JP3368036B2 - Focused ion beam processing equipment - Google Patents

Focused ion beam processing equipment

Info

Publication number
JP3368036B2
JP3368036B2 JP05649494A JP5649494A JP3368036B2 JP 3368036 B2 JP3368036 B2 JP 3368036B2 JP 05649494 A JP05649494 A JP 05649494A JP 5649494 A JP5649494 A JP 5649494A JP 3368036 B2 JP3368036 B2 JP 3368036B2
Authority
JP
Japan
Prior art keywords
processing
ion beam
sample
ion
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05649494A
Other languages
Japanese (ja)
Other versions
JPH07273087A (en
Inventor
利明 饗場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13028657&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3368036(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP05649494A priority Critical patent/JP3368036B2/en
Publication of JPH07273087A publication Critical patent/JPH07273087A/en
Application granted granted Critical
Publication of JP3368036B2 publication Critical patent/JP3368036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、深さ方向のエッチング
による微細加工,断面加工用等に有用なイオンビーム加
工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion beam processing apparatus useful for fine processing by etching in the depth direction, for cross-section processing and the like.

【0002】[0002]

【従来の技術】近年、収束イオンビーム加工装置が開発
され、半導体分野を中心にして様々の分野で応用され始
めている。特に最近、収束イオンビーム加工装置を用い
て半導体等の特定箇所の断面透過電子顕微鏡(TEM)
観察用試料を作製する技術が注目を集めている。この技
術においては、電子顕微鏡で試料を観察する際に電子線
が試料を透過できるように加工幅をできるだけ小さくす
る必要がある。特に、高倍率で良好な格子像を観察する
ためには、加工幅を少なくとも0.1μm以下にするこ
とが望ましい。
2. Description of the Related Art In recent years, a focused ion beam processing apparatus has been developed and started to be applied in various fields centering on the semiconductor field. Particularly recently, a cross-section transmission electron microscope (TEM) of a specific place such as a semiconductor using a focused ion beam processing apparatus.
A technique for producing an observation sample is drawing attention. In this technique, it is necessary to make the working width as small as possible so that the electron beam can pass through the sample when observing the sample with an electron microscope. In particular, in order to observe a good lattice image at high magnification, it is desirable that the processing width be at least 0.1 μm or less.

【0003】図2は従来の収束イオンビーム加工装置の
一構成例を示すものである。
FIG. 2 shows an example of the configuration of a conventional focused ion beam processing apparatus.

【0004】図2中、1はイオン光学系で、イオン源
(不図示)で発生させたイオンをこのイオン光学系1で
収束してイオンビーム2とし、試料3の加工部4にイオ
ンビーム2を照射して試料3を加工するものである。こ
れらは通常、真空チャンバー(不図示)内に配置されて
いる。イオンビーム2をイオン光学系1で制御しながら
試料3の加工部4をイオンビームでスキャンすることに
より、試料3の加工部4を所定方向(本図においては、
矢印Xの方向)にエッチングして加工部4を広げていく
もので、これにより新しい加工面5が形成され、この加
工により加工幅6、つまり未加工部分の幅が減少する。
なお、20はイオン光学系1の制御系である。
In FIG. 2, reference numeral 1 denotes an ion optical system which converges the ions generated by an ion source (not shown) into an ion beam 2 and forms an ion beam 2 on a processing portion 4 of a sample 3. Is irradiated to process the sample 3. These are usually placed in a vacuum chamber (not shown). By scanning the processed portion 4 of the sample 3 with the ion beam while controlling the ion beam 2 by the ion optical system 1, the processed portion 4 of the sample 3 is moved in a predetermined direction (in this figure,
The processed portion 4 is expanded by etching in the direction of the arrow X), whereby a new processed surface 5 is formed, and this processing reduces the processed width 6, that is, the width of the unprocessed portion.
Reference numeral 20 is a control system of the ion optical system 1.

【0005】従来、収束イオンビーム加工装置を用いて
エッチングしながら加工幅を測定する場合には、同装置
の備えている機能を利用して、上方向からの走査イオン
顕微鏡像を観察する方法が採用されている。しかしなが
ら、上記の走査イオン顕微鏡像による加工された試料の
表面の観察においては、加工面の上面、側面、底面の識
別が困難であり、また走査イオン顕微鏡像の分解能があ
まり良くない等の理由で、特に加工幅が微小な場合に
は、加工幅の測定が困難となる。このため、望みどうり
の加工幅とすることは容易ではなく、ときにはオーバー
エッチングを起こして試料を壊してしまう場合もあっ
た。この問題を避けるために、断面TEM観察用試料の
作製に収束イオンビーム加工装置を用いて観察に適した
試料を得る場合には、収束イオンビームによる加工と、
透過電子顕微鏡による観察とを交互に繰り返す煩雑な手
順を採用せねばならず、場合によっては試料の移し替え
の際に、試料を破損してしまう等の不都合もあった。従
って、加工幅を自動的に検知して加工を適切に終了させ
ることは困難であり、加工の自動化も不可能であった。
Conventionally, when measuring a processing width while etching using a focused ion beam processing apparatus, there is a method of observing a scanning ion microscope image from above by utilizing the function of the apparatus. Has been adopted. However, in the observation of the surface of the processed sample by the scanning ion microscope image, it is difficult to identify the top surface, side surface, and bottom surface of the processed surface, and the resolution of the scanning ion microscope image is not so good. Especially, when the processing width is very small, it becomes difficult to measure the processing width. For this reason, it is not easy to obtain a desired processing width, and in some cases, over-etching may occur to destroy the sample. In order to avoid this problem, when a sample suitable for observation is obtained by using a focused ion beam processing apparatus for manufacturing a sample for cross-sectional TEM observation, processing by a focused ion beam,
A complicated procedure in which observation with a transmission electron microscope is alternately repeated has to be adopted, and in some cases, there is a disadvantage that the sample is damaged when the sample is transferred. Therefore, it is difficult to automatically detect the working width and appropriately finish the working, and it is impossible to automate the working.

【0006】[0006]

【発明が解決しようとする課題】本発明者は、上記問題
を解決するために種々検討した結果、加工装置のイオン
ビームと異なるエネルギー線を加工中の試料に照射する
ことによって、試料の加工幅を簡単、かつ精度良く測定
できることを知得して本発明を完成するに至ったもの
で、その目的とするところは、加工幅が微小な場合でも
所望の加工幅を確実に加工でき、更に加工装置の自動化
にも適応できる収束イオンビーム加工装置を提供するこ
とにある。
As a result of various investigations for solving the above problems, the present inventor irradiates the sample being processed with an energy beam different from the ion beam of the processing apparatus, thereby processing the sample processing width. The present invention has been completed by knowing that it can be easily and accurately measured, and the purpose is to be able to surely process a desired processing width even if the processing width is minute, and further process It is an object of the present invention to provide a focused ion beam processing apparatus that can be adapted to the automation of the apparatus.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するため
に本発明は、イオン源と、イオン源で発生するイオンを
イオンビームに収束すると共にイオンビームの試料加工
部への照射を制御するイオン光学系とを少なくとも有す
る収束イオンビーム加工装置において、試料の上面を前
記イオンビームでスキャンすることにより試料加工部が
所定方向にエッチングされ広げられて形成される加工断
面に、前記イオンビームと異なるエネルギー線を照射し
て、前記加工により減少する試料の加工幅を測定する手
段を備えることを特徴とする収束イオンビーム加工装置
を提案するもので、加工幅の測定手段が光学的測定手段
であること、加工幅の測定手段が電子的測定手段である
こと、加工幅の測定手段の出力に基づいてイオン光学系
を制御する制御系を備えてなり、加工幅が所定値になる
と加工が終了する上記のいずれかに記載の加工装置であ
ることを含む。
In order to solve the above problems, the present invention provides an ion source, and an ion for converging ions generated in the ion source into an ion beam and controlling irradiation of the sample processing portion with the ion beam. in at least a focused ion beam system and an optical system, before the upper surface of the sample
By scanning with the ion beam, the sample processing part
Machining cut formed by etching and expanding in a specified direction
The surface is irradiated with the ion beam and different energy beam, it proposes a focused ion beam processing apparatus comprising means for measuring the processing width of the sample reduced by the process, the measurement of the processing width The means is an optical measuring means, the processing width measuring means is an electronic measuring means, and a control system for controlling the ion optical system based on the output of the processing width measuring means is provided. It includes the processing apparatus according to any one of the above, in which the processing ends when the predetermined value is reached.

【0008】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0009】(実施態様)図1は本発明の収束イオンビ
ーム加工装置の一実施態様を示すものである。
(Embodiment) FIG. 1 shows an embodiment of a focused ion beam processing apparatus of the present invention.

【0010】図1中、符号1乃至6で示される各構成は
図2各の構成と同一構成を表わすものである。本実施態
様においては図2において示される従来の加工装置に、
更に加工幅6の測定をする手段を設けるものである。即
ち、12はエネルギー線照射系で、この照射系12から
照射されたエネルギー線14は加工面5にほぼ垂直に入
射し、加工幅6に対応したエネルギー出力16が試料3
から放出される。18はエネルギー出力検出系で、試料
3を中心としてエネルギー線照射系12と180度反対
側に配置され、前記エネルギー出力16を検出し、予め
検出系18に設定しあった設定値と比較を行なうもの
で、エネルギー出力16の検出値が設定値を越えた場合
は出力信号を制御系20に送出するものである。
In FIG. 1, the components denoted by reference numerals 1 to 6 represent the same components as those of FIG. In this embodiment, the conventional processing apparatus shown in FIG.
Further, a means for measuring the processing width 6 is provided. That is, 12 is an energy ray irradiation system, and the energy ray 14 emitted from this irradiation system 12 is incident on the processing surface 5 almost perpendicularly, and the energy output 16 corresponding to the processing width 6 is the sample 3
Emitted from. Reference numeral 18 denotes an energy output detection system, which is arranged on the opposite side of the energy beam irradiation system 12 with respect to the sample 3 by 180 degrees, detects the energy output 16 and compares it with a set value preset in the detection system 18. When the detected value of the energy output 16 exceeds the set value, the output signal is sent to the control system 20.

【0011】制御系20は前記出力信号を取り込み、制
御信号をイオン光学系1に送り、これによりイオンビー
ム加工が終了する。
The control system 20 takes in the output signal and sends the control signal to the ion optical system 1 to complete the ion beam processing.

【0012】加工幅を測定する手段の具体例としては、
細く絞ったレーザー光を加工面に照射して加工幅部22
の透過光の強度を測定するもの、細く絞った電子線を加
工面5に照射して加工幅部22の非弾性散乱強度を測定
するもの、可視光を加工面5に照射して加工幅部22の
干渉縞を測定するもの等があるが、これに限られず、紫
外線、X線等のエネルギー線を用いることもでき、また
エネルギー線の入射角度も垂直に限られず、任意の角度
が採用でき、その他加工幅を測定できる手段であれば、
いずれのものでも採用できる。
As a concrete example of the means for measuring the working width,
The processed width part 22 by irradiating the processed surface with a laser beam that has been narrowed down
For measuring the intensity of transmitted light, for measuring the inelastic scattering intensity of the processed width portion 22 by irradiating the processing surface 5 with a narrowed electron beam, for irradiating the processing surface 5 with visible light and processing width portion There are those that measure the interference fringes of 22 and the like, but not limited to this, energy rays such as ultraviolet rays and X-rays can be used, and the incident angle of the energy rays is not limited to vertical, and any angle can be adopted. , Other means that can measure the processing width,
Any one can be adopted.

【0013】加工幅を測定する手段を設置する場所とし
ては、収束イオンビーム加工装置のチャンバー内、試料
台の上、チャンバーが透明等でエネルギー線を透過でき
るものであるときはチャンバーの外部等がある。しか
し、収束イオンビーム加工および加工幅の測定に不都合
がなければ、設置場所に特に制限はない。
The means for measuring the processing width is installed in the chamber of the focused ion beam processing apparatus, on the sample stage, or outside the chamber when the chamber is transparent or the like and can transmit energy rays. is there. However, if there is no inconvenience in the focused ion beam processing and the measurement of the processing width, the installation place is not particularly limited.

【0014】[0014]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0015】実施例1 図1に示す構成の収束イオンビーム加工装置を製造し
た。
Example 1 A focused ion beam processing apparatus having the configuration shown in FIG. 1 was manufactured.

【0016】チャンバー内の試料付近の真空度は5×1
ー7Torr程度であり、イオン源付近の真空度は1×
10ー7Torr程度であった。
The degree of vacuum near the sample in the chamber is 5 × 1.
Is about 0 over 7 Torr, degree of vacuum around the ion source is 1 ×
It was about 10 over 7 Torr.

【0017】エネルギー照射系12としてArイオンレ
ーザーを用い、レーザー光で試料3を照射し、その透過
光をレーザー光検出器(光電管)で検出した。Siウエ
ハー上に形成したデバイスを試料とし、本実施例の装置
を用いてデバイスの断面透過電子顕微鏡観察用試料の作
製を行なった。制御系20によってイオン光学系1を制
御して、試料であるウエハーの上面(加工面4)をイオ
ンビーム2で走査してウエハーの加工を行なった。な
お、イオン種はGaイオンであった。
An Ar ion laser was used as the energy irradiation system 12, the sample 3 was irradiated with laser light, and the transmitted light was detected by a laser light detector (photoelectric tube). Using the device formed on the Si wafer as a sample, a device for observing a cross-section transmission electron microscope of the device was prepared using the apparatus of this example. The control system 20 controls the ion optical system 1 to scan the upper surface (processing surface 4) of the sample wafer by the ion beam 2 to process the wafer. The ion species was Ga ion.

【0018】同時にレーザー光を絞って加工面5を照射
した。X方向に加工を進め、加工を続けていくうちに加
工幅部22の加工幅6が小さくなり、加工幅部22を透
過するレーザー光が増加した。ウエハーを中心としてレ
ーザーと反対側に置かれたレーザー光検出器が透過レー
ザー光のエネルギー出力を検出し、予め設定されていた
設定値(本例においては加工幅部を0.1μmとなるよ
うに設定した。)とエネルギー出力検出値とが比較され
た。検出値が設定値を越えると検出系18から制御系2
0へ出力信号が送られた。これにより制御系20からイ
オン光学系に制御信号が送られ、イオンビーム加工が自
動的に停止した。 得られたウエハーの加工幅は0.1
μmであり、これは透過電子顕微鏡観察用に適したもの
であった。
At the same time, the laser beam was focused and the processed surface 5 was irradiated. The processing width 6 of the processing width portion 22 became smaller as the processing proceeded in the X direction and the processing was continued, and the laser light transmitted through the processing width portion 22 increased. A laser light detector placed on the side opposite to the laser centering on the wafer detects the energy output of the transmitted laser light, and a preset value (in this example, the processing width portion is set to 0.1 μm The set value) was compared with the detected energy output value. When the detected value exceeds the set value, the detection system 18 to the control system 2
Output signal sent to 0. As a result, a control signal was sent from the control system 20 to the ion optical system, and the ion beam processing was automatically stopped. The processing width of the obtained wafer is 0.1
μm, which was suitable for transmission electron microscope observation.

【0019】実施例2 エネルギー線照射系として、電子ビーム照射系(磁界レ
ンズ)を用いて電子ビームを加工面に照射し、照射系と
反対側にある電子ビーム検出系(セクター型磁極)によ
って非弾性散乱電子1弾性散乱電子強度比を測定する以
外は実施例1と同様に加工装置を構成し、実施例1と同
様に加工を行なった。ウエハーの加工幅は0.1μmで
あった。
Embodiment 2 An electron beam irradiation system (magnetic field lens) is used as an energy beam irradiation system to irradiate an electron beam on a surface to be processed, and an electron beam detection system (sector type magnetic pole) located on the side opposite to the irradiation system is used for non-irradiation. Elastic Scattered Electron 1 The processing apparatus was configured in the same manner as in Example 1 except that the elastic scattered electron intensity ratio was measured, and processing was performed in the same manner as in Example 1. The processing width of the wafer was 0.1 μm.

【0020】[0020]

【発明の効果】本発明によれば、上記のように構成した
ので、加工幅が微小な場合でも望みどうりの加工幅を正
確に、かつ簡単に得ることができる。更に、加工の自動
化が容易である。
According to the present invention, since it is configured as described above, a desired working width can be accurately and easily obtained even when the working width is very small. Furthermore, the automation of processing is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a configuration of the present invention.

【図2】従来の収束イオンビーム加工装置の構成を示す
ブロック図である。
FIG. 2 is a block diagram showing a configuration of a conventional focused ion beam processing apparatus.

【符号の説明】[Explanation of symbols]

1 イオン光学系 2 イオンビーム 3 試料 4 加工部 5 加工面 6 加工幅 12 エネルギー線照射系 14 エネルギー線 16 エネルギー出力 18 エネルギー出力検出系 20 制御系 22 加工幅部 1 Ion optical system 2 ion beam 3 samples 4 Processing department 5 Processing surface 6 processing width 12 Energy beam irradiation system 14 Energy rays 16 energy output 18 Energy output detection system 20 control system 22 Processing width part

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/302 201 B23K 15/00 508 B23K 15/02 G01B 21/02 H01J 37/305 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/302 201 B23K 15/00 508 B23K 15/02 G01B 21/02 H01J 37/305

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン源と、イオン源で発生するイオン
をイオンビームに収束すると共にイオンビームの試料加
工部への照射を制御するイオン光学系とを少なくとも有
する収束イオンビーム加工装置において、試料の上面を前記イオンビームでスキャンすることによ
り試料加工部が所定方向にエッチングされ広げられて形
成される加工断面に、 前記イオンビームと異なるエネル
ギー線を照射して、前記加工により減少する試料の加工
幅を測定する手段を備えることを特徴とする収束イオン
ビーム加工装置。
1. A focused ion beam processing apparatus comprising at least an ion source and an ion optical system for focusing ions generated by the ion source into an ion beam and controlling irradiation of the sample processing portion with the ion beam . By scanning the top surface with the ion beam
Sample processing part is etched in a predetermined direction and expanded
A converged ion beam processing apparatus, comprising means for irradiating an energy beam different from the ion beam to a processing cross section to be formed, and measuring a processing width of a sample reduced by the processing.
【請求項2】 前記エッチングは、深さ方向であること
を特徴とする請求項1記載の収束イオンビーム加工装
置。
2. The focused ion beam processing apparatus according to claim 1, wherein the etching is performed in a depth direction.
【請求項3】 前記エネルギー線は、前記加工断面に対
して実質的に垂直に入射されることを特徴とする請求項
1又は2記載の収束イオンビーム加工装置。
3. The focused ion beam processing apparatus according to claim 1, wherein the energy beam is incident substantially perpendicularly to the processed cross section.
【請求項4】 加工幅の測定手段が、光学的測定手段で
あることを特徴とする請求項1乃至3何れかに記載の収
束イオンビーム加工装置。
4. The focused ion beam processing apparatus according to claim 1, wherein the processing width measuring means is an optical measuring means.
【請求項5】 加工幅の測定手段が、電子的測定手段で
あることを特徴とする請求項1乃至4何れかに記載の収
束イオンビーム加工装置。
5. The focused ion beam processing apparatus according to claim 1, wherein the processing width measuring means is an electronic measuring means.
【請求項6】 加工幅の測定手段の出力に基づいてイオ
ン光学系を制御する制御系を備えてなり、加工幅が所定
値になると前記加工が終了することを特徴とする請求項
1乃至5何れかに記載の収束イオンビーム加工装置。
6. A control system for controlling the ion optical system based on the output of the processing width measuring means, wherein the processing is terminated when the processing width reaches a predetermined value. The focused ion beam processing apparatus according to any one of claims.
【請求項7】 イオン源と、イオン源で発生するイオン
をイオンビームに収束すると共にイオンビームの試料加
工部への照射を制御するイオン光学系とを少なくとも有
する収束イオンビーム加工装置を用い、試料の上面を前記イオンビームでスキャンすることによ
り試料加工部が所定方向にエッチングされ広げられて形
成される加工断面に、前記イオンビームと異なるエネル
ギー線を照射して、前記加工により減少する 試料の加工
幅を測定することを特徴とする加工方法。
It used 7. A ion source, at least a focused ion beam processing apparatus and an ion optical system for controlling the irradiation of the sample processing unit of the ion beam with ions generated in the ion source to converge the ion beam, the sample By scanning the upper surface of the
Sample processing part is etched in a predetermined direction and expanded
In the processed cross section, the energy different from the ion beam
A processing method , which comprises irradiating a ghee line and measuring a processing width of the sample which is reduced by the processing.
【請求項8】 イオン源と、イオン源で発生するイオン
をイオンビームに収束すると共にイオンビームの試料加
工部への照射を制御するイオン光学系とを少なくとも有
する収束イオンビーム加工装置を用い、試料の上面を前記イオンビームでスキャンすることによ
り試料加工部が所定方向にエッチングされ広げられて形
成される加工断面に、前記イオンビームと異なるエネル
ギー線を照射して、前記加工により減少する 試料の加工
幅を測定することを特徴とする断面透過電子顕微鏡観察
用試料の製造方法。
Using 8. A ion source, at least a focused ion beam processing apparatus and an ion optical system for controlling the irradiation of the sample processing unit of the ion beam with ions generated in the ion source to converge the ion beam, the sample By scanning the upper surface of the
Sample processing part is etched in a predetermined direction and expanded
In the processed cross section, the energy different from the ion beam
A method for producing a sample for observing a cross-section transmission electron microscope , which comprises irradiating a ghee ray and measuring a processing width of the sample which is reduced by the processing.
JP05649494A 1994-03-28 1994-03-28 Focused ion beam processing equipment Expired - Fee Related JP3368036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05649494A JP3368036B2 (en) 1994-03-28 1994-03-28 Focused ion beam processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05649494A JP3368036B2 (en) 1994-03-28 1994-03-28 Focused ion beam processing equipment

Publications (2)

Publication Number Publication Date
JPH07273087A JPH07273087A (en) 1995-10-20
JP3368036B2 true JP3368036B2 (en) 2003-01-20

Family

ID=13028657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05649494A Expired - Fee Related JP3368036B2 (en) 1994-03-28 1994-03-28 Focused ion beam processing equipment

Country Status (1)

Country Link
JP (1) JP3368036B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194907A (en) * 2006-03-31 2006-07-27 Hitachi Ltd Sample observation device and method using electron beam

Also Published As

Publication number Publication date
JPH07273087A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
US5877498A (en) Method and apparatus for X-ray analyses
US5525806A (en) Focused charged beam apparatus, and its processing and observation method
JP5101845B2 (en) Focused ion beam apparatus, sample cross section preparation method and thin piece sample preparation method using the same
EP0319797A2 (en) Method and apparatus for measuring defect density and defect distribution
EP0458418A2 (en) Method and apparatus for measuring internal defects
JP3457875B2 (en) Method for observing sample cross section in FIB-SEM apparatus and FIB-SEM apparatus
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
US5594246A (en) Method and apparatus for x-ray analyses
JP3401426B2 (en) Sample processing method in FIB-SEM device and FIB-SEM device
JP3368036B2 (en) Focused ion beam processing equipment
JP4469572B2 (en) Undercut measurement method using SEM
JPH0510822B2 (en)
US6297503B1 (en) Method of detecting semiconductor defects
JP3323042B2 (en) Method and apparatus for measuring three-dimensional element concentration distribution
JP3684943B2 (en) Beam scanning inspection system
JPH01120749A (en) Automatic focusing device for electron microscope
JPS59163505A (en) Method and device for measuring dimension of fine groove
JPH03272554A (en) Scanning electron microscope for section observation and section observing method using it
JPH06162987A (en) Sample processing device
JP2992682B2 (en) Cross section observation method for integrated circuits
JPH09246337A (en) Method and device for detecting crystal defect
JPH0119804Y2 (en)
JPH07134967A (en) Composite charged particle beam device
JPS6293934A (en) Inspection device
JP3498030B2 (en) Mask inspection method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees