JP3367028B2 - γ-ray detector - Google Patents

γ-ray detector

Info

Publication number
JP3367028B2
JP3367028B2 JP16593794A JP16593794A JP3367028B2 JP 3367028 B2 JP3367028 B2 JP 3367028B2 JP 16593794 A JP16593794 A JP 16593794A JP 16593794 A JP16593794 A JP 16593794A JP 3367028 B2 JP3367028 B2 JP 3367028B2
Authority
JP
Japan
Prior art keywords
detector
sub
photoelectric element
csi
cooling panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16593794A
Other languages
Japanese (ja)
Other versions
JPH0815441A (en
Inventor
俊信 北田
瑛二 村田
昌夫 東
昌孝 山田
浩文 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUCLEAR ENGINEERING, LTD
Kansai Electric Power Co Inc
Original Assignee
NUCLEAR ENGINEERING, LTD
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NUCLEAR ENGINEERING, LTD, Kansai Electric Power Co Inc filed Critical NUCLEAR ENGINEERING, LTD
Priority to JP16593794A priority Critical patent/JP3367028B2/en
Publication of JPH0815441A publication Critical patent/JPH0815441A/en
Application granted granted Critical
Publication of JP3367028B2 publication Critical patent/JP3367028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、放射線の一種であるγ
線のエネルギー別測定をすることによって、放射性同位
元素(核種)の検出を行なうエネルギー分散型γ線検出
装置に関するものである。 【0002】 【従来の技術】上記γ線を検出する装置として逆同時計
数法を用いたものは従来、ゲルマニウム検出器のまわり
にNaI(Tl)検出器等を組み合わせた装置が広く用
いられている。またCsI(Tl)検出器と光電素子を
組み合わせた検出装置も従来単体で使用されている。 【0003】前者の文献としては“BGOコンプトン抑
制スペクトロメーターの性能”(THE PERFORMANCE OF A
BISMATH GERMANATE ESCAPE SUPPRESSED SPECTROMET
ER )等があり、また後者には“教育用ポータブルガンマ
スペクトロメーター”(PORTABLEGAMMA SPECTROMETER F
OR EDUCATIONAL USE )等がある。 【0004】この種の装置として代表的なものは前記G
e半導体検出器を用いたものであるが、これは精度は良
い半面、極低温冷却機構と高圧電源が必要なため容積と
重量が大きくなり、狭い空間で迅速な作業を要する原子
力発電所では設置等に時間がかかって放射線被曝の危惧
があった。 【0005】また、前記CsI(Tl)検出器と光電素
子を用いた従来の簡易検出装置は、高温で且つコンプト
ンバックグランドが高い原子力発電所の作業現場では精
度よく核種を同定できる機能を備えていなかった。 【0006】 【発明が解決しようとする課題】本発明は叙上の如き実
状に対処し、軽量かつコンパクトで、高温、高バックグ
ランドに耐え得るγ線検出装置を見出すことにより、原
子力発電所の放射能測定の作業性を改善し、この測定の
強化促進を図ることを目的とするものである。 【0007】 【課題を解決するための手段】即ち、上記目的に適合す
る本発明のγ線検出装置の特徴は、CsI(Tl)シン
チレータと光電素子を組合わせた主検出器と、同じくC
sI(Tl)シンチレータと光電素子を組合わせ、上記
主検出器の周囲と後方とを取り囲むよう配設された副検
出器と、上記各光電素子に添着され各光電素子の昇温を
抑制する電子冷却パネルと、上記主副各検出器と各電子
冷却パネルを取り囲むと共に、電子冷却パネルの放熱を
行う放射線遮蔽体と、γ線の逃散光子を上記主検出器と
副検出器とで同時検出させ、副検出器からのパルスを主
検出器からのパルスと逆同時計数する電子回路とを備え
たところにある。 【0008】 【作用】上記本発明のガンマ線検出装置は原子力発電所
の定期検査に活用すると効果的であり、この場合、例え
ば原子炉の1次冷却系配管などの外側からガンマ線エネ
ルギーを測定して配管内部の核種の量を推定することが
できる。さらに、定期検査時に配管内部を化学薬品で洗
浄したような場合、化学洗浄の前後に本発明による検出
器で測定を実施すれば、洗浄の効果を確認することがで
きる。 【0009】これらの測定作業は原子炉停止中に行われ
るため作業環境の温度と放射線レベルは人間が入れる程
度に低下しているが、配管自体は約50℃〜100℃の
状態にある時に測定作業を実施しなければならないよう
な場合がある。また、放射線レベルは測定対象が1次系
であるか、2次系であるか、あるいは配管であるか機器
であるかなどにより位置的な差異があり、しかも、原子
炉停止後何時間経過したかなど時間的な変化を考慮に入
れる必要がある。 【0010】しかして、これら作業環境の位置的時間的
差異に対応して、上記本発明によるエネルギ分散型ガン
マ線検出装置は小容積軽量の原則を維持増強することが
できる。 【0011】即ち、上記本発明の装置においては、検出
器として特に極低温冷却機構や高圧電源を必要としない
CsI(Tl)と光電素子の組合わせを用いると共に、
小型軽量の電子冷却パネルと放射線遮蔽体を利用した放
熱システムの採用によって、装置末端の検出機構を軽量
かつコンパクトに形成することができる。また、上記本
発明のCsI(Tl)シンチレータの光電素子は比較的
高い温度でも作用しうるものであり、さらには、逆同時
計数電子回路によりコンプトンバックグランドを低減せ
しめてγ線の検出を精度良く行わしめることが可能であ
る。 【0012】 【実施例】以下さらに添付図面を参照して、本発明の実
施例を説明する。 【0013】図1に示すものは本発明の一具体例であっ
て、原子力発電所の定期検査に適用するための配慮をほ
どこしたγ線検出機構の実施例である。この実施例の検
出装置は、図1に示す装置末端のγ線検出機構と図2に
示す逆同時計数法の電子回路とを備え、上記γ線検出機
構の概略寸法は長さが約13cmで直径が約10cmで
ある。 【0014】まず、放射線検出と冷却の構造を説明す
る。図において1はコア型CsI(Tl)主検出器であ
って、材質はCsI(Tl)の単結晶をγ線に対するシ
ンチレータとし、その端面に光電素子3のシリコンフォ
トダイオードを装着して電気信号を発生させるものであ
る。2は同じくCsI(Tl)検出器であるが、その形
状は上記主検出器1の周囲と後方を取り囲むウェル型の
副検出器となっている。これらの検出器1,2から出る
電気信号は各々の前置増幅器基板4に入り、図2に示す
逆同時計数回路へと進む。 【0015】一方、光電素子3には既知の構造の電子冷
却パネル5が張り付けられており光電素子3の温度を3
0℃以下に冷却することができる。 【0016】次に放射線遮蔽及び放熱の諸構造について
説明する。放射線遮蔽体9,10,11は鉛の筒体であ
り、伝熱プレート6を介し5の電子冷却パネル5の熱を
放熱する作用を兼ねる。伝熱プレート6と放射線遮蔽体
間には熱伝導のよいインジウムフォイル7が貼られてい
る。放射線遮蔽体10,11は、環境放射線の強度によ
り脱着可能であり、低線量率の場合、これらを取り外す
ことによって、さらに軽量化が図れる。 【0017】なお、図中12は検出用のコリメータ、1
3は配線(図示せず)を外部へ引き出すための孔、また
8は断熱体を夫々示している。 【0018】さらに、図1に示した構造がどのような作
用を果たしているかを以下に説明する。シンチレータを
コア型CsI(Tl)主検出器1とウェル型CsI(T
l)副検出器2に分割し、その端面に各々光電素子3
(フォトダイオード)を装着し、それぞれの電気信号を
2個の前置増幅器基板4に取出し、両信号に対して逆同
時計数法を適用する。この逆同時計数法は、γ線スペク
トルのコンプトン散乱によるノイズを除いてフォトピー
クだけを鮮明に引出し、検出器のスペクトル感度を向上
させる手法として知られているものである。図1に示し
た構造は、極めて小容積軽量の構造によって、この手法
を適用できるようにした点に基本的な特徴がある。主検
出器1に入ってコンプトン散乱し、副検出器2に入って
検出されたγ線は同時に副検出器2系へ信号パルスを与
えるので、逆同時計数電子回路はこれを判別して除去す
る。このような信号処理を行なう逆同時計数法の実施例
の回路ブロック線図を図2に示す。 【0019】一方、電子冷却パネル5の作用は光電素子
3を冷却して30℃以下に保つことである。30℃を越
えると光電素子3にノイズが発生し、検出能力が低下す
る。即ち、原子力発電所の定検時の作業環境では40〜
50℃になる場合がありうるので、光電素子3を冷却す
ることが必要な条件となってくる。本発明ではこの電子
冷却パネル5の使用によって極めて小容積軽量に光電素
子の冷却を達成できることが明らかである。 【0020】また、図1に示す放射線遮蔽体9,10,
11は、一体となって放射線を遮蔽すると同時に、電子
冷却パネル5の放熱作用を伝熱プレート6を介して行な
っている。このように遮蔽体を放熱に利用することは小
容量軽量化に役立っている。さらに放射線遮蔽体10,
11は撤去・組み合わせが、かなりの自由度をもって放
射線測定環境に応じて選択できる。 【0021】 【発明の効果】以上説明したように、本発明のγ線検出
装置は、CsI(Tl)シンチレータと光電素子を組合
せた主副各検出器と、これらを利用する逆同時計数回路
と、上記各光電素子に添着され各光電素子の昇温を抑制
する電子冷却パネルと、上記主副各検出器と電子冷却パ
ネルを取り囲むと共に、電子冷却パネルの放熱を行う放
射線遮蔽体とを備えたものであり、検出器として特に極
低温冷却機構や高圧電源を必要としないCsI(Tl)
と光電素子の組合わせを用いると共に、小型軽量の電子
冷却パネルと放射線遮蔽体を利用した放熱システムの採
用によって、装置末端の検出機構を軽量かつコンパクト
に形成することが可能で、また、上記CsI(Tl)シ
ンチレータの光電素子は比較的高温環境でも使用するこ
とができ、さらに上記逆同時計数回路によりコンプトン
バックグランドを低減しγ線の測定分解能を良好ならし
めて、原子力発電所の放射能測定の作業性を改善しこの
測定の強化促進を図れるとの顕著な効果を奏するもので
ある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a type of radiation, γ.
The present invention relates to an energy dispersive γ-ray detector that detects a radioactive isotope (nuclide) by measuring the energy of a ray. 2. Description of the Related Art As a device using the reverse coincidence method as a device for detecting γ-rays, a device combining a germanium detector with a NaI (Tl) detector or the like has been widely used. . Conventionally, a detection device combining a CsI (Tl) detector and a photoelectric element has been used alone. [0003] As the former document, "Performance of BGO Compton Suppression Spectrometer" (THE PERFORMANCE OF A
BISMATH GERMANATE ESCAPE SUPPRESSED SPECTROMET
ER), and the latter is a portable gamma spectrometer for education (PORTABLEGAMMA SPECTROMETER F
OR EDUCATIONAL USE). A typical device of this type is the aforementioned G
e A semiconductor detector is used, but it has high accuracy, but requires a cryogenic cooling mechanism and a high-voltage power supply, so its volume and weight are large, and it is installed in a nuclear power plant that requires quick work in a small space. It took a long time, and there was concern about radiation exposure. Further, the conventional simple detection device using the CsI (Tl) detector and the photoelectric element has a function of accurately identifying nuclides in a nuclear power plant at a high temperature and a high Compton background. Did not. SUMMARY OF THE INVENTION The present invention addresses the above-described situation and seeks to provide a gamma-ray detector that is lightweight, compact, and capable of withstanding high temperatures and high backgrounds. The purpose is to improve the workability of radioactivity measurement and promote the enhancement of this measurement. That is, the γ-ray detecting apparatus of the present invention which meets the above-mentioned object is characterized by the fact that the main detector comprising a combination of a CsI (Tl) scintillator and a photoelectric element is the same as the main detector.
A sub-detector, which combines an sI (Tl) scintillator and a photoelectric element, surrounds the periphery and the rear of the main detector, and an electron which is attached to each of the photoelectric elements and suppresses a temperature rise of each photoelectric element. A cooling panel, surrounding the main and sub detectors and each electronic cooling panel, and a radiation shield that radiates heat of the electronic cooling panel, and simultaneously detects escaped photons of γ-rays with the main detector and the sub detector. And an electronic circuit for inversely counting the pulses from the sub-detector with the pulses from the main detector. The gamma ray detecting device of the present invention is effective when used for periodic inspection of a nuclear power plant. In this case, gamma ray energy is measured from outside the primary cooling system piping of a nuclear reactor, for example. The amount of nuclides in the pipe can be estimated. Further, in the case where the inside of the pipe is cleaned with a chemical during a periodic inspection, if the measurement is performed by the detector according to the present invention before and after the chemical cleaning, the effect of the cleaning can be confirmed. Since these measurement operations are performed while the reactor is shut down, the temperature and radiation level of the working environment are reduced to the extent that humans can enter them, but the piping itself is measured when it is at a temperature of about 50 ° C to 100 ° C. In some cases, work must be performed. In addition, the radiation level has a positional difference depending on whether the measurement target is a primary system, a secondary system, a pipe or an instrument, and how many hours have passed since the reactor was shut down. It is necessary to take temporal changes into account. Thus, in response to the positional and temporal differences in the working environment, the energy dispersive gamma ray detecting device according to the present invention can maintain and enhance the principle of small volume and light weight. That is, in the apparatus of the present invention, a combination of a CsI (Tl) and a photoelectric element which does not require a cryogenic cooling mechanism or a high voltage power supply is used as a detector.
By employing a small and light electronic cooling panel and a heat radiation system using a radiation shield, the detection mechanism at the terminal end of the apparatus can be made lightweight and compact. Further, the photoelectric element of the CsI (Tl) scintillator of the present invention can operate even at a relatively high temperature, and furthermore, the Compton background is reduced by an inverse coincidence electronic circuit to accurately detect γ-rays. It is possible to do it. Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an embodiment of the present invention, which is an embodiment of a gamma ray detecting mechanism in which consideration is given to application to a periodic inspection of a nuclear power plant. The detection device of this embodiment is provided with a gamma ray detection mechanism at the end of the device shown in FIG. 1 and an electronic circuit of the reverse coincidence counting method shown in FIG. 2. It is about 10 cm in diameter. First, the structure of radiation detection and cooling will be described. In the figure, reference numeral 1 denotes a core type CsI (Tl) main detector, which is made of a single crystal of CsI (Tl) as a scintillator for γ-rays, and a silicon photodiode of a photoelectric element 3 is mounted on an end face thereof to transmit an electric signal. To be generated. Reference numeral 2 denotes a CsI (Tl) detector, which is a well-type sub-detector surrounding the main detector 1 and surrounding the rear thereof. The electrical signals from these detectors 1 and 2 enter each preamplifier board 4 and go to the inverse coincidence circuit shown in FIG. On the other hand, an electronic cooling panel 5 having a known structure is adhered to the photoelectric device 3, and the temperature of the photoelectric device 3 is reduced to 3 °.
It can be cooled below 0 ° C. Next, various structures for radiation shielding and heat radiation will be described. The radiation shields 9, 10, and 11 are lead cylinders, and also have a function of radiating heat of the electronic cooling panel 5 through the heat transfer plate 6. An indium foil 7 having good heat conduction is stuck between the heat transfer plate 6 and the radiation shield. The radiation shields 10 and 11 can be attached or detached depending on the intensity of environmental radiation. In the case of a low dose rate, the weight can be further reduced by removing them. In the figure, reference numeral 12 denotes a collimator for detection, 1
Reference numeral 3 denotes a hole for drawing out a wiring (not shown) to the outside, and reference numeral 8 denotes a heat insulator. Further, the operation of the structure shown in FIG. 1 will be described below. The scintillator is composed of a core type CsI (Tl) main detector 1 and a well type CsI (Tl).
l) Divided into sub-detectors 2, each having a photoelectric element 3
(Photodiode) is mounted, and each electric signal is taken out to two preamplifier substrates 4, and the inverse coincidence method is applied to both signals. This inverse coincidence counting method is known as a technique for clearly extracting only photopeaks excluding noise due to Compton scattering of the γ-ray spectrum and improving the spectral sensitivity of the detector. The structure shown in FIG. 1 has a fundamental feature in that this method can be applied by using a very small volume and light weight structure. The γ-rays that enter the main detector 1 and undergo Compton scattering and enter the sub-detector 2 simultaneously give a signal pulse to the sub-detector 2 system, and the inverse coincidence electronic circuit discriminates and removes this. . FIG. 2 is a circuit block diagram of an embodiment of the reverse coincidence method for performing such signal processing. On the other hand, the function of the electronic cooling panel 5 is to cool the photoelectric element 3 and keep it at 30 ° C. or lower. If the temperature exceeds 30 ° C., noise is generated in the photoelectric element 3 and the detection ability is reduced. That is, in the working environment at the time of regular inspection of a nuclear power plant,
Since the temperature may reach 50 ° C., it is necessary to cool the photoelectric element 3. In the present invention, it is apparent that the use of the electronic cooling panel 5 can achieve the cooling of the photoelectric element with extremely small volume and light weight. Further, the radiation shields 9, 10 and 10 shown in FIG.
Numeral 11 blocks the radiation of the electronic cooling panel 5 through the heat transfer plate 6 at the same time as shielding the radiation integrally. The use of the shield for heat dissipation in this way is useful for reducing the capacity and weight. Furthermore, the radiation shield 10,
11 can be selected for removal and combination according to the radiation measurement environment with considerable flexibility. As described above, the gamma ray detecting apparatus of the present invention comprises a main and sub detectors each combining a CsI (Tl) scintillator and a photoelectric element, and an inverse coincidence circuit using these detectors. An electronic cooling panel attached to each of the photoelectric elements to suppress a rise in temperature of each of the photoelectric elements, and a radiation shield that radiates heat of the electronic cooling panel while surrounding the main and auxiliary detectors and the electronic cooling panel. CsI (Tl) that does not require a cryogenic cooling mechanism or high-voltage power supply as a detector
In addition to using a combination of the CsI and the photoelectric element, a small and lightweight electronic cooling panel and a heat radiation system using a radiation shield can be used to make the detection mechanism at the end of the device lightweight and compact. (Tl) The photoelectric element of the scintillator can be used even in a relatively high temperature environment, and the inverse coincidence circuit reduces Compton background, improves the resolution of γ-rays, and improves the radioactivity measurement of nuclear power plants. This has a remarkable effect of improving workability and promoting enhancement of this measurement.

【図面の簡単な説明】 【図1】本発明実施例のγ線検出装置の検出機構を示す
断面図である。 【図2】同実施例の逆同時計数法の回路ブロック線図で
ある。 【符号の説明】 1 主検出器(CsI(Tl)シンチレータ) 2 副検出器(CsI(Tl)シンチレータ) 3 光電素子 4 前置増幅器基板 5 電子冷却パネル 6 伝熱プレート 7 インジウムフォイル 8 断熱体 9,10,11 放射線遮蔽体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a detection mechanism of a γ-ray detection device according to an embodiment of the present invention. FIG. 2 is a circuit block diagram of a reverse coincidence counting method of the embodiment. [Description of Signs] 1 Main detector (CsI (Tl) scintillator) 2 Secondary detector (CsI (Tl) scintillator) 3 Photoelectric element 4 Preamplifier substrate 5 Electronic cooling panel 6 Heat transfer plate 7 Indium foil 8 Insulator 9 , 10,11 Radiation shield

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東 昌夫 大阪市西区土佐堀一丁目3番7号 株式 会社原子力エンジニアリング内 (72)発明者 山田 昌孝 大阪市西区土佐堀一丁目3番7号 株式 会社原子力エンジニアリング内 (72)発明者 新谷 浩文 大阪市西区土佐堀一丁目3番7号 株式 会社原子力エンジニアリング内 (56)参考文献 特開 昭58−176568(JP,A) 特開 昭62−115351(JP,A) 特開 昭63−158490(JP,A) 特開 平5−11060(JP,A) 特開 平7−218638(JP,A) 実開 昭49−9285(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01T 1/20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masao Higashi 1-3-7 Tosabori, Nishi-ku, Osaka City Inside Nuclear Engineering Co., Ltd. (72) Inventor Masataka Yamada 1-3-7 Tosabori, Nishi-ku, Osaka City Nuclear Engineering Co., Ltd. (72) Inventor Hirofumi Shintani 1-3-7 Tosabori, Nishi-ku, Osaka City Nuclear Engineering Co., Ltd. (56) References JP-A-58-176568 (JP, A) JP-A-62-115351 (JP, A) JP-A-63-158490 (JP, A) JP-A-5-11060 (JP, A) JP-A-7-218638 (JP, A) Japanese Utility Model Showa 49-9285 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01T 1/20

Claims (1)

(57)【特許請求の範囲】 【請求項1】 CsI(Tl)シンチレータと光電素子
を組合わせた主検出器と、同じくCsI(Tl)シンチ
レータと光電素子を組合わせ、上記主検出器の周囲と後
方とを取り囲むよう配設された副検出器と、上記各光電
素子に添着され各光電素子の昇温を抑制する電子冷却パ
ネルと、上記主副各検出器と各電子冷却パネルを取り囲
むと共に、電子冷却パネルの放熱を行う放射線遮蔽体
と、γ線の逃散光子を上記主検出器と副検出器とで同時
検出させ、副検出器からのパルスを主検出器からのパル
スと逆同時計数する電子回路とを備えたことを特徴とす
るγ線検出装置。
(57) [Claim 1] A main detector in which a CsI (Tl) scintillator and a photoelectric element are combined, and a CsI (Tl) scintillator and a photoelectric element in combination are also provided around the main detector. And a sub-detector disposed so as to surround the rear, an electronic cooling panel attached to each of the photoelectric elements and suppressing the temperature rise of each photoelectric element, and enclosing the main and sub-detectors and each electronic cooling panel. The radiation shield that dissipates heat from the electronic cooling panel and the escaped photons of γ-rays are simultaneously detected by the main detector and the sub-detector, and the pulse from the sub-detector is inversely coincident with the pulse from the main detector. Γ-ray detection device, comprising:
JP16593794A 1994-06-24 1994-06-24 γ-ray detector Expired - Lifetime JP3367028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16593794A JP3367028B2 (en) 1994-06-24 1994-06-24 γ-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16593794A JP3367028B2 (en) 1994-06-24 1994-06-24 γ-ray detector

Publications (2)

Publication Number Publication Date
JPH0815441A JPH0815441A (en) 1996-01-19
JP3367028B2 true JP3367028B2 (en) 2003-01-14

Family

ID=15821855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16593794A Expired - Lifetime JP3367028B2 (en) 1994-06-24 1994-06-24 γ-ray detector

Country Status (1)

Country Link
JP (1) JP3367028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230000737A (en) * 2021-06-25 2023-01-03 한국원자력연구원 Apparatus for analysis low-level radioactivity and method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235546A (en) * 2000-02-23 2001-08-31 Hitachi Ltd Radioactive gas measuring device and fuel failure detecting system
CN103344985A (en) * 2013-07-11 2013-10-09 山东省科学院海洋仪器仪表研究所 Ocean in-situ anticoincidence shielding gamma energy spectrometer
CN104820232A (en) * 2015-04-24 2015-08-05 中国船舶重工集团公司第七一九研究所 On-line type energy spectrum analysis anti-coincidence measurement detector
CN110018511B (en) * 2019-04-26 2020-06-02 吉林大学 Movable X-ray detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230000737A (en) * 2021-06-25 2023-01-03 한국원자력연구원 Apparatus for analysis low-level radioactivity and method thereof
KR102564509B1 (en) 2021-06-25 2023-08-07 한국원자력연구원 Apparatus for analysis low-level radioactivity and method thereof

Also Published As

Publication number Publication date
JPH0815441A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
Hanson et al. A neutron detector having uniform sensitivity from 10 keV to 3 MeV
JP3418800B2 (en) How to reduce annihilation gamma rays in radiation measurement
JP3454557B2 (en) Simultaneous selective detection of neutrons and X-ray or gamma-ray photons
JPH06508926A (en) Selective simultaneous detection process and detection device for neutrons and X or γ photons
Kokubun et al. Hard X-ray imager (HXI) for the ASTRO-H mission
JP2018508763A (en) Composite scintillation crystal, composite scintillation detector and radiation detector
JP2001235546A (en) Radioactive gas measuring device and fuel failure detecting system
Jaksch et al. Recent developments SoNDe high-flux detector project
JP3367028B2 (en) γ-ray detector
KR100372755B1 (en) Multi-Functional Gamma Radiation Spectrometer and Detection Method Theirof
Amgarou et al. Recommendations for the selection of in situ measurement techniques for radiological characterization in nuclear/radiological installations under decommissioning and dismantling processes
US3336477A (en) Low background beta detection having a shield separating a beta detector and a cosmic ray detector
CN209373136U (en) Integrate the γ radiation detector assembly of tellurium-zincium-cadmium crystal and plastic scintillant
JPH068859B2 (en) Device for measuring β-radionuclide content in food
RU189817U1 (en) PAIR GAMMA SPECTROMETER FOR REGISTRATION OF HIGH ENERGY GAMMA RADIATION
Masse et al. A Ge NaI (Tl) spectrometer with Compton suppression and gamma coincidence counting. Application to 189Ir and 101Rh activity measurements
Baginova et al. The effect of neutrons on the background of HPGe detectors operating deep underground
Roulston et al. Reduced Compton effect scintillation spectrometer
Ryzhikov et al. The neutron detectors based on oxide scintillators for control of fissionable radioactive substances
Wang et al. A Miniaturized Gamma-ray Spectrometer based on CdZnTe Semiconductor and BGO Scintillator
JP2001311780A (en) Neutron ray measuring device
Tuemer et al. A new telescope for wide-band gamma-ray astronomy: The Silicon Compton Recoil Telescope (SCRT)
Park et al. Development of a real-time radiation level monitoring sensor for building an underwater radiation monitoring system
US4638159A (en) Graded shaped spatial resolution nuclear detectors
HERRANZ et al. Recommended in situ measurement techniques for each constrained environment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141108

Year of fee payment: 12

EXPY Cancellation because of completion of term