JP3368052B2 - Empty intensifier - Google Patents

Empty intensifier

Info

Publication number
JP3368052B2
JP3368052B2 JP15857294A JP15857294A JP3368052B2 JP 3368052 B2 JP3368052 B2 JP 3368052B2 JP 15857294 A JP15857294 A JP 15857294A JP 15857294 A JP15857294 A JP 15857294A JP 3368052 B2 JP3368052 B2 JP 3368052B2
Authority
JP
Japan
Prior art keywords
pressure
air
cylinder
booster
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15857294A
Other languages
Japanese (ja)
Other versions
JPH0821404A (en
Inventor
隆通 高橋
利春 香川
Original Assignee
甲南電機株式会社
利春 香川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甲南電機株式会社, 利春 香川 filed Critical 甲南電機株式会社
Priority to JP15857294A priority Critical patent/JP3368052B2/en
Publication of JPH0821404A publication Critical patent/JPH0821404A/en
Application granted granted Critical
Publication of JP3368052B2 publication Critical patent/JP3368052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気圧力より高い圧縮
空気を増圧する空々増圧器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic booster for boosting compressed air having a pressure higher than atmospheric pressure.

【0002】[0002]

【従来の技術】大気圧力より高い圧縮空気をさらに加圧
するには、電動機で駆動する一般の空気増圧器と同様な
構造をもつブースタ圧縮機が用いられている。また、ブ
ースタ圧縮機より簡便な圧縮ピストンをクランク機構で
はなく空気圧シリンダで駆動するようにした空々増圧器
も多々用いられている。図5は、従来の空気圧シリンダ
で駆動する空々増圧器の一例を示すものである。
2. Description of the Related Art In order to further pressurize compressed air having a pressure higher than atmospheric pressure, a booster compressor having a structure similar to a general air booster driven by an electric motor is used. Further, there are many air-pressure boosters in which a compression piston, which is simpler than a booster compressor, is driven by a pneumatic cylinder instead of a crank mechanism. FIG. 5 shows an example of a pneumatic booster driven by a conventional pneumatic cylinder.

【0003】図5において、空々増圧器は対をなす互い
に向い合って配置された増圧用シリンダ100,100
aを有し、この増圧用シリンダ100,100aはそれ
ぞれのピストン101,101aがピストンロッド10
2で直結されている。そして、増圧用シリンダ100,
100aはピストン101,101aの往復動に応じて
交互に圧縮シリンダ、駆動シリンダとして作動し、増圧
用シリンダ100が圧縮シリンダ、他方の増圧用シリン
ダ100aが駆動シリンダとなるとき、圧縮シリンダの
圧縮室103と作動室104及び駆動シリンダの圧縮室
103aとに圧縮空気を入れることにより、圧縮室10
3に入れた空気が増圧される。つぎに、3ポート切換弁
105を切り換えることで圧縮シリンダと駆動シリンダ
が入れ換われば、今度は圧縮室103aに注入された空
気が増圧される。なお、作動室104,104aに注入
した空気は5ポート切換弁105の切り換えによって大
気に排気される。また、符号106は増圧した空気の圧
力を調整する圧力調整弁である。
In FIG. 5, the air-pressure booster is a pair of pressure-increasing cylinders 100, 100 arranged facing each other.
The pressure increasing cylinders 100 and 100a have pistons 101 and 101a, respectively.
Directly connected by 2. Then, the pressure increasing cylinder 100,
100a alternately operates as a compression cylinder and a drive cylinder according to the reciprocating motion of the pistons 101 and 101a. When the pressure boosting cylinder 100 is the compression cylinder and the other pressure boosting cylinder 100a is the drive cylinder, the compression chamber 103 of the compression cylinder is shown. Compressed air is introduced into the working chamber 104 and the compression chamber 103a of the drive cylinder, so that the compression chamber 10
The air in 3 is increased in pressure. Next, if the compression cylinder and the drive cylinder are switched by switching the 3-port switching valve 105, the air injected into the compression chamber 103a is increased in pressure this time. The air injected into the working chambers 104 and 104a is exhausted to the atmosphere by switching the 5-port switching valve 105. Further, reference numeral 106 is a pressure adjusting valve for adjusting the pressure of the increased pressure air.

【0004】かく構成の従来の空々増圧器は、駆動シリ
ンダの圧縮室に空気が入るときの圧力が圧縮シリンダの
圧縮室の圧縮に加わるようになっており、駆動シリンダ
は昇圧分の力を圧縮シリンダに加えれば良い。例えば、
一般的な圧縮空気である圧力0.5MPa,Gの空気を
空気圧機器の一般的な最高使用圧力である1MPa,G
に増圧する場合には、機械的摩擦及び空気の温度変化を
無視すれば、駆動シリンダのピストンと圧縮シリンダの
ピストンとが同一面積であれば良く、このとき高圧空気
を得るにはその2倍の総供給空気量を必要とする。
In the conventional air-pressure booster having such a structure, the pressure when air enters the compression chamber of the drive cylinder is added to the compression of the compression chamber of the compression cylinder, and the drive cylinder compresses the boosted force. Just add it to the cylinder. For example,
The pressure of 0.5 MPa, which is general compressed air, is 1 MPa, which is the general maximum operating pressure of pneumatic equipment.
In the case of increasing pressure, ignoring mechanical friction and temperature change of air, the piston of the drive cylinder and the piston of the compression cylinder need to have the same area, and in order to obtain high pressure air, double the pressure. Requires total supply air volume.

【0005】ここで、シリンダ往復式の空々増圧器と上
記したブースタ圧縮機とを比べた場合、同じ仕事量の増
圧に対し、ブースタ圧縮機はシリンダ往復式の空々増圧
器の約半分の動力で済む。従って、ブースタ圧縮機はシ
リンダ往復式の空々増圧器に比べてエネルギーロスが少
なく、同一電力でブースタ圧縮機から得られる高圧空気
量をを100%とすると、シリンダ往復式の空々増圧器
は最大で75%の空気量しか得られない。
When the cylinder reciprocating air-pressure booster and the booster compressor described above are compared, the booster compressor has about half the power of the cylinder reciprocating air-pressure booster for the same pressure boosting. It's done. Therefore, the booster compressor has less energy loss than the cylinder reciprocating air-pressure booster, and the cylinder reciprocating air-pressure booster is the maximum if the high-pressure air amount obtained from the booster compressor with the same electric power is 100%. Only 75% air volume can be obtained.

【0006】この両増圧器の比較は、環境等の諸条件を
無視したものであり、現実にはブースタ圧縮機が電動機
で駆動するため、高圧空気を必要としないとき、空運転
を行うか、大きな空気タンクを設けた上で適当な圧力変
動を見込んで起動、停止を繰り返す必要があり、これに
関する電力増加がある。さらに、ブースタ圧縮機は振動
騒音が大きいので、防音室に設置して使用しておりそこ
から配管する場合の圧力損失等の運転上のロスもある。
従って、ブースタ圧縮機は実質的には定格連続運転条件
より数10%程度電力当たりの空気量が減少する。
The comparison between the two pressure boosters ignores various conditions such as the environment. In reality, since the booster compressor is driven by an electric motor, when the high pressure air is not required, the idle operation is performed. It is necessary to repeat starting and stopping in anticipation of an appropriate pressure fluctuation after providing a large air tank, which causes an increase in electric power. Further, since the booster compressor has a large vibration noise, there is an operational loss such as a pressure loss when the booster compressor is installed and used in a soundproof room and piping is performed from there.
Therefore, in the booster compressor, the amount of air per electric power is substantially reduced by several tens of% from the rated continuous operation condition.

【0007】他方、シリンダ往復式の空々増圧器は機械
的摩擦や空気の温度変化を見込む必要があり、これらを
総合すると、シリンダ往復式の空々増圧器はほぼ75%
という値がブースタ圧縮機に対する効率比となってい
る。
On the other hand, the cylinder reciprocating air-pressure booster needs to allow for mechanical friction and the temperature change of the air, and when these are taken together, the cylinder reciprocating air-pressure booster has approximately 75%.
Is the efficiency ratio for the booster compressor.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、シリン
ダ往復式の空々増圧器はブースタ圧縮機と比べて小型で
振動騒音が低く任意の場所に設置できる等の利点があ
り、よって上記したエネルギーロスだけが大きく劣り、
ランニングコストが嵩むという問題となっていた。特
に、増圧する空気量が多い場合、エネルギーロスの絶対
量も多くなってランニングコストが非常に高くなってし
まい、利用される範囲が限られてしまっていた。
However, the cylinder reciprocating air-pressure booster has advantages that it is smaller than the booster compressor and has low vibration noise and can be installed at any place. Therefore, only the above-mentioned energy loss occurs. Greatly inferior,
There has been a problem that running costs increase. In particular, when the amount of air to be boosted is large, the absolute amount of energy loss is large and the running cost is very high, and the range of use is limited.

【0009】本発明は、上記した従来の事情に鑑み、エ
ネルギーロスを大幅に減少することのできる空々増圧器
を提供することを目的としている。
In view of the above-mentioned conventional circumstances, it is an object of the present invention to provide an air-pressure booster capable of greatly reducing energy loss.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、互いに向い合うように配置され、かつピス
トンロッドにそれぞれのピストンが直結された一対の増
圧用シリンダを有し、該増圧用シリンダは一方の増圧用
シリンダの圧縮室と作動室及び他方の増圧用シリンダの
圧縮室とに圧縮空気を入れることにより、一方の増圧用
シリンダの圧縮室に入れた空気を増圧する往復式の空々
増圧器において、前記ピストンロッドに直結されるピス
トンを備えたエネルギー回収用シリンダを設け、該回収
用シリンダの圧縮方向へ駆動力を与える側の駆動室に、
前回の前記増圧用シリンダの作動室に入れた排気する空
気が注入されることを特徴としている。
In order to achieve the above object, the present invention comprises a pair of pressure increasing cylinders which are arranged so as to face each other and each piston is directly connected to a piston rod. The pressure cylinder is a reciprocating type in which compressed air is introduced into the compression chamber of one pressure increasing cylinder and the working chamber and the compression chamber of the other pressure increasing cylinder to increase the pressure of the air contained in the compression chamber of one pressure increasing cylinder. In the air-pressure booster, an energy recovery cylinder provided with a piston directly connected to the piston rod is provided, and a drive chamber on the side that applies a driving force in the compression direction of the recovery cylinder,
It is characterized in that the air to be exhausted which has been put into the working chamber of the previous cylinder for boosting pressure is injected.

【0011】さらに、上記目的を達成するために本発明
は、前記回収用シリンダのピストンの受圧面積が前記増
圧用シリンダのピストンの受圧面積より大きく設定した
ことを特徴としている。
Further, to achieve the above object, the present invention is characterized in that the pressure receiving area of the piston of the recovery cylinder is set larger than the pressure receiving area of the piston of the pressure increasing cylinder.

【0012】さらにまた、上記目的を達成するために本
発明は、前記ピストンロッドに直結されるピストンを備
えたエネルギー回収用シリンダを一対の増圧用シリンダ
の間に設け、該増圧用シリンダの圧縮室側のカバーと回
収用シリンダのカバーとが互いに接合、もしくは一体に
形成したことを特徴としている。
Furthermore, in order to achieve the above object, the present invention provides an energy recovery cylinder having a piston directly connected to the piston rod between a pair of pressure increasing cylinders, and a compression chamber of the pressure increasing cylinder. The cover on the side and the cover of the recovery cylinder are joined or integrally formed with each other.

【0013】さらにまた、上記目的を達成するために本
発明は、前記増圧用シリンダへの給気切換動作及び前記
回収用シリンダへの流路切換動作を1つの7ポート2位
置切換弁で行うことを特徴としている。
Further, in order to achieve the above object, according to the present invention, one air supply switching operation to the pressure boosting cylinder and a flow path switching operation to the recovery cylinder are performed by one 7-port two-position switching valve. Is characterized by.

【0014】さらにまた、上記目的を達成するために本
発明は、前記回収用シリンダの内チューブに隙間を持っ
て全周を覆う断熱性の高い外チューブを配し、内チュー
ブと外チューブの隙間を循環させた空気を前記増圧用シ
リンダへ給気することを特徴としている。
Furthermore, in order to achieve the above object, the present invention provides an outer tube having a high heat insulating property, which covers the entire circumference with a gap in the inner tube of the recovery cylinder, and a gap between the inner tube and the outer tube is provided. It is characterized in that the air circulated is supplied to the pressure increasing cylinder.

【0015】さらにまた、上記目的を達成するために本
発明は、前記回収用シリンダの内チューブに隙間を持っ
て全周を覆う断熱性の高い外チューブを配し、前記増圧
用シリンダで圧縮した空気を内チューブと外チューブの
隙間を循環させた吐出することを特徴としている。
Furthermore, in order to achieve the above object, according to the present invention, an outer tube having a high heat insulating property is provided in the inner tube of the recovery cylinder so as to cover the entire circumference with a gap, and is compressed by the pressure boosting cylinder. The feature is that air is circulated through the gap between the inner tube and the outer tube.

【0016】[0016]

【作用】上記構成によれば、ピストンロッドに直結され
るピストンを備えたエネルギー回収用シリンダを設け、
該回収用シリンダの圧縮方向へ駆動力を与える側の駆動
室に、前回の増圧用シリンダの作動室に入れた排気する
空気が注入されるので、シリンダの往動で圧縮駆動に使
用した空気を、シリンダの復動で再度圧縮駆動に使用で
き、消費エネルギーのロスを大幅に減少することができ
る。
According to the above construction, the energy recovery cylinder provided with the piston directly connected to the piston rod is provided,
Since the air to be exhausted from the previous working chamber of the pressure boosting cylinder is injected into the drive chamber of the recovery cylinder that gives a driving force in the compression direction, the air used for the compression drive in the forward movement of the cylinder is , It can be used for compression drive again by returning the cylinder, and the loss of energy consumption can be greatly reduced.

【0017】[0017]

【実施例】図1は、本発明に係る空々増圧器の制御回路
を示す回路説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 is a circuit diagram showing a control circuit for a space-intensifier according to the present invention.

【0018】図1において、空々増圧器1は増圧用シリ
ンダ2a,2bとエネルギー回収用シリンダ3とを有し
ており、増圧用シリンダ2a,2b及びエネルギー回収
用シリンダ3の各ピストン4a,4b及び5はピストン
ロッド6に連結されている。増圧用シリンダ2a,2b
は、本実施例の場合、同一構成のものが左右対称に配置
されており、両シリンダ2a,2b及びその各部におい
て共通する説明の場合には符号にa及びbを付けず、両
者を分けて説明する場合には図の左方の増圧用シリンダ
2aに対しての符号にaを付し、右方の増圧用シリンダ
2bに対しての符号にbを付して行う。
In FIG. 1, the air-pressure booster 1 has pressure boosting cylinders 2a, 2b and an energy recovery cylinder 3, and each of the pistons 4a, 4b of the pressure boosting cylinders 2a, 2b and the energy recovery cylinder 3 and 5 is connected to a piston rod 6. Booster cylinders 2a, 2b
In the case of the present embodiment, those having the same structure are arranged symmetrically, and in the case of the description common to both cylinders 2a and 2b and their respective parts, reference numerals a and b are not added, and both are separated. In the case of explanation, the reference numeral for the pressure increasing cylinder 2a on the left side of the drawing is a and the reference numeral for the pressure increasing cylinder 2b on the right side is affixed with b.

【0019】上記回収用シリンダ3は、増圧用シリンダ
2a,2bの間に配置されており、そのピストン5の面
積は増圧用シリンダ2のピストン4の面積より大きくな
るように設定されている。なお、符号7a,7bは増圧
用シリンダ2a,2bのカバー、8a,8bは増圧用シ
リンダ2a,2bと回収用シリンダ3の共用する共用カ
バーであり、本実施例の共用カバー8a,8bは熱伝導
性の良いアルミ、鉄等の材料から作られている。また、
増圧用シリンダ2は回収用シリンダ3側のシリンダ室が
圧縮室9で、その外側のシリンダ室が作動室10であ
り、回収用シリンダ3はともに駆動室11a,11bで
ある。そして、カバー7には増圧用シリンダ2の作動室
10用の配管口12が、共用カバー8a,8bには増圧
用シリンダ2の圧縮室9用の配管口13と回収用シリン
ダ3の駆動室11a,11b用の配管口14a,14b
がそれぞれ設けられている。
The recovery cylinder 3 is arranged between the pressure increasing cylinders 2a and 2b, and the area of the piston 5 is set to be larger than the area of the piston 4 of the pressure increasing cylinder 2. Reference numerals 7a and 7b are covers of the pressure increasing cylinders 2a and 2b, 8a and 8b are common covers shared by the pressure increasing cylinders 2a and 2b and the recovery cylinder 3, and the common covers 8a and 8b of the present embodiment are heat sources. It is made of highly conductive material such as aluminum and iron. Also,
In the boosting cylinder 2, the cylinder chamber on the side of the recovery cylinder 3 is the compression chamber 9, the cylinder chamber outside thereof is the working chamber 10, and the recovery cylinder 3 is both the drive chambers 11a and 11b. A pipe port 12 for the working chamber 10 of the pressure boosting cylinder 2 is provided in the cover 7, a pipe port 13 for the compression chamber 9 of the pressure boosting cylinder 2 and the drive chamber 11a of the recovery cylinder 3 are provided in the common covers 8a and 8b. , 11b piping ports 14a, 14b
Are provided respectively.

【0020】かく構成の空々増圧器1は、後述する7ポ
ート2位置切換弁により制御する制御回路を有してお
り、次にその説明をする。
The air-pressure booster 1 thus constructed has a control circuit controlled by a 7-port 2-position switching valve, which will be described later, and will be described below.

【0021】空々増圧器1には、図示していない空気供
給装置から大気圧力より高い空気が供給部15から供給
され、供給部15はチェックバルブ16を介して増圧用
シリンダ2の圧縮室9用の配管口13に接続され、さら
に供給部15は分岐して7ポート2位置切換弁17の圧
力供給ポートAに接続されている。7ポート2位置切換
弁17は、本実施例の場合、図2に示すように、スプー
ル弁であって、出力ポートBは増圧用シリンダ2aの作
動室10a用の配管口12aと、出力ポートCは増圧用
シリンダ2bの作動室10b用の配管口12bと、出力
ポートDは回収用シリンダ3の駆動室11b用の配管口
14bと、出力ポートEは回収用シリンダ3の駆動室1
1a用の配管口14aとにそれぞれ接続されている。な
お、7ポート2位置切換弁17のR1及びR2は第1及
び第2排出ポート、また符号20は切換弁17の弁本体
である。
The air pressure booster 1 is supplied with air higher than atmospheric pressure from an air supply device (not shown) from a supply portion 15, which is supplied to a compression chamber 9 of a pressure increasing cylinder 2 via a check valve 16. Of the 7-port 2-position switching valve 17 is connected to the pressure supply port A of the 7-port 2-position switching valve 17. In the case of the present embodiment, the 7-port 2-position switching valve 17 is a spool valve, and the output port B is a pipe port 12a for the working chamber 10a of the pressure increasing cylinder 2a and the output port C, as shown in FIG. Is a pipe port 12b for the working chamber 10b of the boosting cylinder 2b, the output port D is a pipe port 14b for the drive chamber 11b of the recovery cylinder 3, and the output port E is the drive chamber 1 of the recovery cylinder 3.
It is connected to the piping port 14a for 1a, respectively. The R1 and R2 of the 7-port 2-position switching valve 17 are the first and second discharge ports, and the reference numeral 20 is the valve body of the switching valve 17.

【0022】この7ポート2位置切換弁17は、ソレノ
イド18a,18bの励磁、消磁によって切り換えら
れ、ソレノイド18a,18bの切り換えは増圧用シリ
ンダ2のピストン4が図の左端及び右端に達したときリ
ードスイッチ19a,19bがONすることで行われ
る。そして、ソレノイド18aが励磁されているときに
は7ポート2位置切換弁17が図示するように切り換え
られており、圧力供給ポートAと出力ポートBが連通さ
れ、空気は増圧用シリンダ2aの作動室10a用の配管
口12aに注入される。さらに、出力ポートDは第1排
出ポートR1に連通され、回収用シリンダ3の駆動室1
1bの空気が排気される。さらにまた、出力ポートCと
出力ポートEが連通され、増圧用シリンダ2bの作動室
10bと回収用シリンダ3の駆動室11aが連通状態と
なる。
The 7-port 2-position switching valve 17 is switched by exciting and demagnetizing the solenoids 18a and 18b. The switching of the solenoids 18a and 18b is performed when the piston 4 of the pressure increasing cylinder 2 reaches the left end and the right end in the figure. This is performed by turning on the switches 19a and 19b. When the solenoid 18a is excited, the 7-port 2-position switching valve 17 is switched as shown in the drawing, the pressure supply port A and the output port B are communicated with each other, and air is used for the working chamber 10a of the pressure boosting cylinder 2a. It is injected into the piping port 12a of. Further, the output port D is communicated with the first discharge port R1 and is connected to the drive chamber 1 of the recovery cylinder 3.
The air of 1b is exhausted. Furthermore, the output port C and the output port E are communicated with each other, so that the working chamber 10b of the pressure increasing cylinder 2b and the drive chamber 11a of the recovery cylinder 3 are communicated with each other.

【0023】このとき、空々増圧器1は増圧用シリンダ
2a,2bの両圧縮室9a,9bに空気が注入され、さ
らに上記の如く増圧用シリンダ2aの作動室10aに空
気が注入されているとともに、7ポート2位置切換弁1
7を介して増圧用シリンダ2bの作動室10bと回収用
シリンダ3の駆動室11aが連通状態となる。増圧用シ
リンダ2bの作動室10bと回収用シリンダ3の駆動室
11aとの連通状態になると、両室が同圧力になり、増
圧用シリンダ2bのピストン4bの面積より大きい面積
の回収用シリンダ3のピストン5に大きい圧が作用す
る。従って、各ピストン4a,4b及び5を図1の左か
ら右へ移動して増圧用シリンダ2aの圧縮室9aに入れ
た空気を圧縮しようとする駆動力は、増圧用シリンダ2
bの圧縮室9bと増圧用シリンダ2aの作動室10aに
注入した空気による駆動力に、増圧用シリンダ2bの圧
縮室9bの空気及びピストンの面積差による駆動力が加
えられる。
At this time, in the air-pressure booster 1, air is injected into both compression chambers 9a and 9b of the pressure boosting cylinders 2a and 2b, and further air is injected into the working chamber 10a of the pressure boosting cylinder 2a as described above. , 7 port 2 position switching valve 1
The working chamber 10b of the pressure increasing cylinder 2b and the drive chamber 11a of the recovery cylinder 3 are brought into communication with each other via 7. When the working chamber 10b of the pressure boosting cylinder 2b and the drive chamber 11a of the recovery cylinder 3 are in communication with each other, both chambers have the same pressure, and the recovery cylinder 3 has an area larger than the area of the piston 4b of the pressure boosting cylinder 2b. A large pressure acts on the piston 5. Therefore, the driving force for moving the pistons 4a, 4b and 5 from left to right in FIG. 1 to compress the air contained in the compression chamber 9a of the pressure increasing cylinder 2a is the same as the pressure increasing cylinder 2a.
The driving force due to the area difference between the air in the compression chamber 9b of the pressure increasing cylinder 2b and the piston is added to the driving force due to the air injected into the compression chamber 9b of b and the working chamber 10a of the pressure increasing cylinder 2a.

【0024】かくして、増圧用シリンダ2aの圧縮室9
aに入れた空気が圧縮され、圧縮された空気はチェック
バルブ21を介して出力部22から増圧器から出力され
る。また、ピストン4bが右端まで達すると、リードス
イッチ19bがONしてソレノイド18bが励磁される
ことにより、7ポート2位置切換弁17が切り換えられ
る。切換弁17の切り換えにより、回収用シリンダ3の
駆動室11aの空気は第2排出ポートR2をから排出さ
れ、増圧用シリンダ2aの作動室10aと回収用シリン
ダ3の駆動室11bが連通状態となる。そして、増圧用
シリンダ2bの作動室10bに空気が注入され、ピスト
ン4aが右から左に移動して増圧用シリンダ2bの圧縮
室9bに注入された空気が圧縮される。なお、供給部1
5と切り換え弁17の間に制御弁23が設けられ、圧縮
空気がポートc出力されると、ポートa,bがバネに抗
して遮断して空気の入出力を制御している。
Thus, the compression chamber 9 of the pressure increasing cylinder 2a
The air put in a is compressed, and the compressed air is output from the pressure booster from the output unit 22 via the check valve 21. When the piston 4b reaches the right end, the reed switch 19b is turned on and the solenoid 18b is excited to switch the 7-port 2-position switching valve 17. By switching the switching valve 17, the air in the drive chamber 11a of the recovery cylinder 3 is exhausted from the second exhaust port R2, and the working chamber 10a of the pressure boosting cylinder 2a and the drive chamber 11b of the recovery cylinder 3 are in communication. . Then, air is injected into the working chamber 10b of the pressure increasing cylinder 2b, the piston 4a moves from right to left, and the air injected into the compression chamber 9b of the pressure increasing cylinder 2b is compressed. The supply unit 1
The control valve 23 is provided between the switch valve 5 and the switching valve 17, and when compressed air is output from the port c, the ports a and b are blocked against the spring to control the input / output of air.

【0025】上記の如く、本発明はエネルギー回収用シ
リンダ3を設け、シリンダの往動で使用した空気をその
復動時の駆動力に加える再使用を行ってから排出してい
る。よって、本発明は従来の空々増圧器において圧縮作
動に使用後、直ちに排出していた増圧用シリンダの作動
室に注入した空気を再度使用から排出するので、消費エ
ネルギーのロスを大幅に減少することができる。従っ
て、ブースタ圧縮機に比べて小型で振動騒音が低く任意
の場所に設置できる等の利点を有する空々増圧器1の欠
点であったエネルギーロスが大きいという問題を軽減
し、ランニングコストをブースタ圧縮機と同等になるよ
うに近付けられる。また、本発明の空々増圧器の制御
は、複数の切換弁を組み合わせて回路を構成することも
できるが、上記実施例のように、1個の7ポート2位置
切換弁17で制御すれば複数の切換弁と比べて配管、配
線作業及び保守が容易になり、占有面積も小さくするこ
とができる。
As described above, according to the present invention, the energy recovery cylinder 3 is provided, and the air used in the forward movement of the cylinder is reused by adding it to the driving force at the time of the backward movement before being discharged. Therefore, according to the present invention, the air injected into the working chamber of the pressure boosting cylinder, which was immediately discharged after being used for the compression operation in the conventional air-pressure booster, is discharged again from the use, so that the loss of energy consumption can be greatly reduced. You can Therefore, the problem of large energy loss, which is a disadvantage of the air-pressure booster 1 having the advantages of being smaller in size, lower in noise and vibration, and capable of being installed in any place than the booster compressor, is reduced, and the running cost is reduced. Is approached to be equivalent to. Further, the control of the air-pressure booster of the present invention can be configured by combining a plurality of switching valves, but if the control is performed by one 7-port two-position switching valve 17 as in the above embodiment, a plurality of switching valves can be used. Piping, wiring work, and maintenance are easier and the occupied area can be reduced compared to the switching valve.

【0026】ところで、圧縮室9に注入された空気が圧
縮されるときに発熱を伴う。この空気の加熱により、密
度が減少するので連続運転時の加熱による吐出空気量が
減り、さらに空気の加熱はピストンパッキンの摩耗を促
進させてしまう問題がある。
By the way, when the air injected into the compression chamber 9 is compressed, heat is generated. Since the density of the air is reduced by the heating of the air, there is a problem that the amount of discharged air due to the heating during the continuous operation is reduced, and the heating of the air accelerates the wear of the piston packing.

【0027】かかる問題を上記実施例では、増圧用シリ
ンダ2の作動室10と回収用シリンダ3の駆動室11が
連通されると、空気の膨張吸熱によって回収用シリンダ
3の駆動室11が冷され、この冷却される駆動室11は
発熱する圧縮室9と隣合わせである。そこで、圧縮室9
と駆動室11との共用カバー8を上記の如く熱伝導性の
良いアルミ、鉄等の材料で作ることにより、駆動室11
の冷却によって圧縮室9の圧縮空気を冷し、連続運転時
の加熱による吐出空気量が減少やピストンパッキンの摩
耗を防止することができる。なお、共用カバー8は増圧
用シリンダ2のカバーと回収用シリンダ3の個々のカバ
ーを接したものでも良いし、一体に形成したものでも良
い。
In the above embodiment, when the working chamber 10 of the pressure increasing cylinder 2 and the drive chamber 11 of the recovery cylinder 3 communicate with each other, the expansion chamber of the air cools the drive chamber 11 of the recovery cylinder 3. The cooling drive chamber 11 is adjacent to the heat generating compression chamber 9. Therefore, the compression chamber 9
The common cover 8 for the drive chamber 11 and the drive chamber 11 is made of a material having good thermal conductivity such as aluminum and iron as described above,
By cooling the compressed air in the compression chamber 9, it is possible to prevent the discharge air amount from being reduced and the piston packing from being worn due to heating during continuous operation. The common cover 8 may be formed by contacting the cover of the pressure increasing cylinder 2 and each cover of the recovery cylinder 3 or may be integrally formed.

【0028】図3は、本発明の別の実施例を示す回路図
であって、本例では回収用シリンダ3のチューブ30が
内筒31と外筒32の2重チューブに構成されている。
この場合、チューブ30には内筒31と外筒32の間に
全周に渡ってほぼ一定な幅の閉鎖空間としての隙間34
が形成されている。また、内筒31は熱伝導性の良い材
料から作られているが、外筒32は例えばグラスウー
ル、発泡材等の断熱材33を被覆して良好な断熱性が得
られるように形成されている。2重チューブの隙間34
には、供給部15からの空気が隙間34を循環してから
増圧用シリンダ2に供給されように空気の出入口が設け
られており、さらに隙間34はドレン排水弁35が接続
されている。なお、本実施例の他の構成は上記実施例と
概ね同様でであり、同一部材は同一符号を付している。
FIG. 3 is a circuit diagram showing another embodiment of the present invention. In this example, the tube 30 of the recovery cylinder 3 is a double tube of an inner cylinder 31 and an outer cylinder 32.
In this case, the tube 30 has a gap 34 between the inner cylinder 31 and the outer cylinder 32 as a closed space having a substantially constant width over the entire circumference.
Are formed. The inner cylinder 31 is made of a material having good thermal conductivity, while the outer cylinder 32 is formed by covering it with a heat insulating material 33 such as glass wool or a foam material so as to obtain good heat insulating properties. . Double tube gap 34
Is provided with an air inlet / outlet so that the air from the supply unit 15 circulates through the gap 34 and is then supplied to the pressure increasing cylinder 2. The drain 34 is connected to the drain 34. The other structures of this embodiment are substantially the same as those of the above embodiment, and the same members are designated by the same reference numerals.

【0029】かく構成の空々増圧器1は、増圧用シリン
ダ2の作動室10と回収用シリンダ3の駆動室11が連
通されると、空気の膨張吸熱によって回収用シリンダ3
の駆動室11が冷されることを利用し、給気が隙間34
を通ることで冷却作用を受け、供給する空気中の水分を
凝縮分離することができる。すなわち、空々増圧器1に
ドライヤ機能を持たせることができる。さらに、給気を
冷却することで増圧用シリンダ2へ吸い込まれる空気の
密度を高め吐出空気量を増大される。なお、分離された
水分はドレン排水弁35に排水される。
When the working chamber 10 of the pressure boosting cylinder 2 and the drive chamber 11 of the recovery cylinder 3 are communicated with each other, the air-pressure booster 1 having the above-mentioned structure expands and absorbs heat of air to recover the cylinder 3 for recovery.
Utilizing the fact that the drive chamber 11 of the
The water in the supplied air can be condensed and separated by receiving the cooling action by passing through. That is, the air-pressure booster 1 can have a dryer function. Further, by cooling the supply air, the density of the air sucked into the pressure increasing cylinder 2 is increased and the amount of discharged air is increased. The separated water is drained to the drain drain valve 35.

【0030】図4は、本発明のさらに別の実施例を示す
回路図であって、本例も回収用シリンダ3のチューブ3
0が図3の実施例と同様に熱伝導性の良い内筒31と断
熱材33を被覆して断熱性の良い外筒32の2重チュー
ブであり、その間に隙間34が形成されている。この隙
間34には、圧縮された空気が循環して吐出されるよう
に出入口が設けられている。
FIG. 4 is a circuit diagram showing still another embodiment of the present invention, which is also a tube 3 of the recovery cylinder 3.
Reference numeral 0 denotes a double tube of an outer cylinder 32 having a good heat insulating property by covering the inner cylinder 31 having a good heat conductivity and the heat insulating material 33 as in the embodiment of FIG. 3, and a gap 34 is formed between them. An inlet / outlet is provided in the gap 34 so that the compressed air is circulated and discharged.

【0031】かく構成の空々増圧器1は、圧縮された空
気が隙間34を通って回収用シリンダ3の冷却作用を受
けてから出力部22に送られるので、圧縮された空気中
の水分を凝縮分離することができる。すなわち、空々増
圧器1にドライヤ機能を持たせることができる。
In the air-pressure booster 1 having such a structure, the compressed air is sent to the output section 22 after being subjected to the cooling action of the recovery cylinder 3 through the gap 34, so that the moisture in the compressed air is condensed. Can be separated. That is, the air-pressure booster 1 can have a dryer function.

【0032】[0032]

【発明の効果】請求項1の構成によれば、シリンダの往
動で圧縮駆動に使用した空気を、シリンダの復動で再度
圧縮駆動に使用でき、消費エネルギーのロスを大幅に減
少することができる。
According to the first aspect of the invention, the air used for the compression drive in the forward movement of the cylinder can be used again for the compression drive in the backward movement of the cylinder, and the loss of energy consumption can be greatly reduced. it can.

【0033】請求項2の構成によれば、回収用シリンダ
のピストンの受圧面積が増圧用シリンダのピストンの受
圧面積より大きく設定したので、両ピストンの面積差に
より圧縮駆動に加えられる回収用シリンダの圧縮方向へ
の駆動力が得られる。
According to the second aspect of the invention, the pressure receiving area of the piston of the recovery cylinder is set larger than the pressure receiving area of the piston of the pressure boosting cylinder. A driving force in the compression direction can be obtained.

【0034】請求項3の構成によれば、増圧用シリンダ
の圧縮室側のカバーと回収用シリンダのカバーとが互い
に接合、もしくは一体に形成したので、駆動室の冷却に
よって圧縮室の圧縮空気を冷し、連続運転時の加熱によ
る吐出空気量が減少やピストンパッキンの摩耗を防止す
ることができる。
According to the third aspect of the present invention, the cover on the compression chamber side of the pressure boosting cylinder and the cover of the recovery cylinder are joined or integrally formed with each other, so that compressed air in the compression chamber is cooled by cooling the drive chamber. It is possible to prevent the amount of discharged air from decreasing due to heating during cooling and continuous operation, and to prevent abrasion of the piston packing.

【0035】請求項4の構成によれば、本発明の空々増
圧器の制御を1個の7ポート2位置切換弁で可能であ
り、複数の切換弁を組み合わせて回路を構成した場合と
比べて配管、配線作業及び保守が容易になり、占有面積
も小さくすることができる。
According to the fourth aspect of the present invention, it is possible to control the pneumatic booster of the present invention with one 7-port two-position switching valve, and compared with the case where a circuit is constructed by combining a plurality of switching valves. Piping, wiring work and maintenance are easy, and the occupied area can be reduced.

【0036】請求項5の構成によれば、空々増圧器にド
ライヤ機能を持たせることができ、さらに給気を冷却す
ることで増圧用シリンダへ吸い込まれる空気の密度を高
めて吐出空気量を増大することができる。
According to the structure of claim 5, the air-pressure booster can be provided with a dryer function, and further, by cooling the supply air, the density of the air sucked into the pressure boosting cylinder is increased to increase the discharge air amount. can do.

【0037】請求項6の構成によれば、空々増圧器にド
ライヤ機能を持たせることができ、しかも増圧器の出口
近くで冷却するので、後続機器へ高温の空気が流入する
ことを防止できる。
According to the structure of claim 6, the air-pressure booster can be provided with a dryer function, and since it cools near the outlet of the booster, it is possible to prevent hot air from flowing into the subsequent equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空々増圧器の制御回路を示す回路
説明図である。
FIG. 1 is a circuit explanatory diagram showing a control circuit of a space-intensifier according to the present invention.

【図2】その制御回路の7ポート2位置切換弁の断面図
である。
FIG. 2 is a sectional view of a 7-port 2-position switching valve of the control circuit.

【図3】本発明の別の実施例の制御回路を示す回路説明
図である。
FIG. 3 is a circuit explanatory diagram showing a control circuit of another embodiment of the present invention.

【図4】本発明のさらに別の実施例の制御回路を示す回
路説明図である。
FIG. 4 is a circuit explanatory diagram showing a control circuit of still another embodiment of the present invention.

【図5】従来の空々増圧器の制御回路を示す回路説明図
である。
FIG. 5 is a circuit explanatory diagram showing a control circuit of a conventional air-pressure booster.

【符号の説明】[Explanation of symbols]

1 空々増圧器 2a,2b 増圧用シリンダ 3 回収用シリンダ 4a,4b,5 ピストン 6 ピストンロッド 8a,8b 共用カバー 9a,9b 圧縮室 10a,10b 作動室 11a,11b 駆動室 17 7ポート2位置切換弁 31 内筒 32 外筒 34 隙間 1 Air booster 2a, 2b Pressure increasing cylinder 3 Recovery cylinder 4a, 4b, 5 pistons 6 piston rod 8a, 8b common cover 9a, 9b compression chamber 10a, 10b working chamber 11a, 11b drive chamber 17 7 port 2 position switching valve 31 inner cylinder 32 outer cylinder 34 Gap

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−243502(JP,A) 実開 昭58−193101(JP,U) 実開 平5−45201(JP,U) 実開 昭62−135873(JP,U) (58)調査した分野(Int.Cl.7,DB名) F15B 3/00 F04B 9/00 - 15/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-243502 (JP, A) Actual opening Sho-58-193101 (JP, U) Actual opening Flat 5-45201 (JP, U) Actual opening Sho-62- 135873 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F15B 3/00 F04B 9/00-15/08

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 互いに向い合うように配置され、かつピ
ストンロッドにそれぞれのピストンが直結された一対の
増圧用シリンダを有し、該増圧用シリンダは一方の増圧
用シリンダの圧縮室と作動室及び他方の増圧用シリンダ
の圧縮室とに圧縮空気を入れることにより、一方の増圧
用シリンダの圧縮室に入れた空気を増圧する往復式の空
々増圧器において、 前記ピストンロッドに直結されるピストンを備えたエネ
ルギー回収用シリンダを設け、該回収用シリンダの圧縮
方向へ駆動力を与える側の駆動室に、前回の前記増圧用
シリンダの作動室に入れた排気する空気が注入されるこ
とを特徴とする空々増圧器。
1. A pair of pressure-increasing cylinders, which are arranged so as to face each other, and each piston is directly connected to a piston rod, the pressure-increasing cylinder having a compression chamber and a working chamber of one of the pressure-increasing cylinders. A reciprocating air-pressure booster for boosting the pressure of air in the compression chamber of one pressure-increasing cylinder by introducing compressed air into the compression chamber of the other pressure-increasing cylinder, which includes a piston directly connected to the piston rod. The energy recovery cylinder is provided, and the exhaust air that has been previously contained in the working chamber of the pressure boosting cylinder is injected into the drive chamber on the side that applies the driving force in the compression direction of the recovery cylinder. Air booster.
【請求項2】 請求項1に記載の空々増圧器において、
前記回収用シリンダのピストンの受圧面積が前記増圧用
シリンダのピストンの受圧面積より大きく設定したこと
を特徴とする空々増圧器。
2. The air-pressure booster according to claim 1, wherein:
An air-pressure booster, wherein a pressure receiving area of a piston of the recovery cylinder is set to be larger than a pressure receiving area of a piston of the pressure increasing cylinder.
【請求項3】 請求項1または2に記載の空々増圧器に
おいて、前記ピストンロッドに直結されるピストンを備
えたエネルギー回収用シリンダを一対の増圧用シリンダ
の間に設け、該増圧用シリンダの圧縮室側のカバーと回
収用シリンダのカバーとが互いに接合、もしくは一体に
形成したことを特徴とする空々増圧器。
3. The pneumatic booster according to claim 1, wherein an energy recovery cylinder having a piston directly connected to the piston rod is provided between a pair of pressure boosting cylinders, and the pressure boosting cylinder is compressed. An air-pressure booster characterized in that the cover on the chamber side and the cover of the recovery cylinder are joined or integrally formed with each other.
【請求項4】 請求項1ないし3の1つに記載の空々増
圧器において、前記増圧用シリンダへの給気切換動作及
び前記回収用シリンダへの流路切換動作を1つの7ポー
ト2位置切換弁で行うことを特徴とする空々増圧器。
4. The air-pressure booster according to claim 1, wherein a single 7-port two-position switch is performed for the air supply switching operation to the pressure boosting cylinder and the flow path switching operation to the recovery cylinder. Pneumatic booster characterized by being operated by a valve.
【請求項5】 請求項1ないし4の1つに記載の空々増
圧器において、前記回収用シリンダの内チューブに隙間
を持って全周を覆う断熱性の高い外チューブを配し、内
チューブと外チューブの隙間を循環させた空気を前記増
圧用シリンダへ給気することを特徴とする空々増圧器。
5. The air-pressure booster according to claim 1, wherein an outer tube having a high heat insulating property is arranged on the inner tube of the recovery cylinder to cover the entire circumference with a gap, An air-pressure booster characterized by supplying air circulated in a gap between outer tubes to the pressure boosting cylinder.
【請求項6】 請求項1ないし4の1つに記載の空々増
圧器において、前記回収用シリンダの内チューブに隙間
を持って全周を覆う断熱性の高い外チューブを配し、前
記増圧用シリンダで圧縮した空気を内チューブと外チュ
ーブの隙間を循環させた吐出することを特徴とする空々
増圧器。
6. The air booster according to claim 1, wherein an inner tube of the recovery cylinder is provided with an outer tube having a high heat insulating property and covering the entire circumference with a gap, An air-pressure booster that discharges air compressed by a cylinder by circulating it through a gap between an inner tube and an outer tube.
JP15857294A 1994-07-11 1994-07-11 Empty intensifier Expired - Fee Related JP3368052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15857294A JP3368052B2 (en) 1994-07-11 1994-07-11 Empty intensifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15857294A JP3368052B2 (en) 1994-07-11 1994-07-11 Empty intensifier

Publications (2)

Publication Number Publication Date
JPH0821404A JPH0821404A (en) 1996-01-23
JP3368052B2 true JP3368052B2 (en) 2003-01-20

Family

ID=15674627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15857294A Expired - Fee Related JP3368052B2 (en) 1994-07-11 1994-07-11 Empty intensifier

Country Status (1)

Country Link
JP (1) JP3368052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646266B (en) * 2016-11-22 2019-01-01 日商Smc股份有限公司 Supercharger
KR20190022961A (en) * 2017-08-23 2019-03-07 주식회사 비와이 Gas booster having auto-stop function and method of controlling the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102757A (en) * 2000-09-28 2002-04-09 Dyflex Corp Spray gun
KR101497976B1 (en) * 2013-07-30 2015-03-03 군산대학교산학협력단 Automatic reciprocating motion control device for reciprocatable double acting booster
CN103836017B (en) * 2014-02-26 2016-04-06 长治市永华机械有限公司 Cavity type automation allosome changement
KR101966955B1 (en) * 2017-08-23 2019-04-09 주식회사 비와이 Universal reciprocal gas booster
JP6938829B2 (en) * 2017-08-30 2021-09-22 Smc株式会社 Pressure booster
CN112567140B (en) 2018-08-15 2023-01-24 Smc 株式会社 Supercharging device
KR102078513B1 (en) * 2019-12-09 2020-02-17 정종범 apparatus intensifying pressure of fluid without electric power supply

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193101U (en) * 1982-06-18 1983-12-22 エスエムシ−株式会社 Boosting air supply device
JPS62135873U (en) * 1986-02-21 1987-08-26
JPS63243502A (en) * 1987-03-27 1988-10-11 Konan Denki Kk Air booster
JP2587278Y2 (en) * 1991-11-22 1998-12-16 シーケーディ株式会社 Pressurized air supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646266B (en) * 2016-11-22 2019-01-01 日商Smc股份有限公司 Supercharger
KR20190022961A (en) * 2017-08-23 2019-03-07 주식회사 비와이 Gas booster having auto-stop function and method of controlling the same
KR101966956B1 (en) * 2017-08-23 2019-04-09 주식회사 비와이 Gas booster having auto-stop function and method of controlling the same

Also Published As

Publication number Publication date
JPH0821404A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
JP3368052B2 (en) Empty intensifier
US7527483B1 (en) Expansible chamber pneumatic system
AU659613B2 (en) Heat pump system
ES2290715T3 (en) A PROCEDURE AND DEVICE FOR THE PNEUMATIC DRIVING OF A TOOL.
US5807083A (en) High pressure gas compressor
US7614251B2 (en) Reciprocating compressor and refrigerator having the same
JPH0735048A (en) Double diaphragm pump
US4823560A (en) Refrigeration system employing refrigerant operated dual purpose pump
CA2591345A1 (en) Reciprocating pump system
KR100196713B1 (en) Drive circuit for fluid operated actuator
KR970066424A (en) Refrigeration circuit with fluid flow control
JPH08200211A (en) Reducing icing air valve
AU2004233525A1 (en) Multi-directional pump
JP5065267B2 (en) Compressor, especially piston type compressor
US20040052651A1 (en) Single stage piston compressor or multistage piston compressor for cooling of an electrical motor for a single stage piston compressor or for a multistage piston compressor
JP3705730B2 (en) Pneumatic cylinder exhaust recovery device
US6062828A (en) Compressor for liquefied gas applications
US5353683A (en) Pneumatic transformer
JP2000265951A (en) Pneumatic vacuum pump
JPH0842511A (en) Pneumatic cylinder device
RU2220323C1 (en) Compressor with hydraulic drive
JP3999182B2 (en) Fluid machinery
JPH11343970A (en) Electric compressor
EP0773346A1 (en) Compressed gas motor
JP3568883B2 (en) Pressure booster

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees