain ε6Sensitivity only to
Will have. In this case, m in equation (4)61To m65
Is set to “0”, the following equation (5) is established and
Input voltage V in(2-axis direction) and output Vout(1 axis direction
Direction), it will act on the semiconductor strain gauge 5
Shear strain ε6Can be determined. Vout/ Vin= M66ε6                                      …… (5)

【0014】[0014]

【発明が解決しようとする課題】ところが、従来の半導
体ひずみゲージ1は、一方向(図18の1軸方向)の垂
直ひずみを計測できるのみであるから、互いに直交する
2方向の垂直ひずみの計測が必要な場合、半導体ひずみ
ゲージ1を互いに直交する方向に2個配置する必要があ
った。また、上記半導体ひずみゲージ1、5は、各々垂
直ひずみ、せん断ひずみを計測できるのみであるから、
垂直ひずみとせん断ひずみの双方の計測が必要な場合に
は、ゲージ1、5を別個に設ける必要があり、ゲージ
1、5の使用個数が増するとともに、配置スペースも増
大する問題を有していた。
However, since the conventional semiconductor strain gauge 1 can only measure vertical strain in one direction (one axis direction in FIG. 18), it can measure vertical strain in two directions orthogonal to each other. If it is necessary, two semiconductor strain gauges 1 need to be arranged in directions orthogonal to each other. Further, since the semiconductor strain gauges 1 and 5 can only measure vertical strain and shear strain, respectively,
When it is necessary to measure both vertical strain and shear strain, it is necessary to provide the gauges 1 and 5 separately, which causes a problem that the number of gauges 1 and 5 used increases and the arrangement space also increases. It was

【0015】[0015]

【課題を解決するための手段】本発明は、上記の課題を
解決して、同一平面内の2方向の垂直ひずみと上記平面
内のせん断ひずみとの計測が可能な半導体ひずみゲージ
を提供することを目的とする。そのため、本発明の請求
項1の半導体ひずみゲージは、p型シリコンの(10
0)基板上に互いに直交する2対の対向電極が形成さ
れ、1対の対向電極は大略〔021〕方向に沿って配置
される一方、他の1対の対向電極は大略〔0−12〕方
向に沿って配置されていることを特徴とするものであ
る。
The present invention solves the above problems and provides a semiconductor strain gauge capable of measuring vertical strains in two directions in the same plane and shear strains in the above plane. With the goal. Therefore, the semiconductor strain gauge according to claim 1 of the present invention is a p-type silicon (10
0) Two pairs of counter electrodes that are orthogonal to each other are formed on the substrate, one pair of counter electrodes is arranged along the [021] direction, while the other pair of counter electrodes is [0-12]. It is characterized by being arranged along the direction.

【0016】すなわち、図1に示すように、請求項1の
半導体ひずみゲージ11は、半導体ピエゾ抵抗素子とし
て、図1中の3軸方向が結晶方位の〔100〕方向とな
るp型シリコンの(100)基板12を用い、1軸方向
を結晶方位の大略〔021〕方向、2軸方向を大略〔0
−12〕方向としている。そして、1対の電極13、1
4を1軸方向に沿って配置する一方、他の1対の電極1
5、16を2軸方向に沿って配置している。
That is, as shown in FIG. 1, the semiconductor strain gauge 11 according to claim 1 is a semiconductor piezoresistive element, and is made of p-type silicon whose triaxial directions in FIG. 100) using the substrate 12, the uniaxial direction is approximately [021] direction of crystal orientation, and the biaxial direction is approximately [021] direction.
-12] direction. And a pair of electrodes 13, 1
4 are arranged along one axial direction, while another pair of electrodes 1
5, 16 are arranged along the biaxial direction.

【0017】この場合、(100)基板12に作用する
平面ひずみεと、電極13、14間における1軸方向の
抵抗変化の割合ΔR1 /R1 との関係は、上記従来例1
と同様に上記式(1)で与えられる。また、(100)
基板12に作用する平面ひずみεと、電極15、16間
における2軸方向の抵抗変化の割合ΔR2 /R2 との関
係は、軸方向が異なるが、上記式(1)と同様であっ
て、次式(6)で与えられる。 ΔR2 /R2 =m21ε1 +m22ε2 +m23ε3 +m24ε4 +m25ε5 +m26ε6 ……(6) ここで、m21乃至m23は垂直ひずみに、m24乃至m26
せん断ひずみに関係するひずみ−抵抗係数である。
In this case, the relationship between the plane strain ε acting on the (100) substrate 12 and the ratio of the resistance change ΔR 1 / R 1 in the uniaxial direction between the electrodes 13 and 14 is as follows.
Is given by the above equation (1). Also, (100)
The relationship between the plane strain ε that acts on the substrate 12 and the ratio ΔR 2 / R 2 of the resistance change in the biaxial direction between the electrodes 15 and 16 is the same as in the above formula (1), although the relationship differs in the axial direction. , Given by the following equation (6). ΔR 2 / R 2 = m 21 ε 1 + m 22 ε 2 + m 23 ε 3 + m 24 ε 4 + m 25 ε 5 + m 26 ε 6 (6) where m 21 to m 23 are vertical strains and m 24 To m 26 are strain-resistance coefficients related to shear strain.

【0018】さらに、(100)基板12の比抵抗をρ
とし、(100)基板12に作用する1軸方向の電場E
1 と2軸方向の電流J2 とが一様であると仮定してE1
=V out 、ρJ2 =Vinと置けば、入力電圧(2軸方
向)と出力電圧(1軸方向)の比Vout /Vinと、ひず
み−抵抗係数m61乃至m66及び各ひずみ成分ε1 乃至ε
6 との間には上記従来例2と同様に上記式(4)の関係
が成立する。
Further, the specific resistance of the (100) substrate 12 is ρ
And the uniaxial electric field E acting on the (100) substrate 12
1And the current J in the two-axis direction2Assuming that and are uniform, E1
= V out, ΡJ2= VinInput voltage (2-axis direction)
Direction) and output voltage (1 axis direction) ratio Vout/ VinAnd Hiz
Only-resistance coefficient m61To m66And each strain component ε1Through ε
6And the relationship of the above formula (4) as in the above-mentioned conventional example 2.
Is established.

【0019】ところで、表1及び表2中の本発明の欄
に、1対の対向電極を〔021〕方向(1軸方向)に、
他の1対の対向電極を〔0−12〕方向(2軸方向)に
沿って各々配置した場合のひずみ−抵抗係数を示す。表
1、表2から明らかなように、本発明のように対向電極
の配置方向を定めた場合、ひずみ成分ε1 、ε2 、ε6
に関連するひずみ−抵抗係数(m11、m12、m16
21、m22、m26、m61、m 62、m66の9個)の以外の
各ひずみ−抵抗係数は、上記ひずみ成分ε1 、ε2 、ε
6 に関連するひずみ−抵抗係数に比べて絶対値が相対的
に極めて小さいか“0”となる。
By the way, the columns of the present invention in Tables 1 and 2
A pair of counter electrodes in the [021] direction (uniaxial direction),
Another pair of counter electrodes in the [0-12] direction (biaxial direction)
The strain-resistance coefficient in the case of arranging each along is shown. table
1. As is clear from Table 2, the counter electrode as in the present invention
Strain component ε1, Ε2, Ε6
Strain-resistance coefficient (m11, M12, M16,
mtwenty one, Mtwenty two, M26, M61, M 62, M66Other than 9)
Each strain-resistance coefficient is the strain component ε1, Ε2, Ε
6Relative to the strain-resistance coefficient associated with
Is extremely small or becomes "0".

【0020】従って、本発明の半導体ひずみゲージ11
においては、上記式(1)、式(6)及び式(4)にお
いて、m11、m12、m16、m21、m22、m26、m61、m
62、m66の9個のひずみ−抵抗係数以外の各ひずみ−抵
抗係数を“0”と置くことができる。この場合、式
(1)、(6)及び(4)は各々次式(7)、(8)、
(9)で近似できる。
Therefore, the semiconductor strain gauge 11 of the present invention
In the above formulas (1), (6) and (4), m 11 , m 12 , m 16 , m 21 , m 22 , m 26 , m 61 , m
Each strain-resistance coefficient other than the nine strain-resistance coefficients of 62 and m 66 can be set to "0". In this case, equations (1), (6) and (4) are respectively represented by the following equations (7), (8),
It can be approximated by (9).

【0021】 ΔR1 /R1 =m11ε1 +m12ε2 +m16ε6 ……(7) ΔR2 /R2 =m21ε1 +m22ε2 +m26ε6 ……(8) Vout /Vin=m61ε1 +m62ε2 +m66ε6 ……(9) なお、上記1対の対向電極13、14及び他の1対の対
向電極15、16が各々〔021〕方向、〔0−12〕
方向から若干ずれていても、これらの方向の近傍であれ
ば、式(7)、(8)、(9)は成立する。
ΔR 1 / R 1 = m 11 ε 1 + m 12 ε 2 + m 16 ε 6 …… (7) ΔR 2 / R 2 = m 21 ε 1 + m 22 ε 2 + m 26 ε 6 …… (8) V out / V in = m 61 ε 1 + m 62 ε 2 + m 66 ε 6 (9) In addition, the pair of counter electrodes 13 and 14 and the other pair of counter electrodes 15 and 16 are in the [021] direction, respectively. , [0-12]
Even if they are slightly deviated from the directions, the expressions (7), (8), and (9) are established as long as they are in the vicinity of these directions.

【0022】式(7)乃至(9)の各右辺で未知数はε
1 、ε2 、ε6 の3つであるから、ΔR1 /R1 、ΔR
2 /R2 及びVout /Vinを順次測定し、式(7)乃至
(9)を連立方程式として解くことにより、(100)
面内の互いに直交する2方向の垂直ひずみ成分ε1 、ε
2 と、上記(100)面内のせん断ひずみ成分ε6 とを
単一の半導体ひずみゲージ11によって求めることがで
きる。
On each right side of equations (7) to (9), the unknown is ε.
Since there are three of 1 , 1 , ε 2 , and ε 6 , ΔR 1 / R 1 , ΔR
By sequentially measuring 2 / R 2 and V out / V in, and solving equations (7) to (9) as simultaneous equations, (100)
Vertical strain components ε 1 , ε in two directions that are orthogonal to each other in the plane
2 and the shear strain component ε 6 in the (100) plane can be obtained by a single semiconductor strain gauge 11.

【0023】なお、上記(9)式の代わりに、上記
(3)式において、m61、m62、m66以外の各ひずみ−
抵抗係数を“0”とおくことにより、次式(10)が成
立する。 E1 =ρJ2(m61ε1 +m62ε2 +m66ε6) ……(10) 上記式(9)の代わりに、この式(10)を用い、式
(7)、(8)、(10)を連立方程式として解くこと
により、ε1 、ε2 及びε6 を得ることもできる。
Instead of the above equation (9), in the above equation (3), strains other than m 61 , m 62 , and m 66
By setting the resistance coefficient to “0”, the following expression (10) is established. E 1 = ρJ 2 (m 61 ε 1 + m 62 ε 2 + m 66 ε 6 ) ... (10) Instead of the above equation (9), this equation (10) is used to obtain equations (7), (8), By solving (10) as simultaneous equations, ε 1 , ε 2 and ε 6 can be obtained.

【0024】請求項2の半導体ひずみゲージは、n型シ
リコンの(100)基板の表面部近傍にp型シリコン層
が形成されるとともに、このp型シリコン層上に互いに
直交する2対の対向電極が形成され、1対の対向電極は
大略〔021〕方向に沿って配置される一方、他の1対
の対向電極は大略〔0−12〕方向に沿って配置されて
いることを特徴とするものである。この場合も、上記請
求項1の半導体ひずみゲージと同様の方法で、2つの垂
直ひずみ成分ε1 、ε2 と1つのせん断ひずみ成分ε6
を求めることができる。
According to another aspect of the semiconductor strain gauge of the present invention, a p-type silicon layer is formed in the vicinity of a surface portion of an (100) substrate made of n-type silicon, and two pairs of counter electrodes orthogonal to each other are formed on the p-type silicon layer. Are formed, and the pair of counter electrodes are arranged along the [021] direction, while the other pair of counter electrodes are arranged along the [0-12] direction. It is a thing. Also in this case, two vertical strain components ε 1 and ε 2 and one shear strain component ε 6 are applied by the same method as that of the semiconductor strain gauge of claim 1.
Can be asked.

【0025】請求項3の半導体ひずみゲージを用いたひ
ずみ測定方法は、請求項1または2の半導体ひずみゲー
ジを用いて、上記互いに直交する2対の対向電極の各々
の方向の抵抗変化の割合を測定するとともに、1対の対
向電極を入力端子、他の1対の対向電極を出力端子とし
て入出力電圧の比を測定することにより、平面ひずみの
3成分を求めることを特徴とするものである。
A strain measuring method using a semiconductor strain gauge according to a third aspect of the present invention uses the semiconductor strain gauge according to the first or second aspect of the present invention to determine the rate of change in resistance in each direction of the two pairs of counter electrodes which are orthogonal to each other. It is characterized in that the three components of the plane strain are obtained by measuring and measuring the ratio of the input and output voltages using one pair of counter electrodes as input terminals and the other pair of counter electrodes as output terminals. .

【0026】すなわち、直交する2対の対向電極13、
14及び15、16の各々の方向の抵抗変化の割合と
は、上記式(7)、式(8)中のΔR1 /R1 、ΔR2
/R2であり、入出力電圧の比とは上記式(9)中のV
out /Vinであり、これらを求めて、3つの式(7)乃
至(9)を連立方程式として解くことにより、上述のよ
うに、2つの垂直ひずみ成分ε1 、ε2 と1つのせん断
ひずみ成分ε6 を得ることができる。
That is, two pairs of counter electrodes 13 which are orthogonal to each other,
The rate of resistance change in each direction of 14 and 15 and 16 means ΔR 1 / R 1 and ΔR 2 in the above formulas (7) and (8).
/ R 2 and the ratio of input / output voltage is V in the above equation (9)
out / V in , and by obtaining these and solving the three equations (7) to (9) as simultaneous equations, two vertical strain components ε 1 and ε 2 and one shear strain are obtained as described above. The component ε 6 can be obtained.

【0027】[0027]

【発明の実施の形態】以下、本発明の第1の実施の形態
を図面を参照しながら説明する。この第1の実施の形態
は、請求項1に対応したもので、図1に示した通りの構
成である。すなわち、半導体ひずみゲージ11における
p型シリコンの(100)基板12は、単結晶シリコン
から切り出され、平面形状が正方形状で、所定の厚みと
なるように形成されている。なお、(100)基板12
の1軸方向寸法と2軸方向寸法とは、若干相違していて
もよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. The first embodiment corresponds to claim 1, and has the configuration as shown in FIG. That is, the (100) substrate 12 of p-type silicon in the semiconductor strain gauge 11 is cut out from single crystal silicon, has a square planar shape, and is formed to have a predetermined thickness. The (100) substrate 12
The uniaxial dimension and the biaxial dimension may be slightly different.

【0028】(100)基板12の1軸方向である〔0
21〕方向に沿って1対の対向電極13、14が配置さ
れ、2軸方向である〔0−12〕方向に沿って他の1対
の対向電極15、16が配置されている。そして、これ
らの各電極13乃至16から各々配線19が引き出され
ている。
(100) The direction of one axis of the substrate 12 [0
21] direction, a pair of counter electrodes 13 and 14 are arranged, and another pair of counter electrodes 15 and 16 are arranged along the [0-12] direction which is a biaxial direction. Then, the wiring 19 is drawn out from each of these electrodes 13 to 16.

【0029】この半導体ひずみゲージ11は、例えば、
原子間力顕微鏡のひずみゲージや、ロードセル、ロボッ
トの力センサ等として用いられる。図2及び図3の各点
線部に半導体ひずみゲージ11が上記1軸方向及び2軸
方向に各々ひずみを生じた状態を、図4の点線部に半導
体ひずみゲージ11が(100)面内でせん断ひずみを
生じた状態を示す。本半導体ひずみゲージ11は、これ
ら同一平面内の直交する2方向の垂直ひずみ成分と、せ
ん断ひずみ成分とを測定できる。なお、本半導体ひずみ
ゲージ11は、被測定部位に2つの垂直ひずみ成分の測
定方向が半導体ひずみゲージ11の1軸方向、2軸方向
と合致するように取り付ければよい。
The semiconductor strain gauge 11 is, for example,
It is used as a strain gauge for atomic force microscopes, load cells, and force sensors for robots. The semiconductor strain gauge 11 in each of the dotted line portions of FIGS. 2 and 3 shows strains in the uniaxial and biaxial directions, and the semiconductor strain gauge 11 in the dotted line portion of FIG. 4 is sheared in the (100) plane. Shows a state where distortion occurs. The semiconductor strain gauge 11 can measure a vertical strain component in two directions orthogonal to each other in the same plane and a shear strain component. The semiconductor strain gauge 11 may be attached to the measurement site so that the measurement directions of the two vertical strain components coincide with the uniaxial direction and the biaxial direction of the semiconductor strain gauge 11.

【0030】測定に際しては、図5に示すように、ま
ず、1対の対向電極13、14間で電流J1 と電圧V1
との比を求めることにより、ひずみが生じる前後の1軸
方向の抵抗変化率ΔR1 /R1 を測定する。なお、ひず
みが生じる前の初期抵抗値R1は、半導体ひずみゲージ
11に外力が作用しない状態で予め求めておくことがで
きるので、実際には、ひずみが生じた後の抵抗値(R1
+ΔR1 )を測定するのみで抵抗変化率ΔR1 /R1
得ることができる。
In the measurement, as shown in FIG. 5, first, a current J 1 and a voltage V 1 are applied between the pair of counter electrodes 13 and 14.
Then, the rate of change in resistance ΔR 1 / R 1 in the uniaxial direction before and after the strain is generated is measured. Since the initial resistance value R 1 before the strain is generated can be obtained in advance in a state where the external force does not act on the semiconductor strain gauge 11, the resistance value (R 1 after the strain is generated is actually R 1
The resistance change rate ΔR 1 / R 1 can be obtained only by measuring + ΔR 1 ).

【0031】同様にして、図6に示すように、他の1対
の対向電極15、16間で電流J2と電圧V2 との比を
求めることにより、2軸方向の抵抗変化率ΔR2 /R2
を測定する。さらに、図7に示すように、電極15、1
6間の入力電圧Vinと電極13、14間の出力電圧V
out との比Vout /Vinを求める。そして、上記式
(7)乃至(9)を用いて、連立方程式を解くことによ
り、半導体ひずみゲージ11の1軸方向及び2軸方向の
垂直ひずみ成分ε1 、ε2 とせん断ひずみ成分ε6 を得
る。
Similarly, as shown in FIG. 6, by obtaining the ratio of the current J 2 and the voltage V 2 between the other pair of counter electrodes 15 and 16, the rate of change in resistance ΔR 2 in the biaxial direction is obtained. / R 2
To measure. Further, as shown in FIG.
The output voltage V between the input voltage V in and the electrodes 13 and 14 between 6
determining the ratio V out / V in and out. Then, by solving the simultaneous equations using the above equations (7) to (9), the vertical strain components ε 1 and ε 2 and the shear strain component ε 6 in the uniaxial direction and biaxial direction of the semiconductor strain gauge 11 are obtained. obtain.

【0032】次に、図8乃至図10に上記式(7)乃至
(9)中の各ひずみ−抵抗係数m11、m12、m16等がp
型単結晶シリコンの(100)面内の結晶方位により、
どのように変化するかを求めた結果を示す。すなわち、
図11に示すように、3軸方向を〔100〕方向として
固定し、(100)面内において1軸方向が〔010〕
方向と一致し、2軸方向が〔001〕方向と一致する実
線の角度位置(前記従来例2に対応)を基準方向とす
る。そして、上記1軸及び2軸を(100)面で互いに
連動して360°回転させ、各ひずみ−抵抗係数m11
12、m16等の変化を求めた。
Next, in FIGS. 8 to 10, the strain-resistance coefficients m 11 , m 12 , m 16 and the like in the above equations (7) to (9) are p.
By the crystal orientation in the (100) plane of the type single crystal silicon,
The results of how the changes are calculated are shown below. That is,
As shown in FIG. 11, the three-axis direction is fixed as the [100] direction, and the one-axis direction is [010] in the (100) plane.
The angular position of the solid line (corresponding to the conventional example 2) in which the direction coincides with the direction and the biaxial direction coincides with the [001] direction is set as the reference direction. Then, the 1-axis and the 2-axis are interlocked with each other on the (100) plane and rotated by 360 °, and each strain-resistance coefficient m 11 ,
Changes in m 12 , m 16, etc. were determined.

【0033】例えば、1軸及び2軸が上記基準方向に対
して、図11の矢印方向へ22.5°回転すると、一点
鎖線で示すように、1軸方向が〔021〕方向と合致す
るとともに、2軸方向が〔0−12〕方向と合致して本
半導体ひずみゲージ11の(100)基板12に対する
2対の対向電極の取付方向となる。また、1軸及び2軸
が上記基準方向に対して矢印方向へ45°回転すると、
点線で示すように、1軸方向が〔011〕方向と合致す
るとともに、2軸方向が〔0−11〕方向と合致して、
前記従来例1の半導体ひずみゲージ1における1対の対
向電極3、4の取付方向となる。
For example, when the 1-axis and 2-axis rotate 22.5 ° in the direction of the arrow in FIG. 11 with respect to the reference direction, the 1-axis direction coincides with the [021] direction as shown by the alternate long and short dash line. The biaxial direction coincides with the [0-12] direction, which is the mounting direction of the two pairs of counter electrodes of the semiconductor strain gauge 11 to the (100) substrate 12. Further, when the 1-axis and the 2-axis rotate 45 ° in the arrow direction with respect to the reference direction,
As indicated by the dotted line, the uniaxial direction matches the [011] direction, and the biaxial direction matches the [0-11] direction,
This is the mounting direction of the pair of opposing electrodes 3 and 4 in the semiconductor strain gauge 1 of Conventional Example 1.

【0034】図8は、上記式(7)中の各ひずみ−抵抗
係数m11、m12、m16の変化を示したもので、各係数m
11、m12、m16が90°周期で増減することが分かる。
そして、0°乃至90°の角度範囲で見ると、本実施の
形態の電極13乃至16の取付方向の近傍、つまり、上
記基準方向に対して22.5°回転させた角度位置近傍
で、各係数m11、m12、m16の絶対値が互いに略等しく
なることが分かる。
FIG. 8 shows changes in the strain-resistance coefficients m 11 , m 12 , and m 16 in the above equation (7).
It can be seen that 11 , m 12 , and m 16 increase and decrease in a 90 ° cycle.
When viewed in the angle range of 0 ° to 90 °, the electrodes 13 to 16 according to the present embodiment are provided in the vicinity of the mounting direction, that is, in the vicinity of an angular position rotated by 22.5 ° with respect to the reference direction. It can be seen that the absolute values of the coefficients m 11 , m 12 , and m 16 are substantially equal to each other.

【0035】同様に図9は、上記式(8)中の各ひずみ
−抵抗係数m21、m22、m26の変化を示したもの、図1
0と上記式(9)中の各ひずみ−抵抗係数m61、m62
66の変化を示したものであり、これらの場合も、基準
方向に対して22.5°回転させた本実施の形態の電極
取付方向の近傍において各係数の絶対値が略等しくなる
ことが分かる。
Similarly, FIG. 9 shows changes in strain-resistance coefficients m 21 , m 22 and m 26 in the above equation (8), and FIG.
0 and each strain-resistance coefficient m 61 , m 62 in the above equation (9),
m 66 shows changes in m 66 , and also in these cases, the absolute values of the respective coefficients may be substantially equal in the vicinity of the electrode mounting direction of the present embodiment rotated by 22.5 ° with respect to the reference direction. I understand.

【0036】このように、本実施の形態の電極取付方向
の近傍では、各ひずみ−抵抗係数の絶対値が略等しくな
るので、上記3つのひずみ成分ε1 、ε2 、ε6 を互い
に分離して決定するのに好適である。なお、図8乃至図
10から明らかなように、上記22.5°の近傍であれ
ば、各ひずみ−抵抗係数の絶対値が略等しくなるので、
電極13乃至16の取付方向は、必ずしも〔021〕方
向及び〔0−12〕方向と完全に一致していなくても、
その近傍であればよい。
As described above, in the vicinity of the electrode mounting direction of the present embodiment, the absolute values of the strain-resistance coefficients become substantially equal, so the three strain components ε 1 , ε 2 , ε 6 are separated from each other. It is suitable for making a decision. Note that, as is clear from FIGS. 8 to 10, in the vicinity of the above 22.5 °, the absolute values of the strain-resistance coefficients become substantially equal,
The mounting directions of the electrodes 13 to 16 do not necessarily match the [021] direction and the [0-12] direction,
It may be in the vicinity thereof.

【0037】また、図8乃至図10から明らかなよう
に、各ひずみ−抵抗係数は90°周期で変化するので、
上記基準方向に対して22.5°+(90°の整数倍)
だけ回転した角度位置近傍でも、各ひずみ−抵抗係数の
絶対値は互いに略等しくなる。
Further, as is clear from FIGS. 8 to 10, since each strain-resistance coefficient changes in a 90 ° cycle,
22.5 ° with respect to the above reference direction + (an integral multiple of 90 °)
Even in the vicinity of the angular position rotated only by, the absolute value of each strain-resistance coefficient becomes substantially equal to each other.

【0038】例えば、1軸及び2軸が上記基準方向に対
して、112.5°回転した位置では、1軸方向が〔0
−12〕方向に合致するとともに、2軸方向が〔0−2
−1〕方向に合致することになり、係る2方向に沿って
上記2対の電極13乃至16を取り付けた場合も、本実
施の形態と同様の効果が得られることになる。なお、本
明細書の特許請求の範囲における〔021〕方向及び
〔0−12〕方向なる表現は、上記〔0−12〕方向及
び〔0−2−1〕方向等の〔021〕方向及び〔0−1
2〕方向と等価の作用効果が得られる方向も含んだ代表
的な表現である。
For example, at the position where the uniaxial and biaxial are rotated 112.5 ° with respect to the reference direction, the uniaxial direction is [0
-12] direction and the biaxial direction is [0-2
-1] direction, and even when the two pairs of electrodes 13 to 16 are attached along the two directions, the same effect as that of the present embodiment can be obtained. The expressions [021] direction and [0-12] direction in the claims of the present specification refer to the [021] direction and the [021] direction such as the above [0-12] direction and [0-2-1] direction. 0-1
2] This is a typical expression that also includes a direction in which an effect equivalent to that of the direction is obtained.

【0039】さらに、p型シリコンの(010)基板ま
たは(001)基板上に上記実施の形態と同様に上記式
(7)乃至(9)中の各ひずみ−抵抗係数の絶対値が略
等しくなるような互いに直交する方向に2対の対向電極
を取り付けた場合も、上記実施の形態と同等の作用効果
が得られる。本明細書の特許請求の範囲における(10
0)基板と〔021〕方向及び〔0−12〕方向なる電
極の取付方向は、これら(010)基板や(001)基
板を用いて電極の取付方向を適当に定めた場合をも含む
代表的な表現である。
Further, the absolute value of each strain-resistance coefficient in the above formulas (7) to (9) becomes substantially equal on the (010) substrate or (001) substrate of p-type silicon as in the above embodiment. Even when two pairs of counter electrodes are attached in the directions orthogonal to each other, the same effect as that of the above-described embodiment can be obtained. In the claims of the present specification, (10
The electrode mounting directions of the 0) substrate and the [021] direction and the [0-12] direction include typical cases in which the electrode mounting directions are appropriately determined using these (010) substrate and (001) substrate. It is an expression.

【0040】例えば、p型シリコンの(010)基板を
用いた場合、2対の対向電極は〔201〕方向及び〔−
102〕方向や、これらと等価の方向に取り付ければよ
く、(001)基板を用いた場合、2対の対向電極は
〔201〕方向及び〔−102〕方向や、これらと等価
の方向に取り付ければよい。
For example, when a (010) substrate of p-type silicon is used, the two pairs of counter electrodes have the [201] direction and the [-] direction.
102] direction or an equivalent direction thereof. When a (001) substrate is used, two pairs of counter electrodes may be installed in a [201] direction and a [−102] direction, or in an equivalent direction. Good.

【0041】次に、本発明の第2の実施の形態を説明す
る。図12及び図13に示すように、この半導体ひずみ
ゲージ17は、n型シリコンの(100)基板18の中
央位置近傍の表面部に不純物の拡散によりp型シリコン
層20が形成されたものである。この場合、p型シリコ
ン層20の表面はn型シリコンの(100)基板18と
同様に、(100)面となる。
Next, a second embodiment of the present invention will be described. As shown in FIGS. 12 and 13, the semiconductor strain gauge 17 has a p-type silicon layer 20 formed by diffusing impurities on the surface of the (100) substrate 18 of n-type silicon in the vicinity of the central position. . In this case, the surface of the p-type silicon layer 20 is the (100) plane, like the (100) substrate 18 of n-type silicon.

【0042】p型シリコン層20の表面は酸化膜21で
被覆されるとともに、p型シリコン層20に接続される
2対の対向電極22、23及び24、25が酸化膜21
上に引き出されている。また、各電極22乃至25から
配線26が引き出されている。ここで、上記第1の実施
の形態と同様に、1対の対向電極22、23は、p型シ
リコン層20の〔021〕方向(図12の1軸方向)に
沿って配置される一方、他の1対の対向電極24、25
は〔0−12〕方向(図12の2軸方向)に沿って配置
されている。なお、図12では、便宜上、p型シリコン
層20の上部に形成される酸化膜28(後述)が省略さ
れている。
The surface of the p-type silicon layer 20 is covered with an oxide film 21, and the two pairs of counter electrodes 22, 23 and 24, 25 connected to the p-type silicon layer 20 are covered with the oxide film 21.
Pulled out above. A wiring 26 is drawn out from each of the electrodes 22 to 25. Here, as in the first embodiment, the pair of counter electrodes 22 and 23 are arranged along the [021] direction (uniaxial direction in FIG. 12) of the p-type silicon layer 20, while Another pair of counter electrodes 24, 25
Are arranged along the [0-12] direction (the biaxial direction in FIG. 12). Note that in FIG. 12, for convenience, an oxide film 28 (described later) formed on the p-type silicon layer 20 is omitted.

【0043】第2の実施の形態の半導体ひずみゲージ1
7も、第1の実施の形態の半導体ひずみゲージ11と同
様に、対向電極22、23間の1軸方向の抵抗変化率、
対向電極24、25間の2軸方向の抵抗変化率及び対向
電極24、25間の入力電圧と対向電極22、23間の
出力電極との比の3通りの計測を行うことにより、平面
ひずみの3成分ε1 、ε2 、ε6 を求めることができ
る。
The semiconductor strain gauge 1 of the second embodiment
7, also in the same manner as the semiconductor strain gauge 11 of the first embodiment, the rate of resistance change in the uniaxial direction between the counter electrodes 22 and 23,
By measuring the resistance change rate in the biaxial direction between the counter electrodes 24 and 25 and the ratio of the input voltage between the counter electrodes 24 and 25 and the output electrode between the counter electrodes 22 and 23 in three ways, Three components ε 1 , ε 2 and ε 6 can be obtained.

【0044】そして、この半導体ひずみゲージ17は、
n型シリコンの(100)基板18の中央位置近傍の表
面部にp型シリコン層20を形成してなるものであるか
ら、センサ部としてのp型シリコン層20は第1の実施
の形態におけるp型シリコンの(100)基板12と比
べて十分小さくすることができる。具体的には、例え
ば、正方形状を成すp型シリコン層20の平面形状にお
ける1辺の寸法が数10μm以下程度となるように形成
できる。
The semiconductor strain gauge 17 is
Since the p-type silicon layer 20 is formed on the surface of the (100) substrate 18 of n-type silicon in the vicinity of the central position, the p-type silicon layer 20 as the sensor portion is the p-type silicon layer 20 in the first embodiment. It can be made sufficiently smaller than the (100) substrate 12 of type silicon. Specifically, for example, the p-type silicon layer 20 having a square shape can be formed so that the dimension of one side in the plan view is about several tens of μm or less.

【0045】n型シリコンの(100)基板18の表面
部にp型シリコン層20を形成する手順は公知である
が、簡単に説明すると、図14に示すように、上記(1
00)基板18上にSiO2 等からなる酸化膜21を形
成し、この酸化膜21の中央位置近傍に矩形状の孔21
aを形成する。孔21aの形成は、酸化膜21上に図示
しないフォトレジスト層を形成し、周知の露光、現像、
エッチングプロセスを経ることにより行え、その後、残
存したフォトレジスト層を除去することにより、図14
に示す状態となる。
The procedure for forming the p-type silicon layer 20 on the surface of the (100) substrate 18 of n-type silicon is well known, but a brief description will be made, as shown in FIG.
00) An oxide film 21 made of SiO 2 or the like is formed on the substrate 18, and a rectangular hole 21 is formed in the vicinity of the central position of the oxide film 21.
a is formed. The holes 21a are formed by forming a photoresist layer (not shown) on the oxide film 21 and performing known exposure, development,
14 by removing the remaining photoresist layer.
The state becomes as shown in.

【0046】次に、図15に示すように、酸化膜21上
にボロン等の適宜の不純物を含有した拡散剤27を塗布
すると、この拡散剤27は孔21a内で露出している
(100)基板18の表面上にも塗布される。この状態
で、熱拡散処理すると、図16に示すように、(10
0)基板18の表面部近傍にボロン等の不純物が拡散さ
れてp型シリコン層20が形成される。
Next, as shown in FIG. 15, when a diffusing agent 27 containing an appropriate impurity such as boron is applied on the oxide film 21, the diffusing agent 27 is exposed in the holes 21a (100). It is also applied on the surface of the substrate 18. When the thermal diffusion process is performed in this state, as shown in FIG.
0) Impurities such as boron are diffused near the surface of the substrate 18 to form the p-type silicon layer 20.

【0047】続いて、図17に示すように、拡散剤27
を除去した後、酸化ドライブインによりp型シリコン層
20の表面に酸化膜28を形成する。この酸化膜28
は、酸化膜21とは異なる酸化物、例えば、ボロン酸化
物等で形成される。その後、図13に示すように、酸化
膜28の一部に図示しないフォトレジストを用いたエッ
チングプロセスにより孔28aを形成する。そして、酸
化膜21、28上にアルミニウム等からなる2対の対向
電極22乃至26を孔28aを介してp型シリコン層2
0の表面と接続されるように上記プロセスにより形成す
ればよい。
Then, as shown in FIG.
Then, an oxide film 28 is formed on the surface of the p-type silicon layer 20 by oxidation drive-in. This oxide film 28
Is formed of an oxide different from the oxide film 21, such as boron oxide. After that, as shown in FIG. 13, a hole 28a is formed in a part of the oxide film 28 by an etching process using a photoresist (not shown). Then, two pairs of counter electrodes 22 to 26 made of aluminum or the like are formed on the oxide films 21 and 28 through the hole 28a and the p-type silicon layer 2 is formed.
It may be formed by the above process so as to be connected to the 0 surface.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明の請求項1の半導体ひずみゲージ
は、p型シリコンの(100)基板上に互いに直交する
2対の対向電極が形成され、1対の対向電極は大略〔0
21〕方向に沿って配置される一方、他の1対の対向電
極は大略〔0−12〕方向に沿って配置されており、係
る方向に対向電極を配置した場合、半導体ひずみゲージ
は、(100)面内の互いに直交する2方向の垂直ひず
み成分及び(100)面内のせん断ひずみ成分に対して
感度を有することになる。
According to the semiconductor strain gauge of claim 1 of the present invention, two pairs of counter electrodes which are orthogonal to each other are formed on a (100) substrate of p-type silicon, and one pair of counter electrodes is approximately [0].
21] direction, while the other pair of counter electrodes are arranged along the [0-12] direction, and when the counter electrodes are arranged in such a direction, the semiconductor strain gauge is It has sensitivity to vertical strain components in two directions orthogonal to each other in the (100) plane and shear strain components in the (100) plane.

【0051】従って、上記半導体ひずみゲージの2対の
電極を用いて、抵抗変化率や電圧比等について3通りの
測定をすることにより、上記3つのひずみ成分を単一の
半導体ひずみゲージで求めることができる。これによ
り、従来、3つの半導体ひずみゲージが必要であった測
定対象に対して、本発明では、単一の半導体ひずみゲー
ジのみで対応できることになり、半導体ひずみゲージの
使用個数や取付スペースを削減できるとともに、コスト
低減にも寄与できる利点がある。
Therefore, by using the two pairs of electrodes of the semiconductor strain gauge, the resistance change rate, the voltage ratio, and the like are measured in three ways to obtain the three strain components with a single semiconductor strain gauge. You can As a result, in the present invention, a single semiconductor strain gauge can be used for a measurement object that conventionally required three semiconductor strain gauges, and the number of semiconductor strain gauges to be used and the mounting space can be reduced. At the same time, there is an advantage that it can contribute to cost reduction.

【0052】請求項2の半導体ひずみゲージは、n型シ
リコンの(100)基板の表面部近傍にp型シリコン層
が形成されるとともに、このp型シリコン層上に互いに
直交する2対の対向電極が形成され、1対の対向電極は
大略〔021〕方向に沿って配置される一方、他の1対
の対向電極は大略〔0−12〕方向に沿って配置されて
いるものであり、この場合も、上記請求項1の半導体ひ
ずみゲージと同様の方法で、(100)面内の2つの垂
直ひずみ成分と(100)面内のせん断ひずみ成分とを
単一の半導体ひずみゲージで求めることができる。ま
た、p型シリコン層はn型シリコンの(100)基板の
一部の表面部近傍に形成するものであるから、センサ部
となるp型シリコン層は請求項1のp型シリコンの(1
00)基板と比べて十分に小さく形成することができ
る。
According to another aspect of the semiconductor strain gauge of the present invention, a p-type silicon layer is formed in the vicinity of the surface of an n-type silicon (100) substrate, and two pairs of counter electrodes which are orthogonal to each other are formed on the p-type silicon layer. And one pair of counter electrodes are arranged along the [021] direction, while the other pair of counter electrodes are arranged along the [0-12] direction. Also in this case, the two vertical strain components in the (100) plane and the shear strain component in the (100) plane can be obtained by a single semiconductor strain gauge by the same method as in the semiconductor strain gauge of claim 1. it can. Further, since the p-type silicon layer is formed in the vicinity of a part of the surface of the n-type silicon (100) substrate, the p-type silicon layer serving as the sensor portion is formed of (1) of the p-type silicon according to claim 1.
It can be formed sufficiently smaller than the (00) substrate.

【0053】請求項3の半導体ひずみゲージを用いたひ
ずみ測定方法は、請求項1または2の半導体ひずみゲー
ジを用いて、上記互いに直交する2対の対向電極の各々
の方向の抵抗変化の割合を測定するとともに、1対の対
向電極を入力端子、他の1対の対向電極を出力端子とし
て入出力電圧の比を測定することにより、平面ひずみの
3成分を求めるものであり、求めたい3つのひずみ成分
に対して、上記3通りの測定をして連立方程式を解くこ
とにより、各ひずみ成分を分離して決定できるようにな
る。
A strain measuring method using a semiconductor strain gauge according to a third aspect uses the semiconductor strain gauge according to the first or second aspect, and calculates the rate of change in resistance in each direction of the two pairs of counter electrodes which are orthogonal to each other. By measuring the ratio of the input / output voltage using one pair of counter electrodes as input terminals and the other pair of counter electrodes as output terminals, the three components of the plane strain are obtained. By measuring the strain components in the above three ways and solving the simultaneous equations, the strain components can be determined separately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態における半導体ひず
みゲージを示す概略斜視図。
FIG. 1 is a schematic perspective view showing a semiconductor strain gauge according to a first embodiment of the present invention.

【図2】上記半導体ひずみゲージに1軸方向の垂直ひず
みが生じた状態を示す平面説明図。
FIG. 2 is an explanatory plan view showing a state where vertical strain in the uniaxial direction is generated in the semiconductor strain gauge.

【図3】上記半導体ひずみゲージに2軸方向の垂直ひず
みが生じた状態を示す平面説明図。
FIG. 3 is an explanatory plan view showing a state where vertical strains in two axial directions are generated in the semiconductor strain gauge.

【図4】上記半導体ひずみゲージにせん断ひずみが生じ
た状態を示す平面説明図。
FIG. 4 is an explanatory plan view showing a state where shear strain is generated in the semiconductor strain gauge.

【図5】上記半導体ひずみゲージで1軸方向の抵抗変化
率を測定する様子を示す平面説明図。
FIG. 5 is an explanatory plan view showing how the rate of change in resistance in the uniaxial direction is measured by the semiconductor strain gauge.

【図6】上記半導体ひずみゲージで2軸方向の抵抗変化
率を測定する様子を示す平面説明図。
FIG. 6 is an explanatory plan view showing how the rate of resistance change in two axial directions is measured by the semiconductor strain gauge.

【図7】上記半導体ひずみゲージで2軸方向の入力電圧
と1軸方向の出力電圧との比を測定する様子を示す平面
説明図。
FIG. 7 is an explanatory plan view showing how the ratio of the input voltage in the biaxial direction and the output voltage in the uniaxial direction is measured by the semiconductor strain gauge.

【図8】上記1軸方向及び2軸方向をp型シリコンの
(100)面内で360°回転させた場合の各ひずみ−
抵抗係数m11、m12、m16の変化を示すグラフ。
FIG. 8 shows strains when the uniaxial and biaxial directions are rotated 360 ° in the (100) plane of p-type silicon.
Graph showing changes in resistance coefficient m 11, m 12, m 16 .

【図9】上記1軸方向及び2軸方向をp型シリコンの
(100)面内で360°回転させた場合の各ひずみ−
抵抗係数m21、m22、m26の変化を示すグラフ。
FIG. 9 shows strains when the uniaxial and biaxial directions are rotated 360 ° in the (100) plane of p-type silicon.
Graph showing changes in resistance coefficient m 21, m 22, m 26 .

【図10】上記1軸方向及び2軸方向をp型シリコンの
(100)面内で360°回転させた場合の各ひずみ−
抵抗係数m61、m62、m66の変化を示すグラフ。
FIG. 10 shows strains when the uniaxial direction and the biaxial direction are rotated 360 ° in the (100) plane of p-type silicon.
Graph showing changes in resistance coefficient m 61, m 62, m 66 .

【図11】本発明及び従来例におけるp型シリコンの
(100)面内での電極の配置方向を示す斜視説明図。
FIG. 11 is an explanatory perspective view showing the arrangement direction of electrodes in the (100) plane of p-type silicon in the present invention and the conventional example.

【図12】本発明の第2の実施の形態における半導体ひ
ずみゲージを示す概略斜視図。
FIG. 12 is a schematic perspective view showing a semiconductor strain gauge according to a second embodiment of the present invention.

【図13】図12のA−A線に沿う概略断面図。13 is a schematic sectional view taken along the line AA of FIG.

【図14】上記第2の実施の形態の半導体ひずみゲージ
の製造手順を示す断面説明図。
FIG. 14 is an explanatory cross-sectional view showing the manufacturing procedure of the semiconductor strain gauge according to the second embodiment.

【図15】上記第2の実施の形態の半導体ひずみゲージ
の後続の製造手順を示す断面説明図。
FIG. 15 is an explanatory cross-sectional view showing a subsequent manufacturing procedure of the semiconductor strain gauge of the second embodiment.

【図16】上記第2の実施の形態の半導体ひずみゲージ
の後続の製造手順を示す断面説明図。
FIG. 16 is an explanatory cross-sectional view showing a subsequent manufacturing procedure of the semiconductor strain gauge of the second embodiment.

【図17】上記第2の実施の形態の半導体ひずみゲージ
の後続の製造手順を示す断面説明図。
FIG. 17 is an explanatory cross-sectional view showing a subsequent manufacturing procedure of the semiconductor strain gauge of the second embodiment.

【図18】従来の半導体ひずみゲージを示す概略斜視
図。
FIG. 18 is a schematic perspective view showing a conventional semiconductor strain gauge.

【図19】従来の他の半導体ひずみゲージを示す概略斜
視図。
FIG. 19 is a schematic perspective view showing another conventional semiconductor strain gauge.

【符号の説明】[Explanation of symbols]

11、17 半導体ひずみゲージ 12 p型シリコンの(100)基板 13、14 1対の対向電極 15、16 他の1対の対向電極 18 n型シリコンの(100)基板 20 p型シリコン層 22、23 1対の対向電極 24、25 他の1対の対向電極 11, 17 Semiconductor strain gauge 12 p-type silicon (100) substrate 13, 14 1 pair of counter electrodes 15, 16 Other pair of counter electrodes 18 n-type silicon (100) substrate 20 p-type silicon layer 22, 23 1 pair of counter electrodes 24, 25 Another pair of counter electrodes

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01L 1/18 G01B 7/16 G01L 5/16 H01L 29/84 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01L 1/18 G01B 7/16 G01L 5/16 H01L 29/84

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 p型シリコンの(100)基板上に互い
に直交する2対の対向電極が形成され、1対の対向電極
は大略〔021〕方向に沿って配置される一方、他の1
対の対向電極は大略〔0−12〕方向に沿って配置され
ていることを特徴とする半導体ひずみゲージ。
1. Two pairs of counter electrodes which are orthogonal to each other are formed on a (100) substrate made of p-type silicon, and one pair of counter electrodes is arranged substantially along the [021] direction, while the other one is arranged.
A semiconductor strain gauge characterized in that the pair of counter electrodes are arranged substantially along the [0-12] direction.
【請求項2】 n型シリコンの(100)基板の表面部
近傍にp型シリコン層が形成されるとともに、このp型
シリコン層上に互いに直交する2対の対向電極が形成さ
れ、1対の対向電極は大略〔021〕方向に沿って配置
される一方、他の1対の対向電極は大略〔0−12〕方
向に沿って配置されていることを特徴とする半導体ひず
みゲージ。
2. A p-type silicon layer is formed in the vicinity of a surface portion of an n-type silicon (100) substrate, and two pairs of counter electrodes orthogonal to each other are formed on the p-type silicon layer to form a pair of paired electrodes. The semiconductor strain gauge, wherein the counter electrodes are arranged substantially along the [021] direction, while the other pair of counter electrodes are arranged substantially along the [0-12] direction.
【請求項3】 請求項1または2の半導体ひずみゲージ
を用いて、上記互いに直交する2対の対向電極の各々の
方向の抵抗変化の割合を測定するとともに、1対の対向
電極を入力端子、他の1対の対向電極を出力端子として
入出力電圧の比を測定することにより、平面ひずみの3
成分を求めることを特徴とする半導体ひずみゲージを用
いたひずみ測定方法。
3. The semiconductor strain gauge according to claim 1 or 2 is used to measure the rate of resistance change in each direction of the two pairs of counter electrodes which are orthogonal to each other, and the pair of counter electrodes are connected to input terminals, By measuring the ratio of input / output voltage using another pair of counter electrodes as output terminals,
A strain measuring method using a semiconductor strain gauge, characterized in that a component is obtained.
JP33313898A 1998-11-24 1998-11-24 Semiconductor strain gauge and strain measurement method using the same Expired - Fee Related JP3368344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33313898A JP3368344B2 (en) 1998-11-24 1998-11-24 Semiconductor strain gauge and strain measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33313898A JP3368344B2 (en) 1998-11-24 1998-11-24 Semiconductor strain gauge and strain measurement method using the same

Publications (2)

Publication Number Publication Date
JP2000162056A JP2000162056A (en) 2000-06-16
JP3368344B2 true JP3368344B2 (en) 2003-01-20

Family

ID=18262724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33313898A Expired - Fee Related JP3368344B2 (en) 1998-11-24 1998-11-24 Semiconductor strain gauge and strain measurement method using the same

Country Status (1)

Country Link
JP (1) JP3368344B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090231A (en) * 2000-09-20 2002-03-27 Kansai Tlo Kk Semiconductor piezoresistance sensor
JP4697004B2 (en) * 2006-03-29 2011-06-08 株式会社日立製作所 Mechanical quantity measuring device
JP2009053005A (en) * 2007-08-27 2009-03-12 Hitachi Metals Ltd Semiconductor strain sensor, and mounting method of semiconductor strain sensor
JP5630088B2 (en) 2010-06-16 2014-11-26 ミツミ電機株式会社 Piezoresistive pressure sensor
DE102016204557A1 (en) * 2016-03-18 2017-09-21 Zf Friedrichshafen Ag Sensor device, measuring device, motor vehicle and method for detecting a current deformation of a component
EP3450947B1 (en) * 2017-09-05 2024-01-17 IMEC vzw Stress sensor for semiconductor components
WO2022113319A1 (en) * 2020-11-30 2022-06-02 住友電気工業株式会社 Cutting tool, cutting system, and installing method

Also Published As

Publication number Publication date
JP2000162056A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
US6823744B2 (en) Six-axis force sensor
JPH0479420B2 (en)
EP3421959B1 (en) Multi-axial force sensor, method of manufacturing the multi-axial force sensor, and method for operating the multi-axial force sensor
JP2575939B2 (en) Semiconductor acceleration sensor
KR100499970B1 (en) Acceleration sensor
JP3368344B2 (en) Semiconductor strain gauge and strain measurement method using the same
JPH0567073B2 (en)
US6763719B2 (en) Acceleration sensor
KR20030026872A (en) Acceleration sensor
JP2004109114A (en) Semiconductor multiaxial acceleration sensor
JPS59158566A (en) Semiconductor acceleration sensor
Kayed et al. Development of doped silicon multi-element stress sensor rosette with temperature compensation
Roylance A MINIATURE INTEGRATED CIRCUIT ACCELEROMETER FOR BIOMEDICAL APPLICATIONS.
JP2551625B2 (en) Semiconductor acceleration sensor
JPH05281251A (en) Acceleration sensor and manufacture thereof
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
US4884051A (en) Semiconductor diffusion type force sensing apparatus
JPH0821721B2 (en) Force detection device
JP2715738B2 (en) Semiconductor stress detector
JP2007333665A (en) Acceleration sensor and manufacturing method therefor
US3254529A (en) Strain transducers insensitive to transverse and shear strains
CN116839771B (en) Uniaxially sensitive integrated stress sensor and design method thereof
JPH0337534A (en) Semiconductor strain detecting apparatus
JP4466344B2 (en) Acceleration sensor
RU2050033C1 (en) Integral tension transducer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees